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Introduction

Let X = {X t , t = 1, 2, . . . } be a real-valued stationary zero-mean Gaussian random process, with spectral density f , and covariance function γ f (τ ) = E(X t X t+τ ), so that

γ f (τ ) = π -π f (λ)e iτ λ dλ
(τ = 0, ±1, ±2, . . . ).

(1.1)

This process is long-range dependent (resp. anti-persistent) if there exist C > 0 and a value d, 0 < d < 1/2 (resp. -1/2 < d < 0), such that f (λ)|λ| 2d → C when λ → 0. This may be conveniently rewritten as f (λ) = λ -2d g(|λ|), where g : [0, π] → R + is a continuous function.

Interest in long-range dependent and anti-persistent time series has increased steadily in the last fifteen years; see [START_REF] Beran | Statistics for long-memory processes[END_REF] for a comprehensive introduction and [START_REF] Doukhan | Theory and applications of long-range dependence[END_REF] for a review of theoretical aspects and fields of applications, including telecommunications, economics, finance, astrophysics, medicine and hydrology. Research in parametric inference for long and intermediate memory processes have been pioneered by [START_REF] Mandelbrot | Fractional brownian motions, fractional noises and applications[END_REF], [START_REF] Mandelbrot | Some long run properties of geophysical records[END_REF], and continued by [START_REF] Fox | Large-sample properties of parameter estimates for strongly dependent stationary Gaussian time series[END_REF], [START_REF] Dahlhaus | Efficient parameter estimation for self-similar processes[END_REF], [START_REF] Giraitis | Whittle estimator for finite-variance non-Gaussian time series with long memory[END_REF], [START_REF] Geweke | The estimation and application of long memory time series models[END_REF], and [START_REF] Beran | Fitting long-memory models by generalized linear regression[END_REF], among others. Unfortunately, parametric inference can be highly biased under mis-specification of the true model. This limitation makes semiparametric approaches particularly appealing [START_REF] Robinson | Gaussian semiparametric estimation of long range dependence[END_REF]. 1 For instance, under the representation f (λ) = |λ| -2d g(|λ|), one would like to estimate d as a measure of long-range dependence, without resorting to parametric assumptions on the nuisance parameter g; see [START_REF] Liseo | Bayesian semiparametric inference on longrange dependence[END_REF] for a Bayesian approach to this problem, and [START_REF] Bardet | Semiparametric estimation of the long-range dependence parameter: A survey[END_REF] for an exhaustive review of classical approaches. However, practically all the existing procedures either exploit the regression structure of the log-spectral density in a small neighborhood of the origin [START_REF] Robinson | Gaussian semiparametric estimation of long range dependence[END_REF], or use an approximate likelihood function based on Whittle's approximation [START_REF] Whittle | Gaussian estimation in stationary time series[END_REF], where the original vector of observations X n = (X 1 , X 2 , . . . , X n ) gets transformed into the periodogram I(λ) computed at the Fourier frequencies λ j = 2π j/n, j = 1, 2, . . . , n, and the artificial observations I(λ 1 ), . . . , I(λ n ) are, under short range dependence, approximately independent. Unfortunately, Whittle's approximation is not valid in in the presence of long range dependence, at least for the smallest Fourier frequencies.

We propose a Bayesian nonparametric approach to the estimation of the spectral density of the stationary Gaussian process based on the true likelihood, without resorting to Whittle's approximation. We study the asymptotic properties of our procedure, including consistency and rates of convergence. Our study is based on standard tools for an asymptotic analysis of Bayesian approaches, e.g. [START_REF] Ghosal | Convergence rates of posterior distributions[END_REF], i.e. quantities of interest are the prior probability of a small neighborhood around the true spectral density, and some kind of entropy measure for the prior distribution. Most technical details differ however, as the observed process is long-range dependent.

The paper is organised as follows. In Section 2, we introduce the model and the notations. In Section 3, we provide a general theorem that states sufficient conditions to ensure consistency of the posterior distribution, and of several Bayes estimators. We also introduce the class of FEXP (Fractional Exponential) priors, based on the FEXP representation of [START_REF] Robinson | Nonparametric function estimation for long memory time series[END_REF], and show that such prior distributions fulfil these sufficient conditions for posterior consistency.

In Section 4, we study the rate of convergence of the posterior in the general case, and specialise our results for the FEXP class. Section 5 gives the proofs of the main theorems of the two previous Sections. Section 6 discusses further research. The Appendix contains several technical lemmas.

Model and notations

The model consists of an observed vector X n = (X 1 , . . . , X n ) of n consecutive realizations from a zero-mean Gaussian stationary process, with spectral density f , which is either long-range dependent, short-range dependent, or anti-persistent. The likelihood function is

ϕ(X n ; f ) = (2π) -n/2 |T n (f )| -1/2 exp{- 1 2 X t n T n (f ) -1 X n } (2.1)
where T n (f ) is the Toeplitz matrix associated to γ f , see (1.1), i.e. T n (f ) = [γ f (jk)] 1≤j,k≤n . This model is parametrised by the pair (d, g), which defines f = F (d, g) through the factorisation

F : (-1/2, 1/2) × C 0 [0, π] → F (d, g) → f : f (λ) = |λ| -2d g(|λ|),
where C 0 [0, π] is the set of continuous functions over [0, π], and F denotes the set of spectral densities, that is, the set of even functions f : [-π, π] → R + such that π -π |f (λ)| dλ < +∞. The model is completed with a nonparametric prior distribution π for (d, g) ∈ (-1/2, 1/2) × C 0 [0, π]. (There should be no confusion whether π refers to either the constant or the prior distribution in the rest of the paper.) All our results will assume that the model is valid for some true' parameter (d 0 , g 0 ), associated to some 'true' spectral density f 0 = F (d 0 , g 0 ), where d 0 ∈ (-1/2, 1/2); conditions on g 0 are detailed in the next section.

We introduce several pseudo-distances on F . The Kullback-Leibler divergence for finite n is defined as

KL n (f 0 ; f ) = 1 n R n ϕ(X n ; f 0 ) {log ϕ(X n ; f 0 ) -log ϕ(X n ; f )} dX n = 1 2n tr T n (f 0 )T -1 n (f ) -I n -log det(T n (f 0 )T -1 n (f ))
where I n represents the identity matrix of order n. Letting n → ∞, we can define, when it exists, the quantity

KL ∞ (f 0 ; f ) = 1 4π π -π f 0 (λ) f (λ) -1 -log f 0 (λ) f (λ) dλ.
We also define a symmetrised version of KL n , i.e.

h n (f 0 , f ) = KL n (f 0 ; f ) + KL n (f ; f 0 );
and its limit as n → ∞:

h(f 0 , f ) = 1 4π π -π f 0 (λ) f (λ) + f (λ) f 0 (λ) -2 dλ = 1 2π π 0 f 0 (λ) f (λ) -1 2 f (λ) f 0 (λ) dλ.
For technical reasons, we define also the pseudo-distance

b n (f 0 , f ) = 1 n tr T n (f ) -1 T n (f 0 -f ) 2 and its limit as n → +∞, b(f 0 , f ) = 1 4π π -π f 0 (λ) f (λ) -1 2 dλ.
Finally, we consider the L 2 distance between the spectral log-densities [START_REF] Moulines | Semiparametric spectral estimation for fractional processes[END_REF],

ℓ(f 0 , f ) = π -π {log f 0 (λ) -log f (λ)} 2 dλ. (2.2)
For the models considered in this paper, this distance always exists, whereas the L 2 distance may not.

Consistency

We first state and prove the strong consistency of the posterior distribution under very general conditions on both π and f 0 = F (d 0 , g 0 ), i.e. as n → ∞, and for ε > 0 small enough,

P π [A ε |X n ] → 1, a.s.,
where P π [.|X n ] denotes posterior probabilities associated with the prior π, and

A ε = {(d, g) ∈ (-1/2, 1/2) × C 0 [0, π] : h(f 0 , F (d, g)) ≤ ε}.
From this, we shall deduce the consistency of Bayes estimators of f and d. Finally, we shall introduce the class of FEXP priors, and show that they allow for posterior consistency.

Main result

Consider the following sets:

G(m, M ) = g ∈ C 0 [0, π] : m ≤ g ≤ M G(m, M, L, ρ) = {g ∈ G(m, M ) : |g(λ) -g(λ ′ )| ≤ L|λ -λ ′ | ρ } G(t, m, M, L, ρ) = [-1/2 + t, 1/2 -t] × G(m, M, L, ρ) for ρ ∈ (0, 1], L > 0, m ≤ M , t ∈ (0, 1/2).
Restricting the parameter space to such sets makes the model identifiable (boundedness of g, provided m > 0), and ensures that normalized traces of products of Toeplitz matrices that appear in the distances defined in the previous section converge (Hölder inequality).

We now state our main consistency result.

Theorem 3.1. For ε > 0 small enough

P π [A ε |X n ] → 1, a.s.
provided the following conditions are fulfilled:

1. There exist t, m, M, L > 0, ρ ∈ (0, 1], such that the set G(t, m, M, L, ρ) contains both the pair (d 0 , g 0 ) that defines the true spectral density f 0 = F (d 0 , g 0 ) and the support of the prior distribution π.

2. For all ε > 0, π(B ε ) > 0, where B ε is defined by

B ε = {(d, g) ∈ G(t, m, M, L, ρ) : h(f 0 , F (d, g)) ≤ ε, 16|d 0 -d| < ρ + 1 -t} .
3. For ε > 0 small enough, there exists a sequence F n such that π(F n ) ≥ 1e -nr , r > 0, and a net (i.e. a finite collection)

H n ⊂ {(d, g) ∈ [-1/2 + t, 1/2 -t] × G(m, M, L, ρ) : h(f 0 ; F (d, g)) > ε/2}
such that, for n large enough, for all (d, g)

∈ F n ∩A c ε , f = F (d, g), there exists (d i , g i ) ∈ H n , f i = F (d i , g i ), such that 8(d i -d) ≤ ρ + 1 -t, f ≤ f i , and: (a) if 8|d i -d 0 | ≤ ρ + 1 -t, 1 2π π -π (f i -f )(λ) f 0 (λ) dλ ≤ h(f 0 , f i )/4; (b) if 8(d i -d 0 ) > ρ + 1 -t, b(f i , f ) ≤ b(f 0 , f i )| log ε| -1 ; (c) otherwise, if 8(d 0 -d i ) > ρ + 1 -t, 1 2π π -π (f i -f )(λ) f i (λ) dλ ≤ b(f i , f 0 )| log ε| -1 . 4. The cardinality C n of the net H n defined above is such that log C n ≤ nε/log(ε).
A proof is given in Section 5.1. Note that, in the above definition of the net H n , the | log ε| terms are here only to avoid writing inequalities in terms of awkward constants in the form m/M . If need be, we can replace the | log ε| by the correct constants as expressed in Appendix B. The definition of the above entropy is non-standard. The interest in expressing it in this general but non-standard form lies in the difficulty in dealing with spectral densities which diverge at 0. In practise, the way one constructs the net H n should vary according to the form of the prior on the short memory part g.

Consistency of point estimates

As explained in §2, we focus on the quadratic loss function ℓ with respect to the logarithm of the spectral density. The corresponding Bayes estimator is

d = E π [d|X n ], ĝ : λ → exp {E π [log g(λ)|X n ]} , f = F ( d, ĝ).
Often, the real parameter of interest is d, and g is a nuisance parameter. Consistency for d can be deduced from Theorem 3.1.

Corollary 1. Under the assumptions of Theorem 3.1, for ε > 0 small enough,

P π [{|d -d 0 | > ε}|X n ] → 0 and d → d 0 as n → ∞.
Proof. Lemma 10, see Appendix D, implies that

P π [A c ε |X n ] ≥ P π [{|d -d 0 | > ε ′ } |X n ] → 0 a.s.
as n → +∞, for some ε ′ > 0 and, by Jensen's inequality,

( d -d 0 ) 2 ≤ E π [(d -d 0 ) 2 |X n ] → 0, a.s.
Consistency results for a point estimate of f can also be deduced:

Corollary 2. Under the assumptions of Theorem 3.1, one has, as n → ∞, ℓ(f 0 , f ) → 0, a.s.

Proof. For f = F (d, g), f 0 = F (d 0 , g 0 ), one has ℓ(f 0 , f ) ≤ h(f 0 , f ), since x 2 ≤ e x + e -x -2 for all x, and ℓ(f 0 , f ) ≤ C for some well chosen constant C, provided g, g 0 ∈ G(m, M ). Thus, by Jensen inequality, and for all ε > 0,

ℓ(f 0 , f ) ≤ E π [ℓ(f 0 , f )|X n ] ≤ ε + CP π [A c ε |X n ].

The FEXP prior

Following [START_REF] Hurvich | The FEXP estimator for potentially nonstationary linear time series[END_REF], we consider the FEXP parameterisation of spectral densities, i.e. f = F (d, k, θ), where

F : T → F (d, k, θ) → f : f (λ) = |1 -e iλ | -2d exp    k j=0 θ j cos(jλ)    . (3.1)
and T = (-1/2 + t, 1/2t) × ∪ +∞ k=0 {k} × R k+1 , for some fixed t ∈ (0, 1/2). This FEXP representation is equivalent to our previous representation

f = F (d, g), provided g = ψ -d e w , w(λ) = k j=0 θ j cos(jλ) and ψ(λ) = |1 -e iλ | 2 /λ 2 = 2(1 -cos λ)/λ 2 for λ = 0, ψ(0) = 1.
The function ψ is bounded, infinitely differentiable and positive for λ ∈ [0, π]. Thus g and w share the same regularity properties, i.e. w is bounded and Hölder with exponent ρ implies that g is bounded and Hölder with exponent ρ, and vice versa. Under this parameterisation, the prior distribution π is expressed as a trans-dimensional prior distribution on the random vector (d, k, θ), which, for convenience, factorises as π d (d)π k (k)π θ (θ|k).

We assume that π puts mass one on the following Sobolev set:

S(β, L) =    (d, k, θ) ∈ T : k j=0 θ 2 j (j + 1) 2β ≤ L    (3.2)
for some β > 1/2, L > 0. This ensures that the Fourier sum w, and thus the short-memory component g of the spectral density f , as explained above, belong to some set G(m, M, L ′ , ρ), i.e., both w and g are bounded and Hölder, for ρ < β -1/2. To see this, note that, for (d, k, θ) ∈ S(β, L):

k j=0 |θ j | j r ≤ k j=0 θ 2 j (j + 1) 2β + k j=0 |θ j | j r 1l |θ j |j r ≥ θ 2 j (j + 1) 2β ≤ L + +∞ j=0 (j + 1) 2r-2β < +∞, (3.3)
provided 2r -2β < -1. By taking r = 0, one sees that w is bounded, and by taking r = ρ, for any ρ, 0 < ρ < β -1/2, one sees that w is Hölder, with coefficient ρ, since, for λ, λ ′ ∈ [-π, π],

|w(λ) -w(λ ′ )| ≤ 2 k j=0 |θ j | × |{cos(λj) -cos(λ ′ j)} /2| ρ ≤ 2 1-ρ   k j=0 |θ j |j ρ   |λ -λ ′ | ρ .
Finally, we assume that π assigns positive prior probability to the intersection of S(β, L) with any rectangle set of the form

(a d , b d ) × {k} × k j=1 (a θj , b θj ).
Alternatively, one could assume that the support of π is included in a set of the form {(d, k, θ) ∈ T : k j=0 |θ j |j ρ ≤ L}. However Sobolev sets are more natural when dealing with rates of convergence, see Section 4.2, and are often considered in the non parametric literature, so we restrict our attention to these sets.

In the same spirit, we assume that the true spectral density admits a FEXP representation associated to an infinite Fourier series,

f 0 (λ) = |1 -e iλ | -2d0 exp    +∞ j=0 θ 0j cos(jλ)    ,
i.e., f 0 = F (d 0 , g 0 ) with g 0 = ψ -d0 e w0 and w 0 (λ) = +∞ j=0 θ 0j cos(jλ) . In addition, we assume that w 0 satisfies the same type of Sobolev inequality, namely

L 0 = +∞ j=0 θ 2 0j (j + 1) 2β < L < +∞, (3.4)
which, as explained above, implies that g 0 ∈ G(m, M, L, ρ), for some well chosen constants m, M, L, ρ. Note that it is essential to have a strict inequality in (3.4), i.e. L 0 < L.

Theorem 3.2. Let π be a prior distribution π d (d)π k (k)π θ (θ|k) which fulfils the above conditions, and, in addition, such that π k (k) ≤ exp(-Ck log k) for some C > 0 and k large enough. Then the conditions of Theorem 3.1 are fulfilled, and the posterior distribution is consistent.

Proof. Condition 1 of Theorem 3.1 is a simple consequence of (3.4) and (3.2), as explained above.

For Condition 2, we noted, see (3.3), that

+∞ j=0 θ 2 0j (j + 1) 2β ≤ L implies that +∞ j=0 |θ 0j | ≤ L ′ < +∞. Let k such that ∞ j=k+1 |θ 0j | ≤ ε/14, θ = (θ 0 , ..., θ k ) such that k j=0 |θ 0j -θ j | ≤ ε/14, d such that |d -d 0 | ≤ ε/7
, and let f = F (d, k, θ). Using Lemma 14, see Appendix D, one has h(f, f 0 ) ≤ ε. Note that it is sufficient to prove that π(B ε ) > 0 for ε small enough, hence we assume that ε/7 < (ρ + 1t)/16. Thus, Condition 2 is verified as soon as the intersection of S(β, L) and the rectangle set

[d 0 -ε/7, d 0 + ε/7] × {k} × k j=1 [θ 0j -ε/14k, θ 0j -ε/14k]
is assigned positive prior probability. Now consider Condition 3. Let ε > 0 and take

F n = {(d, k, θ) ∈ S(β, L) : k ≤ k n } ,
where k n = ⌊αn/ log n⌋, for some α > 0, so that, for some r depending on α, π(

F c n ) ≤ π k (k > k n ) ≤ e -nr . Let f = F (d, k, θ), f i = (2e) cε F (d i , k, θ i ), such that k ≤ k n , d i -cε ≤ d ≤ d i , and k j=0 |θ j -θ ij | ≤ cε, for some c > 0, then f (λ) f i (λ) = (2e) -cε [2(1 -cos λ)] di-d exp    k j=0 (θ j -θ ij ) cos(jλ)    ≤ 1, and 
f (λ) f i (λ) ≥ (1 -cos λ) cε 2 -cε e -2cε .
If c is small enough, f if verifies the three inequalities considered in Condition 3. The number C n of functions f i necessary to ensure that, for any f in the support of π, at least one of them verify the above inequalities, can be bounded by, for n large enough, and some well chosen constant C,

C n ≤ k n (Ck n /ε) kn+2 ≤ k 3kn n ≤ exp {3αn [1 + (log α -log log n) / log n]} ≤ exp {6αn}
so Condition 4 is satisfied, provided one takes α = ε/6 log ε.

A convenient default choice for π is as follows: π d is uniform over (-1/2 + t, 1/2t), π k is Poisson, and π θ|k has the following structure: the sum S = k j=0 θ 2 j (j + 1) 2β has a Gamma distribution truncated to interval [0, L], independently of S, the vector (θ 2 0 , θ 2 1 2 2β , . . . , θ 2 k (k + 1) 2β )/S is Dirichlet with some coefficients α 1,k , . . . , α k,k , and the signs of θ 0 , . . . , θ k have equal probabilities. In particular one may take α j,k = 1 for all j ≤ k, or, if one needs to generate more regular spectral densities, α j,k = j -κ , for some fixed or random κ > 0. Another interesting choice for the prior on θ is the following truncated Gaussian process: for each k, and each j ≤ k, θ j ∼ N (0, τ 2 0 (1 + j) -2β ) independently apart from the constraint, for some fixed, large L > 0:

k j=1 (1 + j) 2β θ 2 j ≤ L.
Note that we can easily restrict ourselves to the important case d ≥ 0, i.e. processes having long or short memory but not intermediate memory.

Rates of convergence

In this section we first provide a general theorem relating rates of convergence of the posterior distribution to conditions on the prior. These conditions are, in essence, similar to the conditions obtained in the i.i.d. case (e.g. [START_REF] Ghosal | Convergence rates of posterior distributions[END_REF]: i.e. a condition on the prior mass of Kullback-Leibler neighborhoods of the true spectral density, and an entropy condition on the support of the prior. We then present results specialised to the FEXP prior case.

Main result

Theorem 4.1. Let (u n ) be a sequence of positive numbers such that u n → 0, nu n → +∞, and Bn a sequence of balls belonging to G(t, m, M, L, ρ), and defined as

Bn = {(d, g) : KL n (f 0 ; F (d, g)) ≤ u n /4, b n (f 0 , F (d, g)) ≤ u n , d 0 ≤ d ≤ d 0 + δ} , for some δ, L > 0, 0 < m ≤ M , ρ ∈ (0, 1].
Let π be a prior which satisfies all the conditions of Theorem 3.1, and, in addition, such that:

1. For n large enough, π( Bn ) ≥ exp(-nu n /2).

There exists ε > 0 and a sequence of sets Fn

⊂ {(d, g) : h(F (d, g), f 0 ) ≤ ε}, such that, for n large enough, π F c n ∩ {(d, g) : h(F (d, g), f 0 ) ≤ ε} ≤ exp(-2nu n ).
3. There exists a positive sequence

(ε n ), ε 2 n ≥ u n , ε 2 n → 0, nε 2 n ≥ C log n, for some C > 0, satisfying the following conditions. Let V n,l = {(d, g) ∈ Fn ; ε 2 n l ≤ h n (f 0 , F (d, g)) ≤ ε 2 n (l + 1)}, with l 0 ≤ l ≤ l n , with fixed l 0 ≥ 2 and l n = ⌈ε 2 /ε 2 n ⌉ -1. For each l = l 0 , • • • , l n , there exists a net (i.e. a finite collection) Hn,l ⊂ V n,l , with cardinality Cn,l , such that for all f = F (d, g), (d, g) ∈ V n,l , there exists f i,l = F (d i,l , g i,l ) ∈ Hn,l such that f i,l ≥ f and 0 ≤ g i,l (x) -g(x) ≤ lε 2 n g i,l /32 0 ≤ d i,l -d ≤ lε 2 n (log n) -1 , where log Cn,l ≤ nε 2 n l α , with α < 1.
Then, there exist C, C ′ > 0 such that, for n large enough,

E n 0 P π h n (f 0 , F (d, g)) ≥ l 0 ε 2 n X n ≤ Cn -3 + 2e -C ′ nε 2 n + e -nun/16 . (4.1)
A proof is given in Section 5.2. The conditions given in Theorem 4.1 are similar in spirit to those considered for rates of convergence of the posterior distribution in the i.i.d. case. The first condition is a condition on the prior mass of Kullback-Leibler neighborhoods of the true spectral density, the second one is necessary to allow for sets with infinite entropy (some kind of non compactness) and the third one is an entropy condition. The inequality (4.1) obtained in Theorem 4.1 is non asymptotic, in the sense that it is valid for all n. However, the distances considered in Theorem 4.1 heavily depend on n and, although they express the impact of the differences between f and f 0 on the observations, they are not of great practical use. For these reasons, the entropy condition is awkward and cannot be directly transformed into some more common entropy conditions. To state a result involving distances between spectral densities that might be more useful, we need to consider some specific class of priors. In the next section, we obtain rates of convergence in terms of the ℓ distance for the class of FEXP priors introduced in Section 3.3. The rates obtained are the optimal rates up to a (log n) term, at least on certain classes of spectral densities. It is to be noted that the calculations used when working on these classes of priors are actually more involved than those used to prove Theorem 4.1. This is quite usual when dealing with rates of convergence of posterior distributions, however this is emphasized here by the fact that distances involved in Theorem 4.1 are strongly dependent on n. The method used in the case of the FEXP prior can be extended to other types of priors.

Rates of convergence for the FEXP prior

We apply Theorem 4.1 to the class of FEXP priors introduced in Section 3.3. Recall that under such a prior a spectral density f is parametrised as f = F (d, k, θ), see (3.1). We make the same assumptions as in Section 3.3. In particular, the prior π(d, k, θ) factorises as

π d (d)π k (k)π θ (θ|k), the right tail of π k is such that exp {-Ck log k} ≤ π k (k) ≤ exp{-C ′ k log k},
for some C, C ′ > 0, and for k large enough, and there exists β > 1/2 such that the Sobolev set S(β, L) contains the support of π. The last condition means that S = k j=0 θ 2 j (j + 1) 2β ∈ [0, L] with prior probability one. In addition, we assume that the support of

π d is [-1/2 + t, 1/2 -t], and, for d ∈ [-1/2 + t, 1/2 -t], π d (d) ≥ c d > 0.
Similarly, we assume that π θ|k is such that the random variable S = k j=0 θ 2 j (j + 1) 2β is independent of k, and admits a probability density π S (s) with support [0, L], and such that π S (s) ≥ c s > 0 for s ∈ [0, L].

Theorem 4.2. For the FEXP prior described above, there exist C, C ′ > 0 such that, for n large enough

E n 0 P π ℓ(f, f 0 ) > C log n n 2β/(2β+1) X n ≤ C n 2 (4.2)
where f = F (d, k, θ) and

E n 0 ℓ( f , f 0 ) ≤ C ′ (log n) n 2β/(2β+1) , (4.3) where log f (λ) = E π [log f (λ)|X n ].
A proof is given in Appendix C.
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Proofs of Theorems 3.1 and 4.1

5.1 Proof of Theorem 3.1

For the sake of conciseness, we introduce the following notations: for any pair (f, f 0 ) of spectral densities,

A(f 0 , f ) = T n (f ) -1 T n (f 0 ), B(f 0 , f ) = T n (f 0 ) 1/2 [T n (f ) -1 -T n (f 0 ) -1 ]T n (f 0 ) 1/2 .
The proof borrows ideas from [START_REF] Ghosal | Convergence rates of posterior distributions[END_REF]. The main difficulty is to formulate constraints on quantities such as h n (f, f 0 ) or KL n (f, f 0 ) in terms of distances between f, f 0 , independent on n, and uniformly over f . One has

P π [A c ε |X n ] = 1l A c ε (f )ϕ(X n ; f )/ϕ(X n ; f 0 )dπ(f ) ϕ(X n ; f )/ϕ(X n ; f 0 )dπ(f ) ∆ = N n D n .
Let δ ∈ (0, ε) and P n 0 be a generic notation for probabilities associated to the distribution of X n , under the true spectral density f 0 = F (d 0 , g 0 ). One has

P n 0 P π [A c ε |X n ] ≥ e -nδ ≤ P n 0 D n ≤ e -nδ + P n 0 N n ≥ e -2nδ
(5.1)

The following Lemma bounds the first term.

Lemma 1. There exists C > 0 such that

P n 0 D n ≤ e -nδ ≤ Cn -3 . (5.2)
Proof. Lemma 4 implies that, when n is large enough, Bn ⊃ B δ/8 , where

Bn = {(d, g) ∈ [-1/2 + t, 1/2 -t] × G(m, M, L, ρ) : KL n (f 0 , F (d, g)) ≤ δ/4}.
and Condition 2 implies that, for n large enough, π( Bn ) ≥ π(B δ/8 ) ≥ 2e -nδ/2 . Consider the indicator function

Ω n = 1l -X t n T n (f ) -1 -T n (f 0 ) -1 X n + log det A(f 0 , f ) > -nδ ,
with implicit arguments (f, X n ), then, following [START_REF] Ghosal | Convergence rates of posterior distributions[END_REF],

P n 0 D n ≤ e -nδ ≤ P n 0 Ω n 1l Bn (f ) ϕ(X n ; f ) ϕ(X n ; f 0 ) dπ(f ) ≤ e -nδ/2 π( Bn ) 2 ≤ P n 0 E π Ω n 1l Bn (f ) ≤ π( Bn )/2 ≤ P n 0 E π (1 -Ω n )1l Bn (f ) ≥ π( Bn )/2 ≤ 2 π( Bn ) Bn E n 0 {1 -Ω n } dπ(f ).
by Markov inequality. Besides,

E n 0 {1 -Ω n } = P n 0 X t n T n (f ) -1 -T n (f 0 ) -1 X n -log det A(f 0 , f ) > nδ = P Y Y t B(f 0 , f )Y -tr [B(f 0 , f )] > D(f 0 , f ) where Y ∼ N n (0 n , I n ), and, for f ∈ Bn D(f 0 , f ) ∆ = nδ + log det A(f 0 , f ) -tr [B(f 0 , f )] > nδ/2 thus E n 0 [1 -Ω n ] ≤ P Y Y t B(f 0 , f )Y -tr[B(f 0 , f )] > nδ/2 ≤ 16 n 4 δ 4 E Y Y t B(f 0 , f )Y -tr[B(f 0 , f )] 4 ≤ C n 3 δ 4 ,
which concludes the proof.

A bound for the second term in (5.1) is obtained as follows:

P n 0 N n ≥ e -2nδ ≤ 2e 2nδ π(F c n ) + p ≤ 2e -n(r-2δ) + p
(5.3) using Condition 3, where

p ∆ = P n 0 1l(A c ε ∩ F n ) ϕ(X n ; f ) ϕ(X n ; f 0 ) dπ(f ) ≥ e -2nδ /2 .
Assuming 2δ < r, we consider the following likelihood ratio tests for each f i ∈ H n , and for some arbitrary values ρ i ,

φ i = 1l X t n T -1 n (f 0 ) -T -1 n (f i ) X n ≥ nρ i .
Lemmas 7, 8 and 9 given in Appendix B prove that, for each of the three cases in Condition 3 of Theorem 3.1, and well-chosen values of ρ i , one has (5.4) for all f i , for f close to f i (in the sense defined in cases a,b, and c in Condition 3), where C 1 > 0 is a constant that does not depend on f i , and E n f stands for the expectation with respect to the likelihood ϕ(X n ; f ). Then one concludes easily as follows. Let φ (n) = max i φ i , then, using Markov inequality, for n large enough,

E n 0 [φ i ] ≤ e -nC1ε , E n f [1 -φ i ] ≤ e -nC1ε ,
p ≤ E n 0 φ (n) + 2e 2nδ A c ε ∩Fn E f 1 -φ (n) dπ(f ) ≤ C n e -nC1ε + 2e 2nδ-nC1ε ≤ e -nC1ε/2 , (5.5) provided δ < C 1 ε/4. Combining (5.
2), (5.3) and (5.5), there exists δ > 0 such that

P n 0 P π [A c ε |X n ] > e -nδ ≤ Cn -3
for n large enough, which implies that P π [A c ε |X n ] → 0 a.s.

Proof of Theorem 4.1

This proof uses the same notations as the previous Section, e.g. C, C ′ denote generic constants, f , dπ(f ) are short-hands for f = F (d, g), dπ(d, g), respectively, A(f, f 0 ) and B(f, f 0 ) have the same definition, and so on. In the proof of Theorem 3.1, we showed that E n 0 [P π (h(f, f 0 ) ≥ ε|X n )] ≤ Cn -3 for ε small enough, n large enough. Thanks to the uniform convergence Lemmas 3 and 4 in Appendix A, one sees that the same inequality holds if h is replaced by h n . Therefore, to obtain inequality (4.1), it is sufficient to bound the expectation of the sum of the following probabilities:

P π ((d, g) ∈ W n,l |X n ) = 1l W n,l (d, g) ϕ(Xn;f ) ϕ(Xn;f0) dπ(f ) ϕ(Xn;f ) ϕ(Xn;f0) dπ(f ) = N n,l D n ,
for l 0 ≤ l ≤ l n , where

W n,l = (d, g) : h(f, f 0 ) ≤ ε, ε 2 n l ≤ h n (f 0 , f ) ≤ ε 2 n (l + 1) ,
and V n,l = W n,l ∩ Fn . Following the same lines as in Section 5.1, one has

E n 0 ln l=l0 N n,l D n ≤ P n 0 D n ≤ e -nun /2 +E n 0 ln l=l0 N n,l D n 1l D n ≥ e -nun /2 . (5.6)
The first term is bounded as in Lemma 1, see Section 5.1:

P n 0 D n ≤ e -nun /2 ≤ P n 0 D n ≤ e -nun/2 π( Bn ) 2 ≤ 2 Bn E n 0 [(1 -Ω n (f ))] dπ(f ) π( Bn ) ,
where Ω n is the indicator function of

(X n , f ); X t n (T -1 n (f ) -T -1 n (f 0 ))X n -log det[A(f 0 , f )] ≤ nu n ,
and, for f ∈ Bn , using Chernoff-type inequalities as in Lemma 7, together with the fact that there exists s 0 > 0 fixed such that for all s ≤ s 0

I n (1 + 2s) -2sT n (f 0 ) 1/2 T n (f ) -1 T n (f 0 ) 1/2 ≥ I n /2, for f = F (d, g), d ≥ d 0 , g > 0,
we have for all 0 < s ≤ s 0

E n 0 [1 -Ω n ] ≤ exp -snu n -s log |T n (f 0 )T n (f ) -1 | - 1 2 log I n (1 + 2s) -2sT n (f 0 ) 1/2 T n (f ) -1 T n (f 0 ) 1/2 ≤ exp -snu n + 2snKL n (f 0 , f ) + 4s 2 nb n (f 0 , f ) ≤ exp - snu n 2 (1 -8s) ≤ e -Cnun ,
where the second inequality comes from a Taylor expansion in s of log

|I n +2s(I n -T n (f 0 ) 1/2 T n (f ) -1 T n (f 0 ) 1/2 )|,
the third from the definition of Bn and the last from choosing s = min(s 0 , 1/16). Note that s 0 ≥ m/(M π) and that the constant C in the above inequality can be chosen as C = m/(32M π).

The second term of (5.6) equals

E n 0 ln l=l0 N n,l D n 1l D n ≥ e -nun /2 ( φl + 1 -φl ) ≤ ln l=l0 E n 0 φl + 2e nun ln l=l0 E n 0 N n,l (1 -φl ) (5.7)
where φl = max i:f i,l ∈ Hn,l φ i,l , φ i,l is a test function defined as in Section 5.1,

φ i,l = 1l X ′ n (T -1 n (f 0 ) -T -1 n (f i,l ))X n ≥ tr I n -T n (f 0 )T -1 n (f i,l ) + nh n (f 0 , f i,l )/4 .
Using inequality (B.2) in Lemma 7, one obtains:

log E n 0 [φ i,l ] ≤ -Cnh n (f 0 , f i ) min h n (f 0 , f i ) b n (f 0 , f i ) , 1 , (5.8) 
for some universal constant C, and n large enough. In addition, one has

b n (f 0 , f i ) h n (f 0 , f i ) ≤ T n (f 0 ) 1/2 T n (f i ) -1/2 2 ≤ C ′ n 2 max(d0-di),0) ,
where the first inequality comes from Lemma 2, see Appendix A.1, and the second inequality comes from Lemma 3 in [START_REF] Lieberman | Asymptotic theory for maximum likelihood estimation in stationary fractional gaussian processes, under short, long and intermediate memory[END_REF]. Hence for all C > 0, if 2|d 0 -

d i | ≤ C/ log n, b n (f 0 , f i ) ≤ C ′ e C h n (f 0 , f i ).
Moreover for all δ > 0, there exists C δ > 0 such that if 2|d 0 -

d i | > C δ (log n) -1 then h n (f 0 , f i ) ≥ n -δ . Indeed, equation (A.3) of Lemma 6 implies that if h n (f 0 , f i ) ≥ ε 2 n , then h n (f 0 , f i ) ≥ C n tr T n (f -1 0 )T n (f i -f 0 )T n (f -1 i )T n (f i -f 0 )
and Lemma 5, see Appendix A.3, implies that, for all a > 0,

1 n tr T n (f -1 0 )T n (f i -f 0 )T n (f -1 i )T n (f i -f 0 ) -(2π) 3 π -π (f i -f 0 ) 2 f i f 0 dλ ≤ n -ρ+a .
Lemma 11, see Appendix D, implies that there exists a > 0 such that if 2|d 0 -

d i | > C δ (log n) -1 , π -π (f i -f 0 ) 2 f i f 0 dx ≥ Ce -a log n/C δ ≥ n -δ
as soon as C δ is large enough. Choosing δ < ρ we finally obtain that

h n (f 0 , f i ) ≥ C ′ n -δ .
This and the definition of Hn,l implies that l ≥ C ′ n -δ ε -2 n , and therefore ln -max(d0-di),0) ≥ 2l α /C ′ , for all α < 1 as soon as |d 0 -

d i | is small enough. (5.8) becomes log E n 0 [φ i,l ] ≤ -clε 2 n n 1-max(d0-di,0) ≤ -2nε 2 n l α .
Condition 3 implies that

E n 0 φl ≤ i E n 0 [φ i,l ] ≤ Cn,l exp{-2nε 2 n l α } ≤ exp{-nε 2 n l α } so that l E n 0 φl ≤ 2 exp{-nε 2 n l α 0 }
for n large enough. For the second term of (5.7), since condition 3 on f, f i,l implies that

0 ≤ f i,l -f ≤ h n (f 0 , f i,l )f i,l π 2(di-d) 32 + 2| log |λ|| log n , when n is large enough, hence trA(f i,l -f, f 0 ) ≤ nh n (f 0 , f i,l
)/4 and we obtain the first part of equation B.3:

log E n f [1 -φ i,l ] ≤ - n 64 min h n (f 0 , f i,l ) 2 b n (f, f 0 ) , 4h n (f 0 , f i,l ) .
We also have

b n (f, f 0 ) ≤ b n (f i,l , f 0 ) + h 2 n (f i,l , f 0 ) 32 + 2 b n (f 0 , f i,l )h n (f i,l , f 0 ), hence log E n f [1 -φ i,l ] ≤ -cnl α ε 2
n , using the same arguments as before, and

ln l=l0 E n 0 (1 -φl )N n,l = ln l=l0 1l W n,l (f )E f (1 -φl ) dπ(f ) ≤ P π (f ∈ F c n ∩ {h(f, f 0 ) ≤ ε}) + ln l=l0 1l V n,l (f )E n f (1 -φl ) dπ(f ) ≤ e -nε 2 n + ln l=l0 e -Cnε 2 n l α ≤ 2e -nε 2 n .

Discussion

In this paper we have considered the theoretical properties of Bayesian non parametric estimates of the spectral density for Gaussian long memory processes. Some general conditions on the prior and on the true spectral density are provided to ensure consistency and to determine concentration rates of the posterior distributions in terms of the pseudo-metric h n (f 0 , f ). To derive a posterior concentration rate in terms of a more common metric such as l 2 , we have considered a specific family of priors based of the FEXP models and also used in the frequentist literature.

Gaussian long memory processes lead to complex behaviours, which makes the derivation of concentration rates a difficult task. This paper is thus a step in the direction of better understanding the asymptotic behaviour of the posterior distribution in such models and could be applied to various types of priors on the short memory part -other than the FEXP priors. The rates we have derived are optimal (up to a log n term) in Sobolev balls but not adaptive since the estimation procedure depends on the smoothness β. Another constraint in the paper is that the prior needs to be restricted to Sobolev balls with fixed though large radius, forbidding the use of Gaussian distributions on the coefficients appearing in the FEXP representation. However, it is to be noted that even in the parametric framework existing results on the asymptotic behaviour of likelihood approaches, whether maximum likelihood estimators or Bayesian estimators are all assuming that the parameter space is compact, for the same reason that we have had to constraint the prior on fixed Sobolev balls in the FEXP example. The reason is that the short memory part of the spectral density needs to be uniformly bounded.

A related and fundamental problem is the practical implementation of the model described in the paper. [START_REF] Liseo | Sequential importance sampling algorithm for Bayesian nonparametric long range inference[END_REF] adopted a Population MC algorithm which easily deals with the trans-dimensional parameter space issue. We are currently working on alternative computational approaches.

A Technical Lemmas on convergence rates of products of Toeplitz matrices

We first give a set of inequalities on norms of matrices that are useful throughout the proofs. We then give three technical lemmas on the uniform convergence of traces of products of Toeplitz matrices, in the spirit of [START_REF] Lieberman | Valid asymptotic expansions for the maximum likelihood estimator of the parameter of a stationary, Gaussian, strongly dependent process[END_REF] and [START_REF] Lieberman | Asymptotic theory for maximum likelihood estimation in stationary fractional gaussian processes, under short, long and intermediate memory[END_REF], but extending those previous results to functional classes instead of parametric classes.

A.1 Some matrix inequalities

Let A and B be n dimensional matrices. We consider the following two norms:

|A| 2 = tr AA t , A 2 = sup |x|=1 x t AA t x.
We first recall that:

|tr[AB]| ≤ |A||B|, |AB| ≤ ||A|||B|, |A| ≤ ||A||, ||AB|| ≤ ||A||||B||.
Using these inequalities we prove the following basic Lemma:

Lemma 2. Let f 1 , f 2 be two spectral densities, then

2nb n (f 1 , f 2 ) ≤ n T n (f 2 ) -1/2 T n (f 1 ) 1/2 2 h n (f 1 , f 2 ) Proof. One has 2nb n (f 1 , f 2 ) = tr T n (f 1 ) 1/2 T n (f 2 ) -1 T n (f 1 ) 1/2 T n (f 1 ) -1/2 T n (f 1 -f 2 )T n (f 2 ) -1/2 2 = T n (f 2 ) -1/2 T n (f 1 ) 1/2 T n (f 1 ) -1/2 T n (f 1 -f 2 )T n (f 2 ) -1/2 2 ≤ T n (f 2 ) -1/2 T n (f 1 ) 1/2 2 T n (f 2 ) -1/2 T n (f 1 -f 2 )T n (f 2 ) -1/2 2 = n T n (f 2 ) -1/2 T n (f 1 ) 1/2 2 h n (f 1 , f 2 ).
A.2 Uniform convergence: Lemmas 3 and 4

We state two technical lemmas, which are extensions of [START_REF] Lieberman | Valid asymptotic expansions for the maximum likelihood estimator of the parameter of a stationary, Gaussian, strongly dependent process[END_REF] on uniform convergence of traces of Toeplitz matrices, and which are repeatedly used in the paper.

Lemma 3. Let t > 0, M, L > 0 and ρ ∈ (0, 1], let p be a positive integer, we have, as n → +∞:

sup fi=F (d1,gi), f ′ i =F (d2,g ′ i ) 2p(d1+d2)≤1-t gi∈G(-M,M,L,ρ) g ′ i ∈G(-M,M,L,ρ) 1 n tr p i=1 T n (f i )T n (f ′ i ) - π -π p i=1 f i (λ)f ′ i (λ) dλ (2π) 1-2p → 0.
This lemma is a direct adaptation from [START_REF] Lieberman | Valid asymptotic expansions for the maximum likelihood estimator of the parameter of a stationary, Gaussian, strongly dependent process[END_REF]; the only non obvious part is the change from the condition of continuous differentiability in that paper to the Lipschitz condition of order ρ. This different assumption affects only equation (30) of [START_REF] Lieberman | Valid asymptotic expansions for the maximum likelihood estimator of the parameter of a stationary, Gaussian, strongly dependent process[END_REF], with η n replaced by η ρ n , which does not change the convergence results. Lemma 4. Let t > 0, M, L, m > 0 and ρ 1 , ρ 2 ∈ (0, 1], let p be a positive integer, we have, as n → +∞:

sup fi=F (d1,gi) f ′ i =F (d2,g ′ i ) 4p(d1-d2)≤ρ2+1-t gi∈G(-M,M,L,ρ1) g ′ i ∈G(m,M,L,ρ2) 1 n tr p i=1 T n (f i )T n (f ′ i ) -1 - 1 2π π -π p i=1 f i (λ) f ′ i (λ) dλ → 0,
Proof. This result is a direct consequence of Lemma 3, as in [START_REF] Lieberman | Valid asymptotic expansions for the maximum likelihood estimator of the parameter of a stationary, Gaussian, strongly dependent process[END_REF]. The only difference is in the proof of Lemma 5.2. of [START_REF] Dahlhaus | Efficient parameter estimation for self-similar processes[END_REF], i.e. in the study of terms in the form

|I n -T n (f ) 1/2 T n (4π 2 f ) -1 T n (f ) 1/2 |, with f = F (d 2 , g ′ i )
for any i ≤ p. For simplicity's sake we write f = F (d, g) in the following calculations. Following [START_REF] Dahlhaus | Efficient parameter estimation for self-similar processes[END_REF] proof, we obtain an upper bound of

f (λ 1 ) f (λ 2 ) -1
which is different from [START_REF] Dahlhaus | Efficient parameter estimation for self-similar processes[END_REF]. If g ∈ G(m, M, L, ρ 2 ), the Lipschitz condition in ρ 2 implies that

f (λ 1 ) f (λ 2 ) -1 ≤ K |λ 1 -λ 2 | ρ2 + |λ 1 -λ 2 | 1-δ |λ 1 | 1-δ .
Calculations as in Lemma 5.2 of [START_REF] Dahlhaus | Efficient parameter estimation for self-similar processes[END_REF] imply that

|I -T n (f ) 1/2 T n (4π 2 f ) -1 T n (f ) 1/2 | 2 = O(n 1-ρ2 log n 2 ) + O(n δ ), ∀δ > 0.
From this we prove the Lemma following [START_REF] Lieberman | Asymptotic theory for maximum likelihood estimation in stationary fractional gaussian processes, under short, long and intermediate memory[END_REF] Lemma 7, the bounds being uniform over the considered class of functions.

A.3 Order of approximation: Lemma 5

In this section we recall a result given in [START_REF] Kruijer | Asymptotic behaviour of the posterior distribution of the long-memory parameter in gaussian stationary models[END_REF] which is a generalization of [START_REF] Lieberman | Error bounds and asymptotic expansions for Toeplitz product functionals of unbounded spectra[END_REF] concerning the convergence rate of

1 2 tr   p j=1 T n (f j )T n (g j )   /n -(2π) -1 π -π j f j (λ)g j (λ)dλ .
Lemma 5. Let 1/2 > a > 0, L > 0, M > 0 and 0 < ρ ≤ 1, then for all δ > 0 there exists C > 0 such that for all n ∈ N * sup p(d1+d2)≤a gj ,g ′ j ∈G(-M,M,L,ρ)

1 n tr   p j=1 T n (F (d 1 , g j ))T n (F (d 2 , g ′ j ))   -(2π) 2p-1 π -π p j=1 F (d 1 , g j )F (d 2 , g ′ j ) ≤ Cn -ρ+δ+2pa+ , (A.1)
where d 1 , d 2 > -1/2 and a + = max(a, 0).

A.4 Some other approximations: Lemma 6 Lemma 6. Let f j , j ∈ {1, 2} be such that f j (λ) = F (d j , g j ), where d j ∈ (-1/2, 1/2), 0 < m ≤ g j ≤ M < +∞ for some positive constant m, M and consider b a bounded function on [-π, π].

Assume that |d 1 -d 2 | < δ, with δ ∈ (0, 1/4), then, provided d 1 > d 2 , 1 n tr T n (f 1 ) -1 T n (f 1 b)T n (f 2 ) -1 T n (f 1 b) ≤ C(log n) |b| 2 2 + δ|b| 2 ∞ , (A.2)
and, without assuming

d 1 > d 2 , 1 n tr T n (f -1 1 )T n (f 1 -f 2 )T n (f -1 2 )T n (f 1 -f 2 ) ≤ C h n (f 1 , f 2 ) + n δ-1/2 h n (f 1 , f 2 ) . (A.3)
Proof. Throughout the proof C denotes a generic constant. We first prove (A.2). To do so, we first obtain an upper bound on the following quantity:

γ(b) = 1 n tr T n (f -1 1 )T n (f 1 b)T n (f -1 2 )T n (f 1 b) . (A.4)
First note that b can be replaced by |b| so that we can assume that it is positive. Since the functions g i are bounded from below and above, we can prove (A.2) by replacing f i by |λ| -2di . Thus, without loss of generality, we assume that f i = |λ| -2di . Let ∆ n (λ) = n j=1 exp(-iλj) and L n be the 2π-periodic function defined by

L n (λ) = n if |λ| ≤ 1/n and L n (λ) = |λ| -1 if 1/n ≤ |λ| ≤ π. Then |∆ n (λ)| ≤ CL n (λ), π -π ∆ n (λ 1 -λ 2 )∆ n (λ 2 -λ 3 )dλ 2 = 2π∆ n (λ 1 -λ 3 ), (A.5)
and we can express traces of products of Toeplitz matrices in the following way. Let the symbol dλ denote the quantity dλ 1 dλ 2 dλ 3 dλ 4 ; the conditions on the g j 's imply

γ(b) = 1 n [-π,π] 4 b(λ 1 )b(λ 3 ) f 1 (λ 1 )f 1 (λ 3 ) f 2 (λ 2 )f 1 (λ 4 ) × ∆ n (λ 1 -λ 2 )∆ n (λ 2 -λ 3 )∆ n (λ 3 -λ 4 )∆ n (λ 4 -λ 1 )dλ = (2π) 2 n [-π,π] 2 b(λ 1 )b(λ 3 )|λ 3 | -2δ ∆ n (λ 1 -λ 3 )∆ n (λ 3 -λ 1 )dλ 1 dλ 3 + 1 n [-π,π] 4 b(λ 1 )b(λ 3 )|λ 3 | -2δ λ 3 λ 2 -2d2 λ 1 λ 4 -2d1 -1 dλ, (A.6) as d 1 -d 2 ≤ δ.
We decompose the following factor in the integrand:

λ 3 λ 2 -2d2 λ 1 λ 4 -2d1 = λ 3 λ 2 -2d2 -1 λ 1 λ 4 -2d1 -1 (A.7) + λ 3 λ 2 -2d2 -1 + λ 1 λ 4 -2d1
-1 + 1 and treat each corresponding integral separately. Starting with the first term, replacing ∆ n by L n , we obtain:

1 n [-π,π] 4 b(λ 1 )b(λ 3 )|λ 3 | -2δ ∆ n (λ 1 -λ 3 )∆ n (λ 3 -λ 1 )dλ 1 dλ 3 ≤ 1 n [-π,π] 2 b(λ 1 )b(λ 3 )|λ 3 | -2δ L 2 n (λ 1 -λ 3 )dλ 1 dλ 3 ≤ C [-π,π] 2 b(λ 1 )b(λ 3 )|λ 3 | -2δ L n (λ 1 -λ 3 )dλ 1 dλ 3 ≤ C {b(λ1)>b(λ3)|λ3| -2δ } b 2 (λ 1 )L n (λ 1 -λ 3 )dλ 1 dλ 3 + {b(λ1)≤b(λ3)|λ3| -2δ } b 2 (λ 3 )|λ 3 | -4δ L n (λ 1 -λ 3 )dλ 1 dλ 3 ≤ C b 2 (λ 1 )L n (λ 1 -λ 3 )dλ 1 dλ 3 + b 2 (λ 3 ) |λ 3 | -4δ -1 L n (λ 1 -λ 3 )dλ 1 dλ 3 ≤ C(log n) |b| 2 2 + δ |b| 2 ∞ ,
using calculations similar to Dahlhaus (1989, Lemma 5.2).

For the integral corresponding to the second term in (A.6), we note first that for 0 < a < 1 -

d 1 < 1 -d 2 , λ 1 λ 4 -2d1 -1 ≤ C |λ 1 -λ 4 | 1-a |λ 1 | 1-a ,
and the same inequality holds if λ 1 , λ 4 and d 1 are replaced, respectively, by λ 3 , λ 2 and d 2 . Using the same calculations as the proof of Lemma 5.2 in [START_REF] Dahlhaus | Efficient parameter estimation for self-similar processes[END_REF], one has

[-π,π] 4 b(λ 1 )b(λ 3 )|λ 3 | -2δ λ 3 λ 2 -2d2 -1 λ 1 λ 4 -2d1 -1 × L n (λ 1 -λ 2 )L n (λ 2 -λ 3 )L n (λ 3 -λ 4 )L n (λ 4 -λ 1 )dλ ≤ C|b| 2 ∞ [-π,π] 4 L n (λ 1 -λ 2 )L n (λ 2 -λ 3 ) a L n (λ 3 -λ 4 )L n (λ 4 -λ 1 ) a |λ 1 | 1-a |λ 3 | 1-a+2δ dλ ≤ C|b| 2 ∞ n 2a (log n) 2 , provided a > 2δ.
Taking a = 3δ < 1/2 and doing the same calculations for the integrals corresponding to the two intermediate terms in (A.6), one eventually obtains, when n is large enough

γ(b) ≤ C(log n) |b| 2 2 + δ |b| 2 ∞ . (A.8)
Where the latter inequality comes from Lemma 5.3 of [START_REF] Dahlhaus | Efficient parameter estimation for self-similar processes[END_REF] and from the fact that

T n (h 1 ) 1/2 T n (h -1 1 ) 1/2 2 = 4π 2 T n (h 1 ) 1/2 T n (h -1 1 /(4π 2 ))T n (h 1 ) 1/2 ≤ |R 1 | + 1 Therefore, 1 n tr T n (f 1 -f 2 )T n (h -1 2 )T n (f 1 -f 2 )T n (h -1 1 ) ≤ C h n (f 1 , f 2 ) + n -1/2+3δ h n (f 1 , f 2 ) ,
and, using the fact that C g j > f j , for j = 1, 2 this proves (A.9).

B Construction of tests: Lemmas 7, 8 and 9

Lemma 7. If 8|d 0 -d i | ≤ ρ + 1 -t (case a of Condition 1), the inequalities in (5.4) are verified provided ρ i = tr I n -T n (f 0 )T -1 n (f i ) /n + h n (f 0 , f i ), f ≤ f i and 1 2π π 0 f i (λ) -f (λ) f 0 (λ) dλ ≤ h(f 0 , f i )/4. (B.1)
Proof. For all s ∈ (0, 1/4), using Markov inequality,

E n 0 [φ i ] ≤ exp {-snρ i } E n 0 exp -sX t n T -1 n (f i ) -T -1 n (f 0 ) X n = exp -snρ i - 1 2 log det [I n + 2sB(f 0 , f i )] ≤ exp -snρ i -str [B(f 0 , f i )] + s 2 tr ((I n + 2sτ B(f 0 , f i )) -2 B(f 0 , f i )) 2 ≤ exp -snρ i -str [B(f 0 , f i )] + 4s 2 tr B(f 0 , f i ) 2 ,
where τ ∈ (0, 1), using a Taylor expansion of the log-determinant around s = 0, and the following inequality:

I n + 2sτ B(f 0 , f i ) = (1 -2sτ )I n + 2sτ T n (f 0 ) 1/2 T n (f ) -1 T n (f 0 ) ≥ 1 2 I n ,
since sτ < 1/4. Substituting ρ i with its expression, the polynomial above is minimal for

s min = h n (f 0 , f i )/8b n (f 0 , f i ).
According to s min ∈ (0, 1/4) or not, that is, whether h n (f 0 , f i ) < 2b n (f 0 , f i ) or not, one has:

1 n log E n 0 [φ i ] ≤ - h n (f 0 , f i ) 2 16b n (f 0 , f i ) 1l {h n (f 0 , f i ) < 2b n (f 0 , f i )} - h n (f 0 , f i ) -b n (f 0 , f i ) 4 1l {h n (f 0 , f i ) ≥ 2b n (f 0 , f i )} , ≤ - h n (f 0 , f i ) 16 min h n (f 0 , f i ) b n (f 0 , f i ) , 2 . (B.2) Since 8|d 0 -d i | ≤ ρ + 1 -t, the convergences b n (f 0 , f i ) → b(f 0 , f i ) and h n (f 0 , f i ) → h(f 0 , f i ) are
unifom on the support of the prior π, see Lemma 2. One deduces that, for any a > 0 and n large enough,

1 n log E n 0 [φ i ] ≤ - n 16 min h(f 0 , f i ) 2 -a b(f 0 , f i ) + a , 2h(f 0 , f i ) -a . Since f i ∈ A c ε , h(f 0 , f i ) > ε,
and one may take a = ε 2 /2 to obtain

1 n log E n 0 [φ i ] ≤ - nh(f 0 , f i ) 32 min h(f 0 , f i ) b(f 0 , f i ) + ε 2 /2 , 2 . Since |d 0 -d i | ≤ (ρ + 1 -t) /8 ≤ 1/4, Lemma 12, see Appendix D, implies that there exists C 1 > 0 such that E n 0 [φ i ] ≤ exp (-nC 1 ε)
for ε small enough. If f is in the support of π and satisfies f ≤ f i , and 8(d id) ≤ ρ + 1t, using the same kind of calculations and the fact that

I n -2sT 1/2 n (f ) T -1 n (f i ) -T -1 n (f 0 ) T 1/2 n (f ) ≥ I n + 2sB(f, f 0 ), as T n (f ) ≤ T n (f i )
, we obtain for s ∈ (0, 1/4),

E n f [1 -φ i ] ≤ exp nsρ i -str [B(f, f 0 )] + 4s 2 tr B(f, f 0 ) 2 ≤ exp -nsh n (f 0 , f i ) + str [A(f i -f, f 0 )] + 4s 2 tr B(f, f 0 ) 2 ≤ exp -nsh n (f 0 , f i )/2 + 4s 2 tr B(f, f 0 ) 2
where the last inequality comes from (B.1), which implies tr

[A(f i -f, f 0 )] /n ≤ h n (f 0 , f i )/2
for n large enough, uniformly in f , using Lemma 2. Doing the same calculations as above, for n large enough

1 n log E n f [1 -φ i ] ≤ - 1 64 min h n (f 0 , f i ) 2 b n (f, f 0 ) , 4h n (f 0 , f i ) ≤ - 1 64 min h(f 0 , f i ) 2 /2 b(f, f 0 ) + ε 2 /2 , 2h(f 0 , f i ) . (B.3) To conclude, note that f ≤ f i and (B.1) implies that b(f, f 0 ) = 1 2π π -π f 2 f 2 0 + 1 -2 f f 0 dλ ≤ b(f i , f 0 ) + h(f 0 , f i )/2 ≤ (C + 1/2)h(f 0 , f i )
according to Lemma 12. One concludes that there exists

C 1 > 0 such that E n f [1 -φ i ] ≤ e -nC1ε . Lemma 8. If 8(d i -d 0 ) > ρ + 1 -t (case b of Condition 3), the inequalities (5.4) are verified provided ρ i = tr I n -T n (f 0 )T -1 n (f i ) /n + 2KL n (f 0 ; f i ), for any f such that f ≤ f i and 1 2π π -π f i f -1 dλ ≤ M π 2 m 4 b(f 0 , f i ) 64 , b(f i , f ) ≤ b(f 0 , f i ) (B.4) Note that for ε small enough, if b(f i , f ) ≤ b(f 0 , f i )| log ε| -1 , (B.4) is satisfied. Proof. The upper bound of E n 0 [φ i ] is computed similarly to (B.2) so that 1 n log E n 0 [φ i ] ≤ - 1 4 min KL n (f 0 , f i ) 2 b n (f 0 , f i ) , KL n (f 0 , f i ) .
According to Lemma 11 and since 8(

d i -d 0 ) ≥ ρ+1-t, there exists C > 0, such that b(f 0 , f i ) ≥ C.
Using the uniform convergence results of Appendix A, this means that b n (f 0 , f i ) ≥ C/2, for n large enough, independently of f i . Using Lemma 13, there exists a constant

C 1 ≤ 1 such that KL n (f 0 , f i ) ≥ C 1 b n (f 0 , f i ). Thus, there exists C 2 > 0 such that 1 n log E n 0 [φ i ] ≤ -nC 2 b(f 0 , f i ),
and, for ε small enough, and some C 3 > 0,

E n 0 [φ i ] ≤ exp{-nC 3 ε}. As in the previous Lemma, let h ∈ (0, 1): log E n f [1 -φ i ] ≤ (1 -h)nρ i /2 - 1 2 log det I n -(1 -h)T n (f ) 1/2 T -1 n (f i ) -T -1 n (f 0 ) T n (f ) 1/2 ≤ (1 -h)nρ i /2 - 1 2 log det [I n + (1 -h)B(f, f 0 )] = (1 -h)nρ i /2 -log det[A(f, f 0 )]/2 - 1 2 log det I n (1 -h) + hT -1/2 n (f )T n (f 0 )T -1/2 n (f ) .
Substituting ρ i with its expression, i.e. nρ ilog det A(f, f 0 ) = log det A(f i , f ) and using the same kind of expansions as in the previous lemma, one obtains

1 n log E n f [1 -φ i ] ≤ 1 n log det[A(f i , f )] + (h/2)tr T n (f 0 ) T -1 n (f i ) -T -1 n (f ) -hnLK n (f 0 ; f i ) + h 2 tr I n -T -1 n (f )T n (f 0 ) 2 ≤ 1 n log det[A(f i , f )] -hnLK n (f 0 ; f i ) + h 2 tr I n -T -1 n (f )T n (f 0 ) 2 ≤ - 1 n log det[A(f i , f )] + -n min KL n (f 0 , f i ) 2 4trB(f 0 , f ) 2 /n , KL n (f 0 , f i ) 4 .
Note that we use the fact f ≤ f i in the second line. Since log det A(f i , f ) = log det

I n + T n (f i -f )T n (f ) -1
, using a Taylor expansion of log det around I n , we obtain that for n large enough

1 n log det A(f i , f ) ≤ 1 2π π -π f i -f f dλ + a
where a can be chosen as small as necessary. In addition, we use Lemma 13 and the uniform convergence results of Lemmas 3, 4 to obtain that:

(nKL n (f 0 , f i )) 2 tr[B(f 0 , f ) 2 ] ≥ nm 4 (b(f 0 , f i ) 2 -a) 2 16π 8 M 4 (b(f 0 , f ) + a) and, since d ≥ d 0 and (B.4), b(f 0 , f ) = 1 2π π -π f 0 f -1 2 dλ ≤ 2 b(f 0 , f i ) + M 2 π 4 m 2 b(f i , f ) , ≤ 2b(f 0 , f i ) 1 + M 2 π 4 m 2 .
hence, under the constraint (B.4), there exists C 1 > 0 such that, for n large enough, ε small enough,

E n f [1 -φ i ] ≤ exp {-nC 1 b(f 0 , f i )} ≤ e -nε .
Lemma 9. If 8(d 0d i ) > ρ + 1t (case c of Condition 3), the inequalities (5.4) are verified provided

ρ i = log det[T n (f i )T n (f 0 ) -1 ]/n if 1 2π π -π f i -f f 0 (λ)dλ ≤ m 2 4M 2 π 4 b(f i , f 0 ), b(f, f i ) ≤ b(f i , f 0 ) (B.5) Note that for ε > 0 small enough if (f i -f )f -1 i dλ ≤ b(f i , f 0 )| log ε| -1 , (B.5
) is satisfied. Proof. For 0 < h < 1, following the same calculations as in the two previous lemmas, we obtain

1 n log E n 0 [φ i ] ≤ -(1 -h)nρ i /2 + log det[A(f 0 , f i )]/2 - 1 2 log det I n (1 -h) + hT -1/2 n (f 0 )T n (f i )T -1/2 n (f 0 ) ≤ -nhKL n (f i , f 0 ) + h 2 tr[B(f i , f 0 ) 2 ] ≤ -ε.
Moreover, for all f ≤ f i , satisfying 8(d id) ≤ ρ + 1t, using the same calculations as in the proof of Lemma 7, we bound log

E n f [1 -φ i ] by the maximum of - {nKL n (f i , f 0 ) -tr[A(f i -f, f 0 )]/2} 2 4n{b(f, f 0 ) + a} and - n 4 KL n (f i , f 0 ) + 1 8 tr[A(f i -f, f 0 )],
where a is any positive constant and n is large enough. Using Lemma 13, one has

nKL n (f i , f 0 ) ≥ nm 2 2π 4 M 2 b(f i , f 0 )
and the constraints (B.5) we finally obtain that there exists constant c 1 , C 1 > 0 such that

E n f [1 -φ i ] ≤ exp{-2n(KL n (f i , f 0 ) -tr[A(f i -f, f )]/2n) + 4s 2 nb n (f, f 0 )} ≤ e -nc1b(fi,f0) ≤ e -nC1ε
for ε small enough.

C Proof of Theorem 4.2

We re-use some of the notations of Section 5.1; in particular, C, C ′ denote generic constants. The proof of the theorem is divided in two parts. First, we show that

E n 0 P π f : h n (f, f 0 ) ≥ log n n 2β/(2β+1) X n ≤ C n 2 . (C.1)
Second, we show that, for f ∈ Fn , and n large enough,

h n (f, f 0 ) ≤ Cn -2β 2β+1 log n ⇒ h(f, f 0 ) ≤ C ′ n -2β 2β+1 log n. (C.2) Since ℓ(f, f 0 ) ≤ h(f, f 0 )
, see the proof of Corollary 2 in Section 3, the right-hand side inequality of (C.2) implies that

E n 0 {E π [ℓ(f, f 0 )|X n ]} ≤ C log n n 2β/(2β+1) + lE n 0 P π h n (f, f 0 ) > log n n 2β/(2β+1) |X n ≤ Cn -2β 2β+1 log n + C ′ n -2 ,
for large n, where l < +∞ is an upper bound for ℓ(f, f 0 ) which is easily deduced from the fact that f , f 0 belongs to some Sobolev class of functions. This implies Theorem 4.2.

To prove (C.1), we show that Conditions 1 and 2 of Theorem 4.1 are fulfilled for

u n = n -2β/(2β+1) (log n).
In order to establish Condition 1, we show that, for n large enough, Bn ⊃ Bn , the set containing all the f = F (d, k, θ) such that k ≥ kn , for kn = k 0 n 1/(2β+1) , du n n -a ≤ d 0 ≤ d and, for j = 0, . . . , k,

|θ j -θ 0j | ≤ (j + 1) -2β u n n -a , (C.3)
where a > 0 is some small constant. Then it is easy to see that π( Bn ) ≥ π( Bn ) ≥ exp{-nu n /2}, provided k 0 is small enough, since π k (k ≥ kn ) ≥ exp{-C kn log kn }, and (C.3) for all j implies that k j=0

θ 2 j (j + 1) 2β = k j=0 (θ 0j -θ 0j + θ j ) 2 (j + 1) 2β ≤ L 0 + u 2 n n -2a k j=0 (1 + j) -2β + 2u n n -a   k j=1 |θ 0j |   < L
for n large enough, since L 0 = j θ 0j (j + 1) 2β < L, and

k j=1 |θ 0j | is bounded according to (3.3). Let f = F (d, k, θ), with (d, k, θ) ∈ Bn . To prove that (d, k, θ) ∈ Bn , it is sufficient to prove that h n (f, f 0 ) ≤ u n /4, since h n (f, f 0 ) = KL n (f 0 ; f ) + KL n (f ; f 0 ), and KL n (f ; f 0 ) ≥ Cb n (f 0 , f ),
using the same calculation as in [START_REF] Dahlhaus | Efficient parameter estimation for self-similar processes[END_REF]Dahlhaus ( , p. 1755) and the fact that d ≤ d 0 .

Since f 0 ∈ S(β, L), and for the particular choice of kn above,

+∞ j= kn θ 2 0j ≤ L( kn + 1) -2β (C.4) and +∞ j= kn |θ 0j | ≤   +∞ j= kn θ 2 0j (j + 1) 2β   1/2   +∞ j= kn (j + 1) -2β   1/2 ≤ C k1/2-β n . (C.5) Let f 0n (λ) = |1 -e iλ | -2d0 exp   kn j=0 θ 0j cos(jλ)   , b n (λ) = exp   - j≥ kn+1 θ 0j cos(jλ)   -1,
and 

g n = 1 -f 0n /f . Then f -f 0 = f 0 b n + f g n ,
|b n | 2 2 = π -π b n (λ) 2 dλ ≤ 2 ∞ j= kn+1 θ 2 0j ≤ 2L k-2β n ≤ 2Lk -2β 0 u n log n according to (C.4). In addition since 1 -x ≤ -log x, for x > 0, g n (λ) ≤ (d 0 -d) log(1 -cos λ) + j≤ kn |θ 0j -θ j | ≤ Cu n n -a (| log |λ|| + 1) .
Moreover, since tr (A + B) 2 ≤ 2trA 2 + 2trB 2 for square matrices A and B, one has

h n (f 0 , f ) ≤ 1 n tr T n (f 0 b n )T -1 n (f )T n (f 0 b n )T -1 n (f 0 ) + 1 n tr T n (f g n )T -1 n (f )T n (f g n )T -1 n (f 0 ) ≤ C log n |b n | 2 2 + u n n -a |b n | 2 ∞ +Cu 2 n n -1-2a tr T n (f (| log |λ|| + 1))T -1 n (f ) 2 ≤ cu n (C.6)
where c may be chosen as small as necessary, since k 0 is arbritrarily large. Note that the first two terms above come from (A.2) in Lemma 6, and the third term comes from Lemma 4.

To establish Condition 2 is straightforward, since the prior has the same form as in Section 3.3, and we can use the same reasoning as in the proof of Theorem 3.2, that is, take, for some well chosen δ,

Fn = (d, k, θ) ∈ S(β, L) : |d -d 0 | ≤ δ, k ≤ kn
where kn = k 1 n 1/(2β+1) so that, using Lemma 10,

π F c n ∩ {f, h(f, f 0 ) < ε} ≤ π k (k ≥ kn ) ≤ e -C kn log kn
for n large enough. Choosing k 1 large enough leads to Condition 2. We now verify Condition 3 of Theorem 4.2. Let ε 2 n ≥ u n and l 0 ≤ l ≤ l n , and consider f = F (d, k, θ), (d, k, θ) ∈ V n,l , as defined in Theorem 4.1, and f i,l = (2e) lε 2 n F (d i , k, θ i ), where dependencies on l in d i and θ i are dropped for convenience. If for some positive c > 0 to be chosen accordingly |θ jθ ij | ≤ clε 2 n /(k + 1), for j = 0, . . . , k, one obtains

g i,l (λ) g(λ) = (2e) lε 2 n exp    k j=0 (θ j -θ ij ) cos(jλ)    ≤ (2e 2 ) clε 2 n
and f i,l /f ≥ 1 so that the constraints of Condition 3 of Theorem 4.2 are verified by choosing c small enough. The cardinal of the smallest possible net under these constraints needed to cover V n,l is bounded by

Cn,l ≤ k n 1 clε 2 n L ′ k n clε 2 n kn+1
since for all l |θ l | ≤ L. This implies that log Cn,l ≤ Cnu n and Condition 3 is verified with ε 2 n = ε 2 0 u n . This achieves the proof of (C.1), which provides a rate of convergence in terms of the distance h n (•, •).

Finally, we prove (C.2) to obtain a rate of convergence in terms of the distance h(•, •). Consider f such that

h n (f 0 , f ) = 1 2n tr T -1 n (f 0 )T n (f -f 0 )T -1 n (f )T n (f -f 0 ) ≤ ε 2 n . Equation (A.3) of Lemma 6 implies that 1 2n tr T n (f -1 0 )T n (f -f 0 )T n (f -1 )T n (f -f 0 ) ≤ Cε n [ε n + n -1/2+δ ] ≤ Cε 2 n . (C.7) We now prove that tr T n (f -1 0 )T n (f -f 0 )T n (f -1 )T n (f -f 0 ) -tr T n (f -1 0 (f -f 0 ))T n (f -1 (f -f 0 )) ≤ C(log n) 2 n 1-2a .
for some small a > 0. By symmetry we consider only the case d

≥ d 0 . Let h 0 = (1 -cos λ) d0 , h = (1 -cos λ) d , then f h ≤ C, f 0 h 0 ≤ C and |f -f 0 |h ≤ C
for some C ≥ 0, and it is sufficient to study the difference below. Note that the calculations below follow the same lines and the same notations as the treatment of γ(b) in Lemma 6, see Appendix A. 

1 n tr [T n (h 0 (f -f 0 ))T n (h(f -f 0 ))] - 1 n tr [T n (h 0 )T n (f -f 0 )T n (h)T n (f -f 0 )] = - 1 n [-π,π] 3 (f -f 0 )(λ 2 )h 0 (λ 2 )(f -f 0 )(λ 4 )h(λ 4 ) h 0 (λ 1 ) h 0 (λ 2 ) -1 ×∆ n (λ 1 -λ 2 )∆ n (λ 2 -λ 4 )∆ n (λ 4 -λ 1 )dλ - 1 n [-π,π] 3 (f -f 0 )(λ 2 )h 0 (λ 1 )(f -f 0 )(λ 4 )h(λ 4 ) h(λ 3 ) h(λ 4 ) -1 ×∆ n (λ 1 -λ 2 )∆ n (λ 2 -λ 3 )∆ n (λ 3 -λ 4 )∆ n (λ 4 -λ 1 )dλ ≤ C(log n) n [-π,π] 2 |λ 2 | -2(d-d0) |λ 1 | -1+a L n (λ 1 -λ 2 ) 1+a dλ + C n [-π,π] 4 |λ 1 | 2d |λ 2 | 2d |λ 3 | 1-a ×L n (λ 1 -λ 2 )L n (λ 2 -λ 3 )L n (λ 3 -λ 4 ) a L n (λ 4 -λ 1 )dλ ≤ C(log n) 2 n 1-a [-π,π] 2 |λ 2 | -2(d-d0) |λ 1 | -1+a L n (λ 2 -λ 1 )dλ + C(log n) n 1-a [-π,π] 3 |λ 1 | 2d |λ 2 | 2d |λ 3 | 1-a L n (λ 1 -λ 2 )L n (λ 2 -λ 3 )dλ ≤ C(log n) 2 n 1-2a , provided d -d 0 ≤ a/4,
(f -f 0 )) T n (h(f -f 0 ))] ≤ Cǫ 2 n .
Finally, to obtain (C.2), we bound

tr [T n (h 0 (f -f 0 ))T n (h(f -f 0 ))] -tr T n (h 0 h(f -f 0 ) 2 ) = C [-π,π] 2 {h 0 (f -f 0 )} (λ 1 ) × [{h(f -f 0 )} (λ 2 ) -{h(f -f 0 )} (λ 1 )] ∆ n (λ 1 -λ 2 )∆ n (λ 2 -λ 1 )dλ ≤ C [-π,π] 2 {h(f -f 0 )} (λ 1 )(f -f 0 )(λ 2 )[h(λ 2 ) -h(λ 1 )]∆ n (λ 1 -λ 2 )∆ n (λ 2 -λ 1 )dλ +C [-π,π] 2 {hh 0 (f -f 0 )} (λ 1 ) [f 0 (λ 2 ) -f 0 (λ 1 )] ∆ n (λ 1 -λ 2 )∆ n (λ 2 -λ 1 )dλ +C [-π,π] 2 {hh 0 (f -f 0 )} (λ 1 ) [f (λ 2 ) -f (λ 1 )] ∆ n (λ 1 -λ 2 )∆ n (λ 2 -λ 1 )dλ .
The first term is of order O(n 2a log n), from the same calculations as above. We consider the last term, but the calculations for the second term follow exactly the same lines. Recall that f = he w , where w(λ) = k j=0 θ j cos(jλ) is not necessarily continuously differentiable, e.g. when β < 1. Thus f (λ 2 )f (λ 1 ) = h(λ 2 ) -1h(λ 1 ) -1 e w(λ2) + h(λ 1 ) -1 e w(λ2)e w(λ1) .

The first term is dealt with using (A.6), leading to a bound of order (log n) 2 n 2a . For the second term, and k ≤ k n , , where the latter inequality holds because π -π {h 0 /h} (λ)dλ is bounded when |dd 0 | is small enough. The same computations can be made on f 0 so that for all a > 4|dd 0 | we finally obtain that

[-π,π] 2 h 0 (f -f 0 )(λ 1 )[g(λ 2 ) -g(λ 1 )]∆ n (λ 1 -λ 2 )∆ n (λ 2 -λ 1 )dλ ≤ C [-π,π] 2 h 0 |f -f 0 |(λ 1 )
tr [T n (h 0 (f -f 0 ))T n (h(f -f 0 ))] -tr T n (h 0 h(f -f 0 ) 2 ) ≤ C(log n)n 2a + (log n) k j=0 j(|θ j | + |θ 0j |) [-π,π] g 0 g(f -f 0 ) 2 (λ)dλ 1/2 .
Splitting the indices of the sum above into into j : j|θ j | ≤ j 2β+r θ 2 j and its complementary, for some r, we get that 

h 0 h(f 0 -f ) 2 dλ ≤ Cε 2 n ,
which achieves the proof.

D Technical lemmas

The .

Lemma 12. For any τ ∈ (0, 1/4), there exists C > 0 such that

d -d 0 < 1 4 -τ ⇒ b(f, f 0 ) ≤ Ch(f, f 0 ).
Proof. If d ≤ d 0 , the bound is trivial, since f /f 0 ≤ M/mπ 2(d0-d) . Assume d > d 0 , and let A ≥ 1/2 some arbitrary large constant. Since (x -1) 2 ≤ x 2 for x ≥ 1/2, one has d-d0) ≥ Am/M λ -4(d-d0) dλ ≤ Ah(f, f 0 ) + C ′ (Am/M ) 2-1/2(d-d0) 1 -4t , (D.1)

b(f, f 0 ) ≤ Ah(f, f 0 ) + M 2 2πm 2 π 0 1l {f (λ)/f 0 (λ) ≥ A} λ -4(d-d0) dλ ≤ Ah(f, f 0 ) + M 2 2πm 2 π 0 1l λ -2(
provided A ≥ M/m and C ′ = M 2 /2πm 2 . In turn, since (x -1) 2 ≥ x 2 /2 for x ≥ 4, and assuming A ≥ 4M 2 /m 2 , then λ -2(d-d0) ≥ Am/M implies that f /f 0 ≥ Am 2 /M 2 ≥ 4, and (f /f 0 -1) 2 f 0 /f ≥ f /2f 0 ≥ Am 2 /2M 2 . Therefore The lemma below makes the same assumptions with respect to f and f 0 , but it involves finite n distances.

Lemma 13. One has:

d > d 0 ⇒ KL n (f 0 ; f ) ≥ m 2 M 2 π 2 b n (f 0 , f ).
Proof. [START_REF] Dahlhaus | Efficient parameter estimation for self-similar processes[END_REF]Dahlhaus ( , p. 1755) ) proves that KL n (f 0 ; f ) ≥ C -2 b n (f 0 , f ) where C is the largest eigenvalue of T n (f 0 )T -1 n (f ). In our case, f 0 /f ≤ M π 2(d-d0) /m, hence C -2 = m 2 /M 2 π 2(d-d0) .

The last lemma in this section applies to the FEXP formulation of Section 3.3. 

  cos(jλ 2 )cos(jλ 1 )) L n (λ 1λ 2 )L n (λ 2λ 1 )dλ ≤ C(log n) 0 (ff 0 ) 2 (λ)dλ 1/2

≤

  C k r + k 2-2β-r ≤ Ck n ,provided we take r = 3/2β. Using the same computation for f 0 , one obtains eventually that, provided β ≥ 1/2,[-π,π] 

.

  f = F (d, g), f 0 = F (d 0 , g 0 ), d, d 0 ∈ (0, 1/2), g, g 0 ∈ G(m, M ), for 0 < m < M . Lemma 10. For any ε > 0, |dd 0 | ≥ ε ⇒ h(f, f 0 ) Without loss of generality, take d ≥ d 0 , then, since (x -1) 2 /x ≥ x/2 for x ≥ 4,Lemma 11. There exists C > 0 such that, for any ε > 0,|dd 0 | ≥ ε ⇒ b(f, f 0 ) ≥ C -1/2ε . Proof. If d ≥ d 0 , then, since (x -1) 2 ≥ x 2 /2 for x ≥ 4, b(f, f 0 ) ≥ m 2 4πM 2 π 0 1l λ -2(d-d0) ≥ 4M/m λ -4(d-d0) dλ d < d 0 , one has (x -1) 2 ≥ 1/4 for 0 ≤ x ≤ 1

  d-d0) ≥ Am/M (f /f 0 -1) proof by combining (D.1) with (D.3) and taking A = 4M 2 /m 2 .

Lemma 14 .

 14 Let f 0 (λ) = (2 -2 cos λ) -d0 exp {w 0 (λ)} , f (λ) = (2 -2 cos λ) -d exp {w(λ)} , then, for ε ∈ (0, 1/4), |dd 0 | ≤ ε, |ww 0 | ≤ ε ⇒ h(f, f 0 ) ≤ 7ε.Proof. Without loss of generality, take d -d 0 ≥ 0. Then f 0 /f -1 ≤ 2 ε e ε -1 ≤ (1 + log 2)ε, since e x ≤ 1 + 2x for x ∈ [0, 1]. Moreover, since 2(1cos λ) ≥ λ 2 /3 for λ ∈ (0, π), one has d-d0) dλ ≤ πe ε 3 ε 1 -2ε ,and, to conclude, as again e x ≤ 1 + 2x for x ∈ [0, 1], and e ε(1+log 3) (1 -2ε) -1 -1 ≤ 10ε, for ε ≤ 1/4, ≤ (6 + log 2)ε.

  where b n and g n are bounded as follows. From (C.5), one gets that, for n large enough,|b n | ∞ ≤ C k1/2-β

n

, and
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We now prove that, for large n and ∀a > 0,

Let

where

We bound the first term with (A.8):

Lemmas 5.2 and 5.3 in [START_REF] Dahlhaus | Efficient parameter estimation for self-similar processes[END_REF] lead to, ∀a > 0,

n for all a > 0. Finally we obtain, when n is large enough

which ends the proof of (A.2). We now prove (A.3). Since

is positive semidefinite, and

n (h j ). We first bound the second term of the r.h.s. of (A.9). Let δ > 0 and ε < ε 0 such that |dd 0 | ≤ δ (Corollary 1 implies that there exists such a value ε 0 ). Then using Lemmas 5.2 and 5.3 of [START_REF] Dahlhaus | Efficient parameter estimation for self-similar processes[END_REF] tr

We now bound the first term of the r.h.s. of (A.9).