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Obstacle avoidance capability for an Autonomous Underwater Vehicle (AUV) is of high interest for the French 
defence and especially GESMA centre which is involved in the development of decisional autonomy for AUV 
for several years. In addition to its original mission, the vehicle must ensure its own survival and must therefore 
understand the environment in safety. The use of a Forward Looking Sonar (FLS) on AUV is one of the most 
efficient solutions to detect unexpected and potentially dangerous changes of the environment, like the presence 
of obstacles or seabed slope. Like this, a FLS can prevent the vehicle from obstacles or terrain that may 
endanger the underwater vehicle. A process model has been derived based on navigation data in order to predict 
the motion of a ground target which has been detected in the sonar image. This model has been used in the 
prediction step of a Kalman filter that enables still targets tracking through successive frames. The article gives 
an overview of the overall architecture with a focus on Kalman filtering. An assessment will be done on 
synthetic and real data recorded in April 2006 during sea trials organized by GESMA. 

1 Introduction 

Autonomous Underwater Vehicles (AUVs) have to fulfill 
their mission safely. In this article, a Forward Looking 
Sonar is used by an AUV to ensure its survival. To do it, 
sector scan sonar images are processed in order to classify 
any obstacle that can endanger the vehicle and lead to the 
interruption of the mission. To have enough time to 
characterize and finally avoid an obstacle, this latter has to 
be detected and tracked through the images sequence. 

Some works published on the tracking of objects on sonar 
images use optical flow on moving objects and data 
association techniques [1, 2]. Other works use still objects 
tracking to estimate the AUV motion with respect to the 
seabed [3]. 

In contrast our tracking algorithm takes into account 
navigation data to robustly track detected ground obstacles 
even if the vehicle changes its speed and/or its attitude. 
Indeed a Kalman filter which takes navigation data as input 
has been derived from the AUV process model. The 
Kalman filtering of successive detections gives a good 
estimation of the trajectory of the obstacle in sight. The 
process model has been presented last year and will be 
briefly reminded in the third part [4]. Detection process is 
presented in the following part and the Kalman filtering 
will be detailed in the fourth part. After some words on 
data association for multi-target tracking in the fifth part, 
the last part is dedicated to assessment on real RESON 
8101 data recorded in April 2006 during sea trials 
organized by GESMA. 

2 Detection step 

Sonar images are corrupted by a well-known multiplicative 
noise that is speckle noise [5]. By considering amplitude 

modulus of the reflected wave, pixels level follows a 
Rayleigh law. Under this hypothesis, we have derived a 
simple adjustment test that only consists in verifying the 
relation of proportionality that exists between the mean and 
the standard deviation of pixels. In practice, we divide the 
sonar image into snippets and test for each of them the 
value of the ratio between the standard deviation value and 
mean value of pixels levels. If this ratio is too far from the 
expected value (about 0.52) we consider that a target is in 
sight. By thresholding the image, we can see areas whose 
pixels level does not follow a Rayleigh distribution. The 
centre of inertia of each area is set as a detected point or 
measurement and can initiate a Kalman filter. 

3 Process model [4] 

The state equation is based on the process model that 
provides the sonar coordinates ),( δd  of a detected object 

given the AUV motion. This model is obtained in several 
steps. 

In the mobile reference frame the target is located by 
means of the following equations: 
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Where ( )z
r

y
r

x
r mmm ,,=rm  stands for the coordinates of an 

object laying on the seafloor, h is the AUV altitude and 
( )ψθϕ ,,  stand for the Euler angles. 

From this system, we can derive the function fa such that: 
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and fc such that: ( ) ( )δδ ,,,,, dmmmfd z
r
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Besides we have the following vehicle model : 

( ) raa mmp ⋅−=− ψθϕ ,,eulerR  (4) 

where ( )z
a

y
a

x
a ppp ,,=ap  stands for the coordinates of the 

AUV (we supposed its location merged with all the other 
sensors) and ( )z

a
y
a

x
a mmm ,,=am  stands for the coordinates 

of the object in the absolute reference frame. 

By derivating the last equation, we get: 
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where ( )z
r

y
r

x
rr vvv ,,=v  stands for the speed of the AUV. 

We can now give the expression of a moving object in 
function of its initial position and navigation data: 

( ) ( )ψθϕψθϕδδ &&&&& ,,,,,,,,, rvdofoffd abc=  (6) 

4 Kalman filtering 

4.1 State equation 

The state vector is composed of the sonar coordinates, i.e. 

( )Tdx δ= . Considering the previous paragraph and 

Eq.(6), we can then write the state equation in the discrete 
domain: 

( ) 111/11/ , −−−−− += kkkkkk vuxfx  (7) 

where the vector input 
1−ku  is derived from navigation data 

such that ( )Tkku 11 −− = ψθϕψθϕ &&&rv , 
1−kv  stands 

for the white Gaussian state noise whose covariance matrix 
is 

1−kQ  (detailed farther) and abc ofofff =  is a non linear 

state function determined at paragraph  3. 

4.2 Measurement equation 

Our measurement consists of obstacle coordinates on the 
screen. The measurement equation is then: 

11/1/ −−− += kkkkkk wxHy  (8) 

where 
1−kw  stands for the white Gaussian measurement 

noise whose covariance matrix is 
1−kR  (detailed farther), 
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with ∆d (resp. ∆δ) stands for the along track (resp. across 
track) sampling rate. 

4.3 Implementation 

4.3.1 Covariance matrices 

State and measurement noises as well as initial state are 
Gaussian and mutually independent. 

By taking into account theoretical precisions of navigation 
sensors, we can estimate the following state variances: 
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To compute measurement variances at the initial step 
(k=0), we consider a measurement precision about hundred 
pixels along track and half a pixel across track according to 

sonar resolution. In other words, 
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For the other steps (k>0), measurement precision depends 
on the innovation, i.e. the difference between the 

measurement ky  and its prediction 1/ˆ −kky  converted into 

pixels. 

4.3.2 Initialisation 

The initial state 0/0x  consists of the coordinates of the 

centre of inertia of the detected obstacle. In other words 

( )Tdxx 000/00/0 ˆ δ== . 

From uncertainties about 5 meters in range and 5 degrees 
in azimuth, we can derive the initial covariance matrix 
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4.3.3 Prediction stage 

For this stage we have to compute the new state 
1/ˆ −kkx  

given the previous one 1/1ˆ −− kkx . 

Prediction step is carried out by performing an unscented 
transform of 1/1 −− kkx  because of the strong non linearity of 

the state function f [6] as follows: 

1. Creation of Sigma points i
kk 1/1 −−χ , for i=1 to 

2n+1 with respective weight iW : points that are 

uniformly distributed on an ellipsoid such that 
their mean and covariance are 1/1ˆ −− kkx  and 

1/1 −− kkP  (n=length of 
1/1ˆ −− kkx ) [7]. 

2. Computation of ( )11/11/ , −−−− = k
i

kk
i

kk uf χχ  for 

i=1 to 2n+1 
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3. Predicted state is then ∑
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4.3.4 Correction stage 

For this stage we have to estimate the actual measurement 

1/ˆ −kky  given the actual state 1/ˆ −kkx  and we can do the 

correction by applying Kalman equations in the linear case 
this once: 
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where yk is the real measurement (detection). If no 
detection occurs at this step, we take the previous detection 
but the corresponding covariance matrix becomes 
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 in order not to take into account 

this detection. 

We can notice here the impact of the innovation term 

1/ˆ −−= kkkk yyυ . 

5 Data association 

Data association techniques can be divided into the two 
following categories [8]: 

• Approaches that focus primarily on target 
selecting measurements that only fall within 
« validation gates » generated by existing tracks, 

• Approaches that focus on measurements finding 
an existing track or creating a new one if 
necessary. 

The second one is more suitable for our context, i.e. for 
trackable target with sufficient geographic information to 
be well localized. Practically for each measurement we 
search the closest track by considering the Euclidean 
distance in meters. Two cases can occur: if this distance is 
two big (>15m) a new Kalman filter is initialized, 
otherwise this measurement (or average measurement if 
more than one measurement is found) is taken into account 
in the correction step of the Kalman filtering. 

Another point concerns tracking interruption. Complex 
tests like the sequential probability ratio test of Wald or 
statistical tests of Mehra and Peschon seemed to be 
interesting because these tests are based on the innovation 
values [9, 10]. Unfortunately these tests were difficult to 
use here because of hazardous implementation and tuning 
for the first one and because of lack of statistical samples 
(innovation values) for the others. For these reasons, we 

chose a simpler test that is to say that if no measurement is 
associated to a given track three times one after the other 
this track is interrupted. 

6 Experimental results 

6.1 Data description 

6.1.1 Avoidance sonar data 

The Redermor is an experimental platform deployed from 
the French Navy ship BEGM Thetis. In its last release, 
avoidance means of Redermor consist of a network of 10 
Tritech echosounders and a Reson Seabat 8101 Forward 
Looking Sonar (FLS). In this article sonar data come from 
the Reson Seabat 8101 FLS operating in a sector scan 
mode. The system can play a beamformed image over a 
15° (vertical) × 60° (horizontal) sector with an azimuth 
resolution ∆δ equal to 1.5° and a range resolution ∆d equal 
to 5cm. The sonar has been oriented 15° from the 
horizontal plane. 
In order to test the capability of the Redermor vehicle to 
react when obstacles are encountered on its way, GESMA 
organized an experimental trial in April 2006, named 
DEVITOBS’06 “DETection et EVITement d’OBStacles”. 

6.1.2 Navigation data 

Navigation is performed knowing data from a Doppler 
Velocity Log (DVL) and a Motion Reference Unit (MRU). 
The DVL gives the vehicle speed in relation to the 
seafloor. The MRU gives the vehicle orientation and its 
acceleration in relation to the earth (or absolute) reference 
frame (X : geographical North, Y : East, Z : gravity 
direction). 

6.2 Results on synthetic sonar data 

Synthetic data consist of two punctual ground objects 
embedded in the background image of an empty real sonar 
sequence. Doing this it was possible to quantify the 
tracking performance for different levels of noise on 
measurements. We observed that filtering works well while 
a white Gaussian noise with a standard deviation less than 
2m was applied. 

An example of filtering with noisy measurements (standard 
deviations of 20 pixels in range and 1 pixel in azimuth) is 
given hereafter. 

Fig. 1 is a snapshot of the tracking of the two embedded 
targets and Fig. 2 gives trajectories and variances for one 
of them. 
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Figure 1: Snapshot of multiple Kalman filtering 

(measurements in red – tracks in green or yellow with their 
corresponding ellipses of uncertainty) 

 

 

 
Figure 2: Target 1 

Up: filtering (green: reference trajectory, red: 
measurements, blue: estimated trajectory) 

Down: variances evolution along the sequence 

 

6.3 Results on real sonar data 

We show here results on a sequence where a shipwreck lies 
on the seafloor (a large echoes area followed by a large 
shadow area). 

 
Figure 3: Snapshot of Kalman filtering on a shipwreck 

(measurements in red, tracks in green and cyan) 

 

 
Figure 4: Shipwreck sequence 

Up: filtering (green: reference trajectory, red: 
measurements, blue: estimated trajectory) 

Down: variances evolution along the sequence 



Acoustics 2010 Istanbul Conference  Quidu, Bertholom, Dupas 

7 Conclusion 

In this paper a multiple-target tracking has been presented 
for sector-scan sonar images. This algorithm is designed 
for still target lying on a flat seafloor and it would fail if 
one of these hypotheses is strongly violated. It is based on 
a Kalman filter that takes navigation data as input. The 
state equation is based on the process model of the vehicle 
which is non-linear. That is why an Unscented Kalman 
Filter has been implemented. Results on synthetic and real 
Reson Seabat 8101 FLS sonar data have been showed. This 
study is of high interest for GESMA involved in the 
development of experimental AUVs such as the Redermor 
for several years [11]. These results will also be useful in 
the context of the covert REA (Rapid Environmental 
Assessment) AUV named “Daurade” [12]. The objective 
of this project is to describe the seabed and the water 
column by means of an AUV. This project is realized in 
collaboration with the SHOM, the French Navy 
Hydrographic and Oceanographic Service. As this AUV is 
equipped with a Blueview 450 FLS, the multiple-target 
tracking algorithm will be soon tested on it. 
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