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Abstract - High resolution sonars provide high-quality acausthages, allowing the classification of
objects from their cast shadow. For a given groumide except mine with radial symmetry, shadow
appearance generally depends on the point of VAéer a segmentation step performed on images eedjui
along a part of a circular trajectory of the soassund the object, we can match and superimposaybin
data. The resulting image displays a fuzzy shadegion whose pixels grey-levels depend on their
successive localisation in the images of the sexpjdre. if they belong or not to the shadow regibs an
extension of feature extraction in the binary cdsg@zy geometry is a practical tool to describeziuz
regions characterised by the degree of memberdhgach pixel to them. After a Principal Component
Analysis applied to a set of fuzzy features, enagimg results have been achieved on simulated sonar
images covering both classical and stealthy mines.

[. Introduction

Fuzzy image processing consists in applying fuegyclto develop new image processing algorithmsaywa
classical image processing algorithms can be egténd fuzzy image processing algorithms (1). Fuzzy
techniques are often used to manage uncertaintibBimage processing due to vagueness and antjigui
Representation of image regions as fuzzy subsetass& be well appropriate for our specific ainuded,

we do not deal with regions crisply defined butioeg characterised by the degree of membershiadi e
pixel to them. The idea we developed in this pdpelo summarise in a single image all the sonaa dat
acquired along a part of a semicircular trajectairyhe sonar around the object and, to extend léssical
features extraction step to characterise a newyfszadow region whose pixels grey-levels depenthein
successive localisation in the images of the sexpielh requires four preliminary steps we explairthie
second section: a segmentation step, a superingostep, a fuzzification step and an image norsaétn.
Rosenfeld generalised many basic geometrical ptiegenf regions such as area, perimeter, heighgjte
compactness and so on, to fuzzy sets (2). Soméeoh tare used here and specified in section Il in
conjunction with new fuzzy features we derivedséttion V, a Principal Component Analysis is applie

a large set of fuzzy features described in sed¥on

lI. Preliminary steps

Before defining the features, we explain how imege are preprocessed in order to obtain a fuzpgme
Without further details at this point, we only sopp that we deal with a sequenceéNpflifferent points of
view per object to be classified. Details aboutdittons of simulations will be explained later iecsion V.
Figure 1, Figure 2 and Figure 3 illustrate thedwfing steps that enable us to obtain the fuzzy anag

II.1. Segmentation step (cf. Figure 1)

Segmentation consists in partitioning the image mdmogeneous regions. In our case, objects assifital
from their cast shadow. Each image is made up tf the echo and the cast shadow caused by theteltec
object and the seabed reverberation region. Gittiedabel zero for pixels belonging to the shadog the
label one elsewhere we obtain binary from greyllémeage. Sonar image’s grey-level histogram is
generally unimodal and then threshold selectiorthieymode method is impossible. To make it bimodal,
specific spatial filtering can be applied in orderminimise pixels variance. In the resulting higtm,
peaks represent shadow and seabed reverberations€differing in average grey-level) while thegle
valley represents shadow edge. The optimal filesighed for sonar images does not look like a iddea-
pass filter but strongly depends on the princiglthe sonar image formation in terms of size areffocient
values. For details on this technique, please tefés).



Figure 1 —Images segmentation over a sequence ofiegter cast shadows (only four of them are displayé&here)

[1.2. Superimposition step (cf. Figure 2)

By superimposing all the segmented shadows of dgrience, we observe straight on a single image
different shapes of shadow that the object can bistessarily, superposition is carried out atherdentres

of mass of the shapes have been fitted. As a rdbalmore shapes differ, the more the dispersigixels
levels is important because pixel level dependgssuccessive localisation in the images of tlysace,

i.e. if it belongs or not to the shadow region.ngg\, images, the maximal pixel grey-levelNg

I1.3. Fuzzification step (cf. Figure 2)
Fuzzy logic seems to be appropriate to characténs@ew image provided that a fuzzification is raped.
It means that we assign the image with membershipeg regarding to pixels belongness to the shadow
region over the sequence. In order to affect theimmal membership value at the centre of the furgian
and zero for pixels that never belong to the shadegion over the sequence, we invert grey-levels. B
normalising each pixel grey-level by the maximag owe transform the region of interest into a fuzupset
of the image where for every pixplwhose coordinates al(é, j), ,u( p) = ,u(i, j) is called the degree of

membership op in i, a mapping from the image into [0,1].

Minimal membership
value /J(i, j) =0

outside

Grey-levels
inverse and
normalisation

Maximal membership
value /J(i, j) =1at
the centre of the regic
of interest

Figure 2 —Superimposition, pixels levels inverse anfuzzification



[I.4. Image normalisation (cf. Figure 3)

To improve robustness of features, an image nosat#in is performed. It has to provide a new imag)é

it would be seen under a grazing angle of 45 degpeeserving shadow ratios. Moreover on accouthef
sonar parameters, image resolution is generallfigréifit along the two dimensions. Consequently, each
pixel is made approximately “square” to preventrirdisproportions.

Figure 3 — Image normalisation

lll. Fuzzy features

The feature extraction step is a process by whielptevious grey-level images are transformedaptattern feature
vector.

[ll.1. Rosenfeld geometrical features

Among the geometrical features introduced by Raddnfind extended by Pal and Ghosh, we were
interested in the following ones (in case of digitaage, wheré stands for index of row arjdor index of
column) (2)(4):

a(u)=3 > uli, i)
- height h -
hu) =3 max{ufi, i)}
- width w J
w(p) = X mas{ (i, j )}
- length | |
() = maxy i, 1)
- breath L J

L) = max 3 (i, )
By combining the previous features, we can alsduate:

- Index of area coveragel OAC

a(u)
I0AC() = -t
L(u)x1(u)
In the nonfuzzy case, this feature equals to hfeectangle placed along the axes of the image7add
for a circle.
- Density d

d(,u) =M whereN stands for the number of pixels whose membershipes differ from zero
N



[l1.2. Fuzzy features derived from fuzzy moments

a) Fuzzy moments

The two-dimensional moment of ordefq for an (N xM ) discretized |mage]‘( ) is defined as (5):
M-1N-1

ORI )

j=0 i=0
Moments are usually applied to a distribution fumetthat is binary and contiguous, i.e. a silhcai@tiage
of a segmented object (shadow in our case) to ex#taape characteristics. The extent of momenthdn

fuzzy case is straightforward:
M-1N-1

Moy = > 1%, ])
j=0 i=0
We easily derive the corresponding fuzzy centraineiats:

ZZ(I_l ) ( _Jo) /J(| J) with i, = :‘lbo et j, === mn

j=0 i=0 0 0

b) New fuzzy geometrical features

As an extension to fuzzy sets, we can now introdbedollowing features that have been successtidsd
in the binary case (6) :

- Extent Et
o+
Et(y)= T
Tho
- Elongation El
J4 2+ (o — T,)” a
or ELL(u¢)=—
T, + T oK) B
where
2.~’ +m +\/ m,. —m..)> +4m?
a = M, + M, ++/ (M, — M) my;
Mo
ﬁ:\/Zmz o+ b, = (T = T,)° + 4
Mho
- Intensity of the image Ellipse
My
Ell
ipse(u1) = b

V. Fuzzy features extraction

As in the binary case, if we except the index afaacoverage, geometrical features differ withinvermg
class, depending on size. It results a partitiotihiwisome classes. In such a case, the k-nearigstooeir
algorithm can be used to avoid misclassifications.

Without anya priori choice among all the previous fuzzy features,feature vector is made of 9 components
consisting in 9 geometrical features, ddOAC, Et, El,, Ellipse h, w, L, . In the remainder, we cailhdividual a

given fuzzy region described by its 9 featu{@}....q).



V. Experiments

V.1l. Training set

Sonar data are simulated in order to cover a waleot configurations in terms of types of mines and
appearances from different points of view. On oaedy) moored mines generally look like a sphere lealip
to an anchor box for laying. On the other handugdmines are usually cylindrical in shape. Newagbs
while cylindrical shaped objects reflect fairly oefe sonar shadows, some ground mines have specifi
shape that improves stealth capabilities resulim@ difficult identification (9). In our experimen five
classes have then been considered: cylinders€8),sepheres (3 sizes), and three stealthy miaesyo that look
like truncated cones (the Manta and Sigeel minad)aaother one with sloping angled faces and |lafiigr(the
Rockan mine). To achieve our experiments, a sequeint9 sonar images is simulated per mine asistmar
turned around each mine with a shot every 10 degfée entire training set is made of 270 sequeriBmsar
height and distance from the sonar to the objedtegt constant along the trajectory. These alistieaonditions if
we use a sonar mounted on the Propelled Varialp¢hC®onar (PVDS) promoted by Thales Underwatere8yst
that can easily work. Moreover synthetic apertuoegssing self-calibration enables us to know peegisely the
trajectory, and, by means of small correctiongetdhe required trajectory conditions back (10).

In order to evaluate the robustness of our fegtwepaid attention to two points:

- We do not priori know the orientation of the object from the sofiése superimposition of the segmented
images is then performed from a random start ofréfjectory. As a consequence, in case of a matehts a
single axis of symmetry (as the Rockan mine), spect of the fuzzy region differs according tostaet point.

- The evolution of the classification results whenlw the semicircular trajectory to a quartetaotircular
trajectory, i.e. 10 successive points of view.

Figure 4 (esp. Figure 5) displays an example of fuzzy regionsamigd by the method explained above
(sectionIl) for each class when the superimposition steps®=19 images résp. N=10 images). As
expected, regions obtained in case of mines wittr ggmmetrical properties such as cylinder or Racka
mine are fuzzier than those obtained in case oksmith radial symmetry. Effectively, the shadowtdzy
the firsts has different appearances with respebetsonar observation viewpoint.

E00 e

Figure 4 — Examples of fuzzy regions for differentypes of mines considering a semicircular trajectoy : a
cylinder, a sphere, a Manta mine, a Sigeel mine aralRockan mine

Figure 5 — Examples of fuzzy regions for differentypes of mines considering a quarter of a circulatrajectory :
2 cylinders and 2 Rockan mines

V.2. Fuzzy features analysis

In order to analyse easily relevance of fuzzy festuto our specific application, a Principal Conmgiun
Analysis followed by a correlation circle interpagon are performed.
a) Principal Component Analysis (PCA)

PCA allows to reduce dimensionality by forming Enecombinations of features while preserving the
maximum of variance. It consists in finding thengipal axes of inertia through the feature spaat an



L , 1 . .
projecting data along these axes. A covarianceixat-CC' of size %9 is then constructed from the set
b
of the centred and reduced features (so thatellehtures have zero mean and unit variaGoaf)size %N,
whereN, stands for the number of individualsstands for the transpose operation) (7)(8). Thecimal
axes are the eigenvectors of the covariance masseciated to its eigenvalues. We can then visudis
best clustering in the feature space projecting fieture values on the base of the eigenvectors

U =(u; ). () O{L...9hx{L...8}.

As the features are centred and reduced, tharietih| of the cluster of the whole individuals, i.e. twen of the
eigenvalues, is equal to the number of featuesi(7). As the rati<ﬂ/11 +)I2)/ | is sufficient, i.e. the part of the

inertia related to the two first principal axes, ee® replace the features by the two first compsraly and reduce
the size of the feature space from 9 to only twaedisions.

Doing the projectionF = U "C , we visualise the 2D-subspade = f (f,), wheref; andf, are the two first

lines of F and are related to the coordinates of the indalidin the principal plane. This plane is the pesgjection

of the initial 9D-space when the 9 featu(@}-, o are combined to compute two new synthetic fegtitesthe
principal components andf,. In other words, the principal plane can be segheplane that maximises the inertia
of the individuals projected on it.

b) Correlation circle

To give an interpretation of the positions of theéividuals in the principal plane, one can usectreslation circle
of unit radius. On this graph, coordinates of gaoimt stand for the correlation of each featgrevith the two

principal components andf,. For our centred and reduced features, correlatiequal tor ( f,,a;) =u; x4/A
(7). The correlation circle creates a link betwtbentwo spaces by means of correlations. The rheréeatures are

characterised by a large radids 2( f.a ) + rZ( f,,a ) , the more they are correlated with the principahgonents
and then, discriminant for our application.

c) Experimental results

First casea semicircular trajectory (19 points of view)
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Figure 6 - Partition of the subspace in case of @sicircular trajectory: (/]1 +/12)/I =0.847

As planned, more than a single cluster are assigniedividuals of classes ‘cylinders’ or ‘spherbstcause of their
different possible sizes. Seeing the perfect jmartivf the individuals in this 2D-subspace, a Krastineighbour
classifier with K=1 successfully provides 100% obd classification.
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Figure 7 - Correlation circle in case of a semicinglar trajectory

Seeing the correlation circle ¢tigure 7 we can give an interpretation of the partitiortte individuals in the
principal plane according to their symmetrical ma@s. The principal componefitseparates objects with
radial symmetry (i.e. Manta mines, Sigeel mines gpideres) from the others (i.e. cylinders and Rocka
mines). Indeed, features sensitive to fuzzinesd) asdensityandellipse are the most correlated with it.

Second casex quarter of a circular trajectory (10 pointsiefw)
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Figure 8 - Partition of the subspace in case of augrter of a circular trajectory: (/11 +A, )/I =0.836

With regard to the previous case, individuals eaab classes * cylinders’ and * Rockan mines’'ramge
spread. Their complex symmetry entails a large rarrobpossible aspects of the fuzzy region.
Nevertheless, a K-nearest neighbour classifier #ith still provides 100% of good classification.



VI. Conclusion

In this paper, we have shown the interest of thereston of the classical features extracted fromaty 2D-
shape to fuzzy features extracted from fuzzy 20psh perform a new recognition processing over a
sequence of images of the same object. Actualgmale image created from all the segmented images
the sequence displays a new region of interest avithzzy frontier. The more the number of segmented
images is large, the less a possible bad segmami@toisy or partially hidden shadow) has a consrqe

on the classification. Very encouraging resultseh&meen achieved and show that fuzzy geometry is a
relevant tool to deal with such data.

As an alternative, we can plan to superimpose rata.dBut, as mentioned in the recent thesis (hhY, t
entails some difficulties to make shadows coineiith each others. Furthermore, we have to discaelp
that belong to the seabed reverberation area 4o #sy do not interfere in the computation of fuzz
features.
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