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Abstract - In the context of mine warfare, detected mines can be classified from their cast shadow. A
standard solution is to perform image segmentation first, and then to extract a set of features from the shape
allowing classification in a final step. In this paper, we extend this procedure to a sequence of images
obtained along a part of a circular trajectory of the sonar.
For a given ground mine except mine with radial symmetry, cast shadow appearance generally depends on
the point of view. Consequently, different features values can describe the same object. Whereas this often
entails misclassification when a single view is used, we propose to use feature values computed over a
sequence of images, especially its evolution, to characterise objects from multiple views. Our supervised
classification scheme is based on the correlation, for each feature, between the sequence of values obtained
from the unknown object and typical values related to each class.

I. Introduction
A high resolution sonar provides high-quality acoustic images of the sea-bed, allowing the classification of
objects from the shadow they cast. After the segmentation step, a set of features is extracted from the shadow
(1) (2) (3). Using a single view, pattern recognition can be accomplished by identifying the unknown object as a
member of a set of well-known objects. Such a supervised classification can then be performed by using several
classical techniques such as k-nearest-neighbour classifier for example (4). But even if we use features which are
invariant under appropriate transformations, conditions are not always propitious. By taking more than a single view,
ambiguities can be removed while making classification become more robust. A solution consists in fusing information
from different views of the object (5). Actually, fusion techniques enable to represent imprecise or uncertain data by
means of particular measures called degrees of belief. The decision is taken after the combination of these pieces of
information. But as far as images acquired according to a multiview strategy are concerned, an powerful kind of
information can be judiciously used, i.e. the sequential evolution of feature values. This interesting information is
unfortunately lost by use of fusion techniques which consider each sensor or sources independently. Under these
considerations, we propose to characterise the detected object by the evolution of feature values computed over the
sequence of images provided that sonar images are acquired under a precise trajectory.
This paper is organised as follows. Main steps of shadow shapes characterisation are described in the second section.
Then section 3 derives the multiview from a given single-view characterisation of an object. The multiview
classification algorithm is detailed is section 4. Section 5 shows the experimental results.

II. Characterisation of shadow shapes in sonar imagery
Before evaluating the features, image data are preprocessed in order to obtain a binary image and to improve
the robustness of the features. An example is given in Fig. 1.

II.1. Segmentation step
Segmentation consists in partitionning the image into homogeneous regions. In our case, objects are
classified from their cast shadow. Each image is made up of both the echo and the cast shadow caused by the
detected object and the sea-bed reverberation area. Giving the label zero for pixels belonging to the shadow
and the label one elsewhere we obtain binary from greylevel image. Sonar image’s grey-level histogram is
generally unimodal and then threshold selection by the mode method is impossible. To make it bimodal, a
specific spatial filtering can be applied in order to minimise pixels variance. In the resulting histogram, peaks
represent shadow and reverberation regions (differing in average grey-level) while the single valley
represents shadow edge. The optimal filter designed for sonar images does not look like a classic low-pass
filter but strongly depends on the principle of the sonar image formation in terms of size and coefficient
values. For details on this technique, please refer to (6).
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II.2. Image normalisation
To improve robustness of topological features, an image normalisation is performed. It has to provide a new
image as it would be seen under a grazing angle of 45 degrees preserving shadow ratios. Moreover on
account of the sonar parameters, image resolution is generally different along the two dimensions.
Consequently, each pixel is made approximately square to prevent from disproportions.

II.3. Noise reduction
Irregularities of the boundary of the shadow may have undesired effects on the recognition system. While
preserving the global shape of the shadow, we aim at smoothing the boundary. The shadow’s closed
boundary can be represented by a periodic function of the contour coordinates. Computing Fourier
descriptors and removing the high frequencies, the resulting shadow is smoother than the original one.

   
Fig. 1. The initial sonar image, the corresponding binary,

normalised binary and final smoothed normalised binary images

II.4. Features extraction
In the context of mine classification, the question is to select a set of L appropriate features with acceptable recognition
accuracy. Several kinds of features are used for recognition, especially geometrical features and statistical features. In
addition to the widely used topological parameters as in Jan(7), we were interested into moments of shapes.
Some particular functions of moments introduced by Flusser and Suk(8) have the useful property of affine
invariance. Choosing only three features, a hybrid set of descriptors may characterise the 2D shape i.e. the cast
shadow. Components of the three-dimensional characteristic vector }3...1{iif  are then related to two
topological parameters and a moment invariant. This last feature characterises shapes deprived of any affine
transformation. It is interesting in case of complex mines such as the Rockan mine for which any shadow
shape cannot be referred to affine transformations of some reference one. The other features emphasize major
transformations of shapes. The first one is the length (taken along the range axis) to the width (taken along the azimuth
axis) ratio and the second one the elongation parameter computed from second order central moments (7).

III. Towards a multiview characterisation

III.1. Problem description
To ensure ship safety against modern mines, some minehunting vessels will now carry an offboard system
such as a ROV (Remotely Operated Vehicule) mounted sonar. For this purpose, Thomson Marconi Sonar
promotes the Propelled Variable Depth Sonar (PVDS) which can easily turn around an object to be classified
and hence provides short range multiple views of the object from different points of view. In our application,
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a sequence of N sonar images In is simulated as if the sonar turned around each mine with a shot every 10
degrees. The object is then characterised by N characteristic vectors 

Tnnn
n fffV 321  sequentially

stored.

III.2. Features evolution
In our experiments, five classes (K=5) have then been considered: cylinders (3 sizes), spheres (3 sizes), and
three stealthy mines, i.e. two which look like truncated cones (the Manta and Sigeel mines) and another one
with sloping angled faces and low profile (the Rockan mine). By storing features values along the circular
trajectory of the sonar, these objects are easily distinguishable. Moreover, geometrical properties and
especially symmetries are clearly displayed for a cylindrical mine on Fig.2 around which the sonar turned
round.

Fig.2. Geometrical properties

Given the geometric properties of the objects we have to classify, viewpoints from 0 to 180 degrees are
sufficient to completely discriminate the different types of mines.

IV. Mutiview classification algorithm
Under the previous observations, we propose to compare experimental sequential features values to
theoretical values related to each class and computed over a training set of 15 sequences of 19 images for
each class. As far as objects with radial symmetry axis are concerned, features values are obviously constant.
Fig.3 displays evolutions of these features for the five classes.

Our algorithm is based on correlation operations designed to measure the similarity between two features
evolution curves.

  is the correlation function defined as :

Normalised shadow
shapes

principal symmetry axis

f2( )

f3( )

principal symmetry axis
secondary symmetry axis

f1( )
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where x and y are two vectors of length M and N. This expression returns a vector of length M+N-1.  is
maximal for k=kmax such that the similarity is the most important.

Fig.3. Examples of feature evolution curves.

The correlation coefficient  is used to measure the similarity between two functions x and y:
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0xy  is equal to one if x and y are identical.
Of course, if we deal constant curves,  provides no interesting information. For instance, if lxlx ,0 ,

xy= y does not depend on x. In this particular case, a simpler comparison will be used between x0 and the

average value 
N

l

ly
N

y
1

1 .

The diagram of the Fig.4 give the main steps we develop hereafter.
In the following, iSf  (respectively j

iSf ) stands for the experimental (respectively theoretical) sequence
related to the ith feature fi.

Step 1. Comparison of sequence vectors iSf  and j
iSf  by means of cross-correlation functions 

i
j

i SfSf .

Selection of kmax such that LkArgk
L

i
SfSfk i

j
i

1
max max

Step 2. Computation of correlation coefficients jimk
i

j
i SfSf ,max

The resulting L K matrix KLjijim ...1...1,,M  contains all the maximal correlation coefficients for
each feature between the experimental sequence and the theoretical one.

f1( )

f2( )

f3( )
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Step 3. Test about the symmetry of the observed object.
Theoretical sequential feature values of objects with radial symmetry are constant because their cast shadow
appearance does not depend on the point of view. Consequently, for three classes namely sphere, Manta and
Sigeel mine, correlation coefficient values are the same and only depend on experimental values describing
the observed object. For these particular objects, correlation coefficient values are not discriminant.
For this reason, we have to do the following test before the final classification step. If at least half the
maximal correlation coefficient values per feature do not depend on the class Cj, i.e.

ii
j

i SfSfSfj
jim ,max , then we can assume that the observed object has radial symmetry.

Step 4. Decision from all the features (L=3 features)
 First case: radial symmetry object (sphere, Manta or Sigeel mine)

Comparison occurs between average features of the observed object and constant theoretical ones (given
that we only consider classes of objects with radial symmetry)

L

i

j
iij

ff
L

Argj
1

21min  where llff j
i

j
i ,

 Second case : complex object (cylinder or Rockan mine)
Correlation coefficient values are discriminant values and we can write

L

i
j

jim
L

Argj
1

2 ,11min

Fig.4. Multiview classification algorithm

V. Experimental results
This algorithm has been tested on nine different mines over 30 sequences per mine: three different cylinders,
three different spheres, the Manta, the Sigeel and the Rockan mine (see paragraph III.2). Given that we make
a supervised classification, the database is first divided to provide two sets: while learning examples whose
classes are known enable us to define theoretical (average) features values, remaining examples (i.e. 15
sequences per mine) are classified using the proposed method. Results are summarised for each feature in
confusion matrices obtained for two different length N of the experimental sequential feature values (that is
the number of views within the covered sector). Fig.5 shows the evolution of the average recognition rate
versus N increasing from 3 views to M=19 views.

selection of kmax from L cross-correlation functions

i
j

i SfSf , i=1…L

Computation of correlation coefficients
jimk

i
j

i SfSf ,max

For each
feature
fi,i=1…L

For each
class Cj,j=1…K
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It appears that complex mines (cylinder and Rockan mine) are the most sensitive to the number of views N.
Nevertheless we observe a rate of good classification more than 90% if N is over 9.

Table I: confusion matrix when M=N=19 (respectively N=9, i.e. less than a quarter of the sequence)
corresponding to an average rate of good classification of 99.4% (respectively 86.2%)

C1 C2 C3 C4 C5
cylinders 100 (68) 0 (31) 0 (0.5) 0 (0) 0 (0.5)
spheres 0 (0) 100 (100) 0 (0) 0 (0) 0 (0)

Manta mines 2 (2) 0 (0) 98 (88) 0 (0) 0 (12)
Sigeel mines 1 (0) 0 (0) 0 (0) 99 (100) 0 (0)

Rockan mines 0 (24) 0 (0) 0 (1) 0 (0) 100 (75)

Fig.5. Rates of good classification versus N from 3 to 19

VI. Conclusion
In this paper, a multiview-based recognition method was described. Indeed, the shadow cast by a given
object (objects with radial symmetry excepted) has different appearances with respect to the sonar
observation viewpoint. As a consequence, different feature values computed from pixels belonging to the
shadow shape can characterise the same object. Provided that we know the successive positions of the sonar
for each image, sequential feature values can be stored in order to be compared to theoretical values. This
comparison between the experimental and the theoretical curves is easily done by means of correlation
operators. Our algorithm has been successfully applied to simulated sequences of sonar images for five
classes of mines with different symmetry properties, and a set of three features chosen in such a way that
they appear discriminant over a sequence of viewpoints. As future works, it would be interesting to test this
flexible technique with other features and various objects.
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