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ABSTRACT

It has been very recently noted that it is possible to recover the blind
channel estimate in case of channel order overmodeling by usingℓp
quasi norms. But, to the best of our knowledge, there is, until now,
no theoretical results that investigate this issue. In this paper, we
propose to study the robustness of subspace blind methods usingℓp
quasi-norms in the noiseless case and for nonsparse channels. More
particularly, we provide conditions that ensures channel identifiabil-
ity and study their frequency of occurence with respect to the system
parameters.

1. INTRODUCTION

In current communication systems, channel estimation is essential,
since it enables data detection without the 3dB loss incurred in the
case of noncoherent estimation. Over the last decades, a special in-
terest has been devoted to blind channel estimation techniques for
their high spectral efficiency as compared to their training-based
counterparts. As long as the channel order is correctly estimated,
the channel can be uniquely identified using blind methods, but once
an error on the estimation of the channel order occurs, identifiability
is no longer possible for many existing blind methods. This is for in-
stance the case of conventional subspace-based methods, which are
known to exhibit a significant sensitivity to channel order overmod-
eling [1]. Actually, in the noiseless case, the channel can be iden-
tified as the vector that spans the 1-dimensional kernel of a matrix
denoted byQ which can be estimated by using solely second-order
statistics. But when the channel order is overestimated, the kernel of
the matrixQ is no longer a line but rather a vector space whose di-
mension depends on the overestimated order, thereby raising a new
issue: how to estimate the right direction among all the vectors that
span the kernel ofQ?

To deal with this problem, a large effort was devoted to either
add to conventional subspace techniques a feature that estimates ef-
ficiently the channel order [2], or to propose new methods that are ro-
bust to channel-order overmodeling. In this context, a new technique
for blind channel estimation of sparse channels has been recently
proposed. This technique takes into account the sparsity criterion
so as to select among the possible vectors the vector that exhibits
the lowestℓp quasi-norm0 < p ≤ 1. It was noted that using this
technique, Cross relation as well as blind deterministic maximum
likelihood based methods become robust to channel-order overmod-
eling as far as sparse channels are concerned, [3, 4]. However, for
nonsparse channels, no results are available so far, to the best of
our knowledge. Yet, we strongly believe that introducing likewise a
sparsity criterion shall enhance the channel identifiability probabil-
ity. Actually in this case, one can note that overmodeling the channel
is equivalent to zero-padding the channel vector, thus making it arti-
ficially sparse. Moreover, as far as subspace methods are concerned,
it can be shown that the zero-padded channel vector is the one that
exhibits the most sparsity. In light of this consideration, we claim

that selecting the vector that minimizes theℓp quasi-norm should
often yield the desired channel vector response (up to a scalar ambi-
guity).

In this paper, we propose to study the robustness of subspace
methods usingℓp quasi-norms for nonsparse channels. We derive the
necessary and sufficient condition for channel identifiability when
considering theℓ1 norm as well as a sufficient condition when con-
sidering theℓp quasi-norm0 < p < 1. Then, we derive lower
bounds on the probability that these conditions are satisfied. Using
these lower bounds, we study the effect of the system parameters on
the channel identifiability probability. For instance, we note that in
the ℓ1 norm problem, increasing the number of antennas improves
significantly the channel identifiability probability, in contrast to in-
creasing the number of channel coefficients, which tends to reduce
it.

2. A BRIEF REVIEW ON SUBSPACE-BASED METHODS
FOR SIMO SYSTEMS

For the reader’s convenience, we review hereafter the subspace based
method for Single Input Multiple Output (SIMO) systems [1].

In a SIMO system, ifsk denotes the unit-power transmitted sig-
nal, theM receiving antennas observe the following signal:

yk =
L∑

l=0

hlsk−l + vk,

wherehl is the channel impulse response vector at thel-th tap and
vk denotes the additive Gaussian noise. Leth = [hT

0 , · · · ,hT

L]
T be

the channel vector parameter. Stackingn observations of vectoryk

in a (n+ 1)M vectoryk = [yT

k , · · · ,yT

k−n]
T, we will get:

yk = In(h)sk + vk,

whereIn(h) is theM(n+1)× (L+n+1) block-toeplitz matrix :

In(h) =




h0 · · ·hL 0

h0 · · ·hL

. . .
. . .

0 h0 · · ·hL




.

The covariance matrix of the received signalyk can be expressed as:

R = Eyky
H

k = In(h)I
H

n(h) + σ2
I(n+1)M .

Assuming that the subchannels of vectorh have no zeros in common
andn ≥ L, the rank ofIn(h) is equal toL+n+1. Hence, there are
L + n + 1 eigenvalues ofR that correspond to the signal subspace



(non null eigenvalues ofIn(h)), whereas the remaining eigenval-
ues correspond to the noise subspace. Denote byΠ the orthogonal
projector on the noise subspace, and byD the operator given by:

D : MM(n+1)×M(n+1)(C) → MM(n+1)(L+1)×M(L+1)(C)

M = [M0, · · · ,Mn] 7→




M0 0
...

. . .
Mn M0

. . .
...

0 Mn




,

The blind subspace estimator can be defined as:

ĥ = min
‖f‖2=1

f
H
Qf ,

with:
Q = D(Π)HD(Π).

In case of channel overmodeling, the kernel of matrixQ is a
vector space with dimension equal toδ = L′ − L (L′ being the
overestimated order), which is spanned by the channel vector as well
as all itsδ − 1 delayed copies [1]. In other words, the kernel is
spanned by the following(δ + L + 1)M × (δ + 1) block-Toeplitz
matrixH:

H =




h0 · · · 0
...

. . .
...

hL

. . . h0

...
. . .

...
0 · · · hL




3. CONDITIONS FOR CHANNEL IDENTIFIABILITY

One can note that the columns of the matrixH represent the sparsest
vectors of the kernel of matrixQ. In fact, any linear combination of
vectors ofH will yield almost surely vectors that are less sparse as
they contain less zeros. Hence, the channel vector can be selected as
the one that solves the following combinatorial optimization prob-
lem:

(P0) min
x,x1=1,Qx=0

‖x‖0 (1)

wherex1 denotes the first entry ofx, ‖.‖0 is theℓ0 quasi-norm that
returns the number of coefficients where the vector is not equal to
zero. However, solving(P0) requires generally an intractable com-
binatorial search, thus reducing its interest for real-time applications.

An alternative is to consider the optimization problem:

(Pp) min
x,x1=1,Qx=0

‖x‖p (2)

where‖x‖p denotes theℓp quasi-norm:‖x‖p =
(∑

i |xi|p
) 1

p . It
should be mentioned that this approach has been extensively studied
by the compressed sensing theory [5] and applied to many fields like
image processing [6] and communication systems [7, 8]. For all
these applications, the problem is usually put under the form:

min
x,Φx=y

‖x‖p

whereΦ is a matrix independently distributed from vectorx. This
is different from our case, since matrixQ is a function of vectorh.

Therefore, all the theoretical results that have been derived in
compressed sensing theory should be adapted to our context, and
cannot be applied directly. Thereby, in this paper, we propose to
make use of the structure of our problem so as to derive new re-
sults about the channel identifiability conditions and evaluate their
frequency of occurence. Taking into account the structure of our
problem, we can deduce that(Pp) is equivalent to:

min
s,s1=1

‖Hs‖pp ⇔ min
s

‖




h1

...
hL

...
0



+ H̃s‖pp

whereH̃ is the(δ+L)M×δ block-Toeplitz matrix that has the same

shape asH. Before proceeding, we shall partitioñH =

[
A

B

]
,

whereA (resp.B) represents the firstML (resp. the lastM(δ+1))
rows ofH̃.

3.1. ℓ1 norm

Unlike theℓp quasi-norm,(p < 1), theℓ1 norm is convex. So in this
case, it is possible to derive a necessary and sufficient condition for
channel identifiability, which can be stated by the following theorem.
For simplicity, we consider here the real case, i.eh ∈ R

M(L+1).

Theorem 1. Necessary and sufficient condition
Let v =

[
sign(h1)

T, · · · , sign(hL)
T
]T

and assume thatL >
δ ≥ 1, then the necessary and sufficient condition for channel iden-
tifiability can be expressed as:

|vTAs|
‖Bs‖1

≤ 1 ∀s ∈ R
δ.

3.2. ℓp quasi-norm

Since theℓp quasi-norm is a nonconvex function, the problem might
have many local minima. Nevertheless, We still can find a sufficient
condition that ensures that the channel can be identified as a local
minimum of (2). This result is stated in the following theorem:

Theorem 2. Sufficient condition

Letv = p



sign(h1)

...
sign(hL)


•



|h1|p−1

...
|hL|p−1


where• denotes the Hadamard

(element by element) product. If the following condition is satisfied:

|vTAs|
‖Bs‖1

≤ 1 ∀s ∈ R
δ (3)

then the channel can be identified as a local minimum of (2).

4. PROBABILISTIC ANALYSIS

In this section we will study the effect of the system parameters
on the channel identifiability probability. We assume that the chan-
nel coefficients are drawn from the Gaussian distribution with mean
0 and variance 1

L+1
. To determine a lower bound on the channel

identifiability probability, we will rely on the techniques derived in
[9, 10]. Actually, in the same way as [9], we recast the probability
conditions in an other form as stated by the following theorem:



Theorem 3. Letd∗ be the value that minimizes :

min ‖d‖∞
subject toBT

d = A
T
v

Then, the channel can be identified if and only if‖d‖∞ ≤ 1.

The new formulation given by theorem 3 is interesting in the
sense that it allows geometric interpretation of the channel iden-
tifiability condition. Actually, it follows from theorem 3 that the
channel identifiability holds for a given channel realization if and
only if there is a vectord on the cubeQ = [−1, 1]δM such that
BTd = ATv, i.e,ATv belongs to the image of the cube generated
byBT. Sincerank(B) = δ almost surely, the channel identifiability
will hold if the following conditions are satisfied:

• The image of the cube byBT contains a ball of radiusα

• The vectorATv satisfies‖ATv‖2 ≤ α.

LetP denote the probability that the channel identifiability holds
andE1

α andE2
α be the events given by:

E1
α =

{
The image of the cube byBTcontains a ball of radiusα

}
,

E2
α =

{
‖AT

v‖2 ≤ α
}
.

Then,P can be lower bounded as:

P ≥ P

{
⋃

α

E1
α ∩ E2

α

}
≥ max

α
P
(
E1

α ∩ E2
α

)
.

4.1. ℓ1 norm

In the following, we propose to determine a lower bound on the prob-
ability of the eventsE1

α andE2
α, while considering theℓ1 norm min-

imization. We will consider first the relatively easy caseδ = 1 and
after that the more general caseδ ≤ min(M,L − 1). For δ ≥ M ,
we have not been able to derive a lower bound on the probability of
channel identifiability, but we conjecture that the effect of the system
parameters remains the same.

Before going any further, let us, first, write the eventE1
α in an

other equivalent way [9]:

E1
α =

{
min
x

‖Bx‖1
‖x‖2

≥ α

}
.

4.1.1. Case whenδ = 1

Whenδ = 1, it is easy to see thatvTA is a real standard Gaussian
random variable with mean0 and varianceLM

L+1
. Hence we have;

P
(
E2

α

)
= P

(
|vT

A| ≤ α
)

(4)

= P
(
|vT

A|2 ≤ α2) = 1√
π
γ

(
1

2
,
α2(L+ 1)

2LM

)
(5)

whereγ(a, x) is the lower incomplete gamma function given by:

γ(a, x) =

∫ x

0

exp(−t)ta−1dt.

On the other hand, using standard concentration inequalities for nor-
mal variables [11], we show that, for everyǫ ∈ [0, 1], we have :

P

(
‖hL‖1 ≥ M

√
2

π(L+ 1)
(1− ǫ)

)
≥ 1− exp

(
−Mǫ2

π

)
.

(6)

Since forδ = 1, the eventsE1
α andE2

α are independent, we get after

combining (6) and (5), and settingα = M
√

2
π(L+1)

(1 − ǫ), the

following theorem:

Theorem 4. For δ = 1, the probabilityP that channel identifiability
occurs is greater than:

P ≥ max
ǫ∈[0,1]

(
1− exp

(
−Mǫ2

π

))
1√
π
γ

(
1

2
,
2M

L
(1− ǫ)2

)

(7)

Remark1. Under the assumption that the random variables‖vTA‖2
and‖hL‖1 = minx

‖Bx‖1
‖x‖2 are concentrated around their expected

values with high probability (this assumption is valid in general for
standard random distributions), one can understand intuitively the
effect of the system parametersM andL on the probability for chan-

nel identifiability. Actually, given thatE‖hL‖1 = M
√

2
π(L+1)

, we

deduce that we can find, a ball of radiusr1 of orderO
(

M√
L

)
that is

contained in the image of the cubeQ by BT with a high probabil-
ity. In the same way, given that the expected value of|vTA| is of

the orderO
(√

M
)

, we can find a ball of radiusr2 = O
(√

M
)

that contains the vectorvTA, with a high probability. Since channel
identifiability occurs whenr1 ≥ r2, we deduce that asM increases,
andL decreases, channel identifiability should be more likely to oc-
cur.

4.1.2. Case whenδ > 1 andδ ≤ min(L− 1,M)

When δ > 1, the problem becomes more difficult, sincevTA is
no longer Gaussian andminx

‖Bx‖1
‖x‖2 has no closed-form expres-

sion. BesidesE1
α andE2

α are no longer independent, thus making
our computations less tighter. But, as we can see later, even if the
lower bound probability is too loose, one can still draw conclusions
about the effect of the system parameters on the channel identifiabil-
ity probability.

Let us now deal with the probability of the eventE1
α.

P
(
E1

α

)
=

{
min
x

‖Bx‖1
‖x‖2

≥ α

}
.

Sinceδ ≤ min(L− 1,M), it can be shown that:

min
x

‖Bx‖1
‖x‖2

≥ min
x

‖B̃x‖1
‖x‖2

(8)

whereB̃ = [hL, · · · ,hL−δ+1]. Consequently,

P
(
E1

α

)
≥ P

{
min
x

‖B̃x‖1
‖x‖2

≥ α

}
. (9)

To determine a lower bound on the probabilityP
(
E1

α

)
, we will use

the following result:

Theorem 5. [12] Let Φ be aM × δ Gaussian matrix, with iid en-
tries, i.e,φi,j ∼ N (0, σ2) . Let 1 > κ > 0 and chooseη, ǫ > 0
such thatκ = η+ǫ

1−ǫ
. Then

‖Φx‖1 ≥ Mσ

√
2

π
(1− κ)‖x‖2



holds uniformly forx ∈ R
δ with probability exceeding

1− (1 + 2/ǫ)δ exp

(
−η2M

2c2

)

wherec = (31/40)
1
4 (1.13 +

√
π).

Applying theorem 5, we get that for every1 ≥ κ > 0, and

α∗ = M
√

2
π(L+1)

(1− κ) we have :

P
(
E1

α∗

)
≥ 1− (1 + 2/ǫ)δ exp

(
−η2M

2c2

)
(10)

whereǫ andη are positive reals satisfyingκ = η+ǫ
1−ǫ

.

Remark2. Note that in contrast toǫ, increasingη improves the lower
bound probability. Consequently, the values ofη andǫ can be set so
as to maximize the lower bound probability.

According to Markov inequality,P
(
E2

α

)
can be written as:

P
(
E2

α∗

)
= P

{
‖AT

v‖2 ≤ α∗}

≥ 1− E
(
‖ATv‖22

)

(α∗)2

≥ 1− Mδ(2L− δ + 1)

2 (α∗)2 (L+ 1)

≥ 1− πδ (2L− δ + 1)

4M (1− κ)2
. (11)

Using (6) and (11), the lower bound on the channel identifiability
can be lower bounded by:

P ≥ max
κ,ǫ,η

κ= η−ǫ

1+ǫ

1− (1 + 2/ǫ)δ exp

(
−η2M

2c2

)
− πδ (2L− δ + 1)

4M (1− κ)2
.

(12)
Although the provided bound is not tight, it provides information
about the impact of the system parameters on the channel indetifia-
bility probability. One can obviously see that increasing the number
of antennasM improves the channel identifiability probability, in
contrast to the system parametersL andδ which tend to decrease it.

4.2. ℓp quasi-norm

In this section, we will consider, only the case whenδ = 1. Let
hi = [hi,1, · · · , hi,M ] andsi,j = sign(hi,j)sign(hi−1,j). Then,
the probability thatE2

α is satified can be expressed as:

P
(
E2

α

)
= P

{∣∣∣∣∣p
L∑

k=1

M∑

j=1

|hi,j |p−1 |hi−1,j | si,j
∣∣∣∣∣ ≤ α

}
.

One can note that asp tends to zero,p
L∑

k=1

M∑

j=1

|hi,j |p−1 |hi−1,j | si,j

converges almost surely to zero, thus implying thatP
(
E2

α

)
tends to

one asp tends to zero.
Let us deal with the complementary event ofE2

α. According to
Markov inequality,P

(
cE2

α

)
can be upper bounded by:

P
(cE2

α

)
≤

E

∣∣∣∣∣p
L∑

i=1

M∑

j=1

|hi,j |p−1|hi−1,j |si,j
∣∣∣∣∣

1
2

α
1
2

.

To remove the expectation on the Rademacher sequencesi,j , we will
use the Kintchine’s inequality that can be stated as follows:

Lemma 1. [13] Let x be a vector inRn, and sj a Rademacher
sequence. Then, we have:

E

√√√√
∣∣∣∣∣

n∑

j=1

sjxj

∣∣∣∣∣ ≤ C

[
n∑

j=1

x2
j

] 1
4

whereC =
Γ( 3

4
)

2
3
4 Γ( 3

2
)
.

Applying the Kintchine’s inequality, we get:

E

∣∣∣∣∣

L∑

i=1

M∑

j=1

|hi,j |p−1|hi−1,j |si,j
∣∣∣∣∣

1
2

≤ C

L∑

i=1

E

[
M∑

j=1

|hi,j |2(p−1)|hi−1,j |2
] 1

4

(13)

Sincep < 1, x 7→ |x|p is a concave function whenx > 0, we can
therefore prove, using Jensen inequality, that:

M∑

j=1

|hi,j |2(p−1)|hi−1,j |2 ≤
(

M∑

j=1

|hi−1,j |2
)p( M∑

j=1

∣∣∣∣
hi−1,j

hi,j

∣∣∣∣
2
)1−p

(14)

(a)

≤ p
M∑

j=1

|hi−1,j |2 + (1− p)
M∑

j=1

|hi−1,j |2
|hi,j |2

(15)

where the second inequality referred to as(a) follows from the fact
thatapbq ≤ pa + qb whenevera andb are positive andp + q = 1.
Combining (13) and (15), we get :

E

[
p

L∑

i=1

∣∣∣∣∣

M∑

j=1

|hi,j |p−1|hi−1,j |si,j
∣∣∣∣∣

] 1
2

≤ C
√
p

L∑

i=1

E

(
p

M∑

j=1

|hi−1,j |2
) 1

4

+
√
p (1− p)

1
4

M∑

j=1

E

√
|hi−1,j |√
|hi,j |

≤ CL
√
p

(
2p

L+ 1

) 1
4 Γ(M/2 + 1

4
)

Γ(M/2)
+

CLM
√
p(1− p)

1
4

π
Γ(3/4)Γ(

1

4
).

Consequently, forα = M
√

2
π(L+1)

(1− ǫ)

P
(
E2

α

)
≥ 1− A1p

3
4√

1− ǫ
− A2

√
p (1− p)

1
4

√
1− ǫ

(16)

where

A1 =
2

1
4LΓ(M/2 + 1/4)Γ(3/4)

Γ(M/2)
√
Mπ

1
4

A2 =
L(L+ 1)

1
4

√
MΓ(1/4)(Γ(3/4))2

π
5
4

.

We note that unlikeA1, A2 tends to increase withM . Hence, the
lower bound probability does not always decrease withM . Combin-
ing (10) and (16), it can be proved that the channel identifiability is
lower bounded by:

P ≥ max
ǫ

(
1− exp(−Mǫ2

π
)

)(
1− A1p

3
4√

1− ǫ
− A2

√
p (1− p)1/4√
1− ǫ

)
.

(17)



5. SIMULATION RESULTS

5.1. ℓ1 norm

We present here simulation results for theℓ1 norm. Fig. 1 displays
the effect of the system parametersL andM on the lower bound
probability that we have computed by maximizing (7) numerically.
We note that, as expected, increasing the number of antennas tends
to enhance the channel identifiability probability.
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Fig. 1. Impact of the system parametersL andM on the lower bound
probability.

5.2. ℓp quasi-norm

For theℓp quasi-norm, we study the effect of the parameterp on the
lower bound probability. We set the system parametersM andL to
6 and3, and we varyp from 10−3 to 10−6. Fig. 2 displays the lower
bound with respect top. We note that asp tends to zero, the lower
bound probability increases.

6. CONCLUSION

This paper analyses the robustness of certain blind channel identifi-
cation methods when usingℓp quasi-norms. Necessary and sufficient
conditions of channel identifiability are provided. Lower bounds on
the channel identifiability probability are derived. Even though they
are not tight, they provide some useful insights on the impact of the
number of sensorsM , the channel lengthL and the quasi-norm pa-
rameterp on the identifiability conditions.
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