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ROBUSTNESS OF BLIND SUBSPACE BASED TECHNIQUESUSING 7/, QUASI-NORMS
Abla Kammouh Abdeljalil Aissa El Bey, Karim Abed-Merairhand Sofene Afés’

! Telecom ParisTech FranceTélecom-Bretagne’, INRS-EMT Canada

ABSTRACT that selecting the vector that minimizes the quasi-norm should

It has been very recently noted that it is possible to recover the blin8ften yield the desired channel vector response (up to a scalar ambi-

channel estimate in case of channel order overmodeling by ésing guity). .
quasi norms. But, to the best of our knowledge, there is, until now, " this paper, we propose to study the robustness of subspace

no theoretical results that investigate this issue. In this paper, w@1€thods using, quasi-norms for nonsparse channels. We derive the
propose to study the robustness of subspace blind methodsfysing necessary and sufficient condition for channel identifiability when
quasi-norms in the noiseless case and for nonsparse channels. MGRSIdering the, norm as well as a sufficient condition when con-
particularly, we provide conditions that ensures channel identifiabilS'dering thed, quasi-normo < p < 1. Then, we derive lower

ity and study their frequency of occurence with respect to the syste ounds on the probability that these conditions are satisfied. Using
parameters. these lower bounds, we study the effect of the system parameters on

the channel identifiability probability. For instance, we note that in
the ¢; norm problem, increasing the number of antennas improves
significantly the channel identifiability probability, in contrast to in-

L . L . creasing the number of channel coefficients, which tends to reduce
In current communication systems, channel estimation is essentia,

since it enables data detection without the 3dB loss incurred in the’

case of noncoherent estimation. Over the last decades, a special in-

terest has been devoted to blind channel estimation techniques fop. A BRIEF REVIEW ON SUBSPACE-BASED METHODS
their high spectral efficiency as compared to their training-based FOR SIMO SYSTEMS

counterparts. As long as the channel order is correctly estimated,

the channel can be uniquely identified using blind methods, but onceor the reader’s convenience, we review hereafter the subspsee ba
an error on the estimation of the channel order occurs, identifiabilitynethod for Single Input Multiple Output (SIMO) systems [1].

is no longer possible for many existing blind methods. Thisis forin- | 3 SIMO system, ifs;, denotes the unit-power transmitted sig-
stance the case of conventional subspace-based methods, which g&¢ the 7 receiving antennas observe the following signal:

known to exhibit a significant sensitivity to channel order overmod-
eling [1]. Actually, in the noiseless case, the channel can be iden-

1. INTRODUCTION

L
tified as the vector that spans the 1-dimensional kernel of a matrix Vi = Z hysg_; + Vi,
denoted byQ which can be estimated by using solely second-order =0

statistics. But when the channel order is overestimated, the kernel of
the matrixQ is no longer a line but rather a vector space whose diwhereh; is the channel impulse response vector at/thi tap and
mension depends on the overestimated order, thereby raising a new denotes the additive Gaussian noise. het [hg,--- , hT]|" be
issue: how to estimate the right direction among all the vectors thahe channel vector parameter. Stackingbservations of vectayy,
span the kernel o)? ina(n+ 1)M vectory, = [y, -+ ,yi_,]", we will get:

To deal with this problem, a large effort was devoted to either
add to conventional subspace techniques a feature that estimates ef- Y, = Zn(h)sk + vi,
ficiently the channel order [2], or to propose new methods that are ro-
bust to channel-order overmodeling. In this context, a new techniqu&hereZ ,, (h) is the M (n 4 1) x (L +n + 1) block-toeplitz matrix :
for blind channel estimation of sparse channels has been recently
proposed. This technique takes into account the sparsity criterion
so as to select among the possible vectors the vector that exhibits
the lowestl,, quasi-norm0 < p < 1. It was noted that using this
technique, Cross relation as well as blind deterministic maximum
likelihood based methods become robust to channel-order overmod-
eling as far as sparse channels are concerned, [3, 4]. However, f 0 ho---hy
nonsparse channels, no results are available so far, to the best of
our knowledge. Yet, we strongly believe that introducing likewise aThe covariance matrix of the received siggralcan be expressed as:
sparsity criterion shall enhance the channel identifiability probabil-
ity. Actually in this case, one can note that overmodeling the channel R =Ey, ¥ = Zn(h)Z) () + 0”L( i1y
is equivalent to zero-padding the channel vector, thus making it arti-
ficially sparse. Moreover, as far as subspace methods are cedcern Assuming that the subchannels of vedidiave no zeros in common
it can be shown that the zero-padded channel vector is the one thandn > L, the rank ofZ,, (h) is equal toaL+n+ 1. Hence, there are
exhibits the most sparsity. In light of this consideration, we claimL + n + 1 eigenvalues oR that correspond to the signal subspace




(non null eigenvalues o, (h)), whereas the remaining eigenval- Therefore, all the theoretical results that have been derived in
ues correspond to the noise subspace. Denof liye orthogonal compressed sensing theory should be adapted to our context, and

projector on the noise subspace, andbyhe operator given by: cannot be applied directly. Thereby, in this paper, we propose to
make use of the structure of our problem so as to derive new re-
D: Muyminyxmmin(C) = Muyminy@ryxmrzan(C) sults about the channel identifiability conditions and evaluate their
M, 0 frequency of occurence. Taking into account the structure of our
problem, we can deduce th@®,) is equivalent to:
M = Mo, -+ ,My] M, Mo , h;
0 M, min_|[Hs||} ¢ min|| |hz | + Hs|}
s,s1= s
The blind subspace estimator can be defined as: :
0
h= min f7Qf, -
lIfl2=1 whereH is the(6+ L) M x ¢ block-Toeplitz matrix that has the same
with: shape adl. Before proceeding, we shall partitidd = A ,
Q = D(I)*D(II). _ B
whereA (resp.B) represents the firsi/ L (resp. the lasb/ (6 + 1))

In case of channel overmodeling, the kernel of ma@xs a
vector space with dimension equaldo= L’ — L (L’ being the
overestimated order), which is spanned by the channel vector as well
as all itsd — 1 delayed copies [1]. In other words, the kernel is 3-1- ¢1 norm
spanned by the followings + L + 1)M x (6 + 1) block-Toeplitz  ynjike the, quasi-normp < 1), the?; norm is convex. So in this
matrix H: case, it is possible to derive a necessary and sufficient condition for

h 0 channel identifiability, which can be stated by the following theorem.
o For simplicity, we consider here the real casehi.e RM(X+1)

rows of H.

Theorem 1. Necessary and sufficient condition
H=|p " h Letv = [sign(hi)",--- ’sign(hL.)T}T and assume that >
6 > 1, then the necessary and sufficient condition for channel iden-
tifiability can be expressed as:

[vT As|
Bs|lx

0 --- hp

<1 VseR’.
3. CONDITIONSFOR CHANNEL IDENTIFIABILITY

One can note that the columns of the mafixepresent the sparsest 3-2- ¢» quasi-norm

vectors of the kernel of matriQQ. In fact, any linear combination of  gjnce the?, quasi-norm is a nonconvex function, the problem might
vectors ofH will yield almost surely vectors that are less sparse ashaye many local minima. Nevertheless, We still can find a sufficient
they contain less zeros. Hence, the channel vector can be selected@gdition that ensures that the channel can be identified as a local

}he one that solves the following combinatorial optimization prob-minimum of (2). This result is stated in the following theorem:
em:

(Po) min  [|x[o (1)  Theorem 2. Sufficient condition

X sign(hi)] [~

wherex; denotes the first entry of, ||.||o is thefo quasi-norm that Lety = p . . . wheree denotes the Hadamard
returns the number of coefficients where the vector is not equal to : :
zero. However, solvingPy) requires generally an intractable com- sign(hy) lhp [P~
binatorial search, thus reducing its interest for real-time applicationdelement by element) product. If the following condition is satisfied:

An alternative is to consider the optimization problem: v As|

(P,) min _[lx], @ Bsll:

x,x1=1,Qx=

<1 VseR’ (3)

) then the channel can be identified as a local minimum of (2).
where||x||, denotes thé, quasi-norm:||x||, = (3, [x:[")?. It
should be mentioned that this approach has been extensively studied 4. PROBABILISTIC ANALYSIS
by the compressed sensing theory [5] and applied to many fields like
image processing [6] and communication systems [7, 8]. For alln this section we will study the effect of the system parameters

these applications, the problem is usually put under the form: on the channel identifiability probability. We assume that the chan-
) nel coefficients are drawn from the Gaussian distribution with mean
L lIll» 0 and varianceLlﬁ. To determine a lower bound on the channel

identifiability probability, we will rely on the techniques derived in
where® is a matrix independently distributed from vectar This  [9, 10]. Actually, in the same way as [9], we recast the probability
is different from our case, since mati@ is a function of vectoh. conditions in an other form as stated by the following theorem:



Theorem 3. Letd”* be the value that minimizes : Since ford = 1, the eventsz} andE? are independent, we get after
combining ¢) and §), and settingy = M 2 (1 —¢), the

min ||d||e (L+1)
following theorem:

subjecttoB™d = ATv

Then, the channel can be identified if and onlydf| .. < 1. Theorem 4. For § = 1, the probabilityP that channel identifiability
occurs is greater than:
The new formulation given by theorem 3 is interesting in the
sense that it allows geometric interpretation of the channel iden- € 1 1 2M 9
tifiability condition. Actually, it follows from theorem 3 that the ~ © = By (1 —eXp <_ - )) 7 (57 - (-9 >
channel identifiability holds for a given channel realization if and
only if there is a vectod on the cube = [—1,1]°" such that
BTd = A"v, i.e, ATv belongs to the image of the cube generatedRemarkl. Under the assumption that the random varialjleSA ||
by B™. Sincerank(B) = § almost surely, the channel identifiability and |hz|l1 = mink % are concentrated around their expected
will hold if the following conditions are satisfied: values with high probability (this assumption is valid in general for
e The image of the cube BB™ contains a ball of radiua standard random distributions), one can understand intuitively the
e The vectorA™v satisfies| A™v||2 < a. effect of the system parameteys and L on the probability for chan-

o . o 3

Let’P denote the probability that the channel identifiability holds N€! identifiability. Actually, given thak||hv [y = M, / 7y, we
andE;, andE?, be the events given by: deduce that we can find, a ball of raditisof order® (%) that is
E], = {The image of the cube dB " contains a ball of radius } , contained in the image of the culizby B™ with a high probabil-

ity. In the same way, given that the expected valugvdfA | is of
the orderO (\/M), we can find a ball of radius, = O (\/M>
that contains the vectar™ A, with a high probability. Since channel

E? = {IlA V|2 < a}.

Then,P can be lower bounded as:

. ) L ) identifiability occurs whem, > r2, we deduce that a&/ increases,
PP U EoNEq ¢ 2 maxP (EaNEZ). andL decreases, channel identifiability should be more likely to oc-
o cur.
4.1. /1 norm

4.1.2. Case whef > 1andd < min(L — 1, M)
In the following, we propose to determine a lower bound on the prob- e . .
ability of the eventdz} andE2, while considering thé; norm min- Whens > 1, the_ problem beHc]:;)lees more difficult, sinee A is
imization. We will consider first the relatively easy case- 1 and ~ NO longer Gaussian anghin, “oit has no closed-form expres-
after that the more general ca$e< min(M, L — 1). For§ > M, sion. Besides?), and E2 are no longer independent, thus making
we have not been able to derive a lower bound on the probability obur computations less tighter. But, as we can see later, even if the

channel identifiability, but we conjecture that the effect of the systemower bound probability is too loose, one can still draw conclusions

parameters remains the same. about the effect of the system parameters on the channel identifiabil-
Before going any further, let us, first, write the eve®} in an ity probability.
other equivalent way [9]: Let us now deal with the probability of the eveft,.
. |IBx]|1
ElL = {mm IBx] > a}. P (E,) = { min 1B >ap.
< x]l2 I
4.1.1. Casewhefi=1 Sinced < min(L — 1, M), it can be shown that:
Whené = 1, it is easy to see that™ A is a real standard Gaussian IBx|| HEXH
random variable with meamand variance=2 . Hence we have; min L > min ! (8)
* < Ixll2 < Ixll2
P(E2) =P(v"A| < a) 4 -
9 whereB = [hy,--- ,hr_s4+1]. Consequently,
T A (2 2 1 1 a*(L+1)
=P(VA<a’)= —=v(5 57— ) © -
) ) ) ) P (Ea) > P < min >ap. 9)
where~(a, x) is the lower incomplete gamma function given by: x x|z
y(a,z) = / exp(—t)t*~"dt. To determine a lower bound on the probability £, ), we will use
0 the following result:
On the other hand, using standard concentration inequalities for nor- ) ) L
mal variables [11], we show that, for everye [0, 1], we have : Theorem 5. [12] Let ® be aM x ¢ Gaussian matrix, with iid en-
tries, i.e,¢;; ~ N(0,0%) . Letl > x > 0 and choose), e > 0
2 Me2 such thats = 7£<. Then
P |k >M| ———(1— >1- — .
el 2 a2 1-0) 2 1o (<15

®) @zl = MU\/%(l — R)lx|l2



holds uniformly forx € R® with probability exceeding Lemma 1. [13] Let x be a vector inR", and s; a Rademacher

2 sequence. Then, we have:
—(1+2/)f exp (T
P 202 n n i
x| <C 2
wherec = (31/40)7 (1.13 + /7). ;SJXJ = ]Z_;xf]
Applying theorem 5, we get that for evely > « > 0, and )
o = M, /=1 — k) we have : whereC’' = —z 4%)-
P (Ei) >1-(1+ 2/5) exp ( 772 M) (10) Applying the Kintchine’s inequality, we get:
L M % L M %
wheree andn are positive reals satisfying = E Z Z |hi [P~ hio1]si;| <C ZE [Z |hz‘,j|2<p1>|hi1,j|2:|
Remark2. Note thatin contrast te, |ncreasmg7 |mpr0ves the lower i=1 j=1 i=1 =1

bound probability. Consequently, the values)afnde can be set so (13)
as to maximize the lower bound probability.

. b .
According to Markov inequalityP (Eﬁ) can be written as: Sincep < 1, z — |z|” is a concave function when > 0, we can

therefore prove, using Jensen inequality, that:
P(EZ) =P{|A"v|2 <"}

M M PM o 2\ 17P
T2 _ i—1,j
>1- E (A ‘2’H2) Z g D i) < <Z |hi-1.; 2) <Z hijj >
(o®) J=1 j=1 j=1 ’
MS(2L —§+1) (14)
ST o~
(@) (L+1) <pZ|h11]\ F(1-p Z| 17J|
76 (2L — 6 + 1)
4M (1 — k) (15)

P> ma}g 1—(1+2/€)°exp <—

_n—e

D 1P e lsi,

j=1

identifiability : :
can be lower bounded by: where the second inequality referred to(a$ follows from the fact
2 2
2¢ 4M (1 — k) L ] 1
about the impact of the system parameters on the channel indetifia-
of antennas\/ improves the channel identifiability probability, in o] Vi)
1

Using (6) and (11), the lower bound on the channel i
thata?b? < pa + gb whenever andb are positive angh + g = 1.
UQM) w6 (2L — 6+ 1) Combining (13) and (15), we get :
T 14e
(12) E [pZ
Although the provided bound is not tight, it provides information i=1
M
- .- . . . 1 hi— Jj
bility probability. One can obviously see that increasing the numberS \[ZE <pz o1 ) +p(1—p)i ZE VIhi-1,j
contrast to the system parametérandd which tend to decrease it. oy ) ( N )
2p \ITD(M/2+1) CLMp(1—p)* 1
< =).
<cnyi (20 ) St ML= iyl

4.2. ¢, quasi-norm

In this section, we will consider, only the case when= 1. Let
h, = [h¢71,' . - ,hi,]u} andSiJ‘ = sign(hiyj)sign(hifl,j). Then,
the probability thatF?2 is satified can be expressed as:

Consequently, for = M / -5 (1 — €)

Apt Ayp(L-p)F

L M P (Ei) >1- (16)
P(Ei)—ﬂj{pzzhiﬂp1hi1,j|8i,j <0<}- vi-—e vi-e
k=1j=1 where
2 & FLT(M 4)T
One can note that astends to zerop » >~ [hi;|" ™" [hi—1,5] 51,5 Ay = ZLDM/2+ 1/4) 1(3/4)
k=1j=1 I(M/2)vV/Mn
converges almost surely to zero, thus implying th&t? ) tends to L(L + 1)1 vMT(1/4)(I'(3/4))?
one ag tends to zero. Ay = 5 .
Let us deal with the complementary eventfgf. According to m
Markov inequality,P (CEC%) can be upper bounded by: We note that unliked;, A, tends to increase with/. Hence, the
Lo 1 lower boung ;()ro;JabiIity dboes not f;lwr?ys r?ecrr(?ase \ll\m(;wCorpbki)nl-
ing (10) and (16), it can be proved that the channel identifiability is
Elp> > b hio1lsi; Iogvér b)ounded by: P !
c 2 i=1 j=1
P(“Ea) < o3 : ( Meé? ) Aipt Asyp(1-p)'/*
) ) P > max (1 —exp(— ) [ 1- — .
To remove the expectation on the Rademacher sequencere will € ™ v1—e Vi—e

use the Kintchine’s inequality that can be stated as follows: a7)



5. SSIMULATION RESULTS

5.1. /1 norm

We present here simulation results for thenorm. Fig. 1 displays
the effect of the system parametdrsand M on the lower bound
probability that we have computed by maximizing (7) numerically.
We note that, as expected, increasing the number of antennas ter
to enhance the channel identifiability probability.

Probability lower bound

Fig. 1. Impact of the system parametdrandM on the lower bound
probability.

5.2. ¢, quasi-norm

For thel,, quasi-norm, we study the effect of the parameten the
lower bound probability. We set the system parametérand L to

6 and3, and we vanyp from 1072 to 107°. Fig. 2 displays the lower
bound with respect tp. We note that ap tends to zero, the lower
bound probability increases.

6. CONCLUSION

This paper analyses the robustness of certain blind channel identifi-

cation methods when usirfg quasi-norms. Necessary and sufficient

conditions of channel identifiability are provided. Lower bounds on[10]

the channel identifiability probability are derived. Even though they

are not tight, they provide some useful insights on the impact of th?ll]

number of sensora/, the channel lengtth and the quasi-norm pa-
rameterp on the identifiability conditions.

(12]
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