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INTRODUCTION

In current communication systems, channel estimation is essential, since it enables data detection without the 3dB loss incurred in the case of noncoherent estimation. Over the last decades, a special interest has been devoted to blind channel estimation techniques for their high spectral efficiency as compared to their training-based counterparts. As long as the channel order is correctly estimated, the channel can be uniquely identified using blind methods, but once an error on the estimation of the channel order occurs, identifiability is no longer possible for many existing blind methods. This is for instance the case of conventional subspace-based methods, which are known to exhibit a significant sensitivity to channel order overmodeling [1]. Actually, in the noiseless case, the channel can be identified as the vector that spans the 1-dimensional kernel of a matrix denoted by Q which can be estimated by using solely second-order statistics. But when the channel order is overestimated, the kernel of the matrix Q is no longer a line but rather a vector space whose dimension depends on the overestimated order, thereby raising a new issue: how to estimate the right direction among all the vectors that span the kernel of Q?

To deal with this problem, a large effort was devoted to either add to conventional subspace techniques a feature that estimates efficiently the channel order [2], or to propose new methods that are robust to channel-order overmodeling. In this context, a new technique for blind channel estimation of sparse channels has been recently proposed. This technique takes into account the sparsity criterion so as to select among the possible vectors the vector that exhibits the lowest ℓp quasi-norm 0 < p ≤ 1. It was noted that using this technique, Cross relation as well as blind deterministic maximum likelihood based methods become robust to channel-order overmodeling as far as sparse channels are concerned, [3,[START_REF] Affès | Blind SIMO Channel Identification Using a Sparsity Criterion[END_REF]. However, for nonsparse channels, no results are available so far, to the best of our knowledge. Yet, we strongly believe that introducing likewise a sparsity criterion shall enhance the channel identifiability probability. Actually in this case, one can note that overmodeling the channel is equivalent to zero-padding the channel vector, thus making it artificially sparse. Moreover, as far as subspace methods are concerned, it can be shown that the zero-padded channel vector is the one that exhibits the most sparsity. In light of this consideration, we claim that selecting the vector that minimizes the ℓp quasi-norm should often yield the desired channel vector response (up to a scalar ambiguity).

In this paper, we propose to study the robustness of subspace methods using ℓp quasi-norms for nonsparse channels. We derive the necessary and sufficient condition for channel identifiability when considering the ℓ1 norm as well as a sufficient condition when considering the ℓp quasi-norm 0 < p < 1. Then, we derive lower bounds on the probability that these conditions are satisfied. Using these lower bounds, we study the effect of the system parameters on the channel identifiability probability. For instance, we note that in the ℓ1 norm problem, increasing the number of antennas improves significantly the channel identifiability probability, in contrast to increasing the number of channel coefficients, which tends to reduce it.

A BRIEF REVIEW ON SUBSPACE-BASED METHODS FOR SIMO SYSTEMS

For the reader's convenience, we review hereafter the subspace based method for Single Input Multiple Output (SIMO) systems [1]. In a SIMO system, if s k denotes the unit-power transmitted signal, the M receiving antennas observe the following signal:

y k = L l=0 h l s k-l + v k ,
where h l is the channel impulse response vector at the l-th tap and v k denotes the additive Gaussian noise.

Let h = [h T 0 , • • • , h T L ]
T be the channel vector parameter. Stacking n observations of vector y k in a (n + 1)M vector

y k = [y T k , • • • , y T k-n ]
T , we will get:

y k = In(h)s k + v k ,
where In(h) is the M (n + 1) × (L + n + 1) block-toeplitz matrix :

In(h) =        h0 • • • hL 0 h0 • • • hL . . . . . . 0 h0 • • • hL       
.

The covariance matrix of the received signal y k can be expressed as:

R = Ey k y H k = In(h)I H n (h) + σ 2 I (n+1)M .
Assuming that the subchannels of vector h have no zeros in common and n ≥ L, the rank of In(h) is equal to L+n+1. Hence, there are L + n + 1 eigenvalues of R that correspond to the signal subspace (non null eigenvalues of In(h)), whereas the remaining eigenvalues correspond to the noise subspace. Denote by Π the orthogonal projector on the noise subspace, and by D the operator given by:

D : M M (n+1)×M (n+1) (C) → M M (n+1)(L+1)×M (L+1) (C) M = [M0, • • • , Mn] →         M0 0 . . . . . . Mn M0 . . . . . . 0 Mn         ,
The blind subspace estimator can be defined as:

h = min f 2 =1 f H Qf , with: Q = D(Π) H D(Π).
In case of channel overmodeling, the kernel of matrix Q is a vector space with dimension equal to δ = L ′ -L (L ′ being the overestimated order), which is spanned by the channel vector as well as all its δ -1 delayed copies [1]. In other words, the kernel is spanned by the following (δ + L + 1)M × (δ + 1) block-Toeplitz matrix H:

H =          h0 • • • 0 . . . . . . . . . hL . . . h0 . . . . . . . . . 0 • • • hL         

CONDITIONS FOR CHANNEL IDENTIFIABILITY

One can note that the columns of the matrix H represent the sparsest vectors of the kernel of matrix Q. In fact, any linear combination of vectors of H will yield almost surely vectors that are less sparse as they contain less zeros. Hence, the channel vector can be selected as the one that solves following combinatorial optimization problem: (P0) min

x,x 1 =1,Qx=0

x 0

where x1 denotes the first entry of x, 0 is the ℓ0 quasi-norm that returns the number of coefficients where the vector is not equal to zero. However, solving (P0) requires generally an intractable combinatorial search, thus reducing its interest for real-time applications. An alternative is to consider the optimization problem:

(Pp) min x,x 1 =1,Qx=0 x p (2)
where x p denotes the ℓp quasi-norm:

x p = i |xi| p 1 p .
It should be mentioned that this approach has been extensively studied by the compressed sensing theory [START_REF] Candès | An Introduction to Compressive Sampling[END_REF] and applied to many fields like image processing [START_REF] Blomgren | Color TV: Total Variation Methods for Restoration of Vector-Valued Images[END_REF] and communication systems [START_REF] Candès | Decoding by Linear Programming[END_REF][START_REF] Gilbert | Applications of Sparse Approximation in Communications[END_REF]. For all these applications, the problem is usually put under the form:

min x,Φx=y x p
where Φ is a matrix independently distributed from vector x. This is different from our case, since matrix Q is a function of vector h. Therefore, all the theoretical results that have been derived in compressed sensing theory should be adapted to our context, and cannot be applied directly. Thereby, in this paper, we propose to make use of the structure of our problem so as to derive new results about the channel identifiability conditions and evaluate their frequency of occurence. Taking into account the structure of our problem, we can deduce that (Pp) is equivalent to:

min s,s 1 =1 Hs p p ⇔ min s         h1 . . . hL . . . 0         + Hs p p
where H is the (δ+L)M ×δ block-Toeplitz matrix that has the same shape as H. Before proceeding, we shall partition

H = A B ,
where A (resp. B) represents the first M L (resp. the last M (δ + 1)) rows of H.

ℓ1 norm

Unlike the ℓp quasi-norm,(p < 1), the ℓ1 norm is convex. So in this case, it is possible to derive a necessary and sufficient condition for channel identifiability, which can be stated by the following theorem.

For simplicity, we consider here the real case, i.e h ∈ R M (L+1) .

Theorem 1. Necessary and sufficient condition Let v = sign(h1) T , • • • , sign(hL) T T and assume that L > δ ≥ 1, then the necessary and sufficient condition for channel identifiability can be expressed as:

|v T As| Bs 1 ≤ 1 ∀s ∈ R δ .

ℓp quasi-norm

Since the ℓp quasi-norm is a nonconvex function, the problem might have many local minima. Nevertheless, We still can find a sufficient condition that ensures that the channel can be identified as a local minimum of (2). This result is stated in the following theorem: 

Theorem 2. Sufficient condition Let v = p    sign(h1) . . . sign(hL)   •    |h1| p-1 . . .
|v T As| Bs 1 ≤ 1 ∀s ∈ R δ (3)
then the channel can be identified as a local minimum of (2).

PROBABILISTIC ANALYSIS

In this section we will study the effect of the system parameters on the channel identifiability probability. We assume that the channel coefficients are drawn from the Gaussian distribution with mean 0 and variance 1 L+1 . To determine a lower bound on the channel identifiability probability, we will rely on the techniques derived in [9,[START_REF] Gribonval | Dictionary Identifiability from Few Training Samples[END_REF]. Actually, in the same way as [9], we recast the probability conditions in an other form as stated by the following theorem: Theorem 3. Let d * be the value that minimizes :

min d ∞ subject to B T d = A T v
Then, the channel can be identified if and only if d ∞ ≤ 1.

The new formulation given by theorem 3 is interesting in the sense that it allows geometric interpretation of the channel identifiability condition. Actually, it follows from theorem 3 that the channel identifiability holds for a given channel realization if and only if there is a vector d on the cube Q = [-1, 1] δM such that B T d = A T v, i.e, A T v belongs to the image of the cube generated by B T . Since rank(B) = δ almost surely, the channel identifiability will hold if the following conditions are satisfied:

• The image of the cube by B T contains a ball of radius α

• The vector A T v satisfies A T v 2 ≤ α.
Let P denote the probability that the channel identifiability holds and E 1 α and E 2 α be the events given by: E 1 α = The image of the cube by B T contains a ball of radius α ,

E 2 α = A T v 2 ≤ α .
Then, P can be lower bounded as:

P ≥ P α E 1 α ∩ E 2 α ≥ max α P E 1 α ∩ E 2 α .

ℓ1 norm

In the following, we propose to determine a lower bound on the probability of the events E 1 α and E 2 α , while considering the ℓ1 norm minimization. We will consider first the relatively easy case δ = 1 and after that the more general case δ ≤ min(M, L -1). For δ ≥ M , we have not been able to derive a lower bound on the probability of channel identifiability, but we conjecture that the effect of the system parameters remains the same.

Before going any further, let us, first, write the event E 1 α in an other equivalent way [9]:

E 1 α = min x Bx 1 x 2 ≥ α .

Case when δ = 1

When δ = 1, it is easy to see that v T A is a real standard Gaussian random variable with mean 0 and variance LM L+1 . Hence we have;

P E 2 α = P |v T A| ≤ α (4) = P |v T A| 2 ≤ α 2 = 1 √ π γ 1 2 , α 2 (L + 1) 2LM (5) 
where γ(a, x) is the lower incomplete gamma function given by: γ(a, x) =

x 0 exp(-t)t a-1 dt.

On the other hand, using standard concentration inequalities for normal variables [START_REF] Ledoux | Probability in Banach Spaces. Isoperimetry and processes[END_REF], we show that, for every ǫ ∈ [0, 1], we have :

P hL 1 ≥ M 2 π(L + 1) (1 -ǫ) ≥ 1 -exp - M ǫ 2 π . (6) 
Since for δ = 1, the events E 1 α and E 2 α are independent, we get after combining ( 6) and ( 5), and setting α = M 2 π(L+1) (1ǫ), the following theorem: Theorem 4. For δ = 1, the probability P that channel identifiability occurs is greater than:

P ≥ max ǫ∈[0,1] 1 -exp - M ǫ 2 π 1 √ π γ 1 2 , 2M L (1 -ǫ) 2 (7)
Remark 1. Under the assumption that the random variables v T A 2 and hL 1 = minx Bx 1 x 2 are concentrated around their expected values with high probability (this assumption is valid in general for standard random distributions), one can understand intuitively the effect of the system parameters M and L on the probability for channel identifiability. Actually, given that E hL 1 = M 2 π(L+1) , we deduce that we can find, a ball of radius r1 of order O M √ L that is contained in the image of the cube Q by B T with a high probability. In the same way, given that the expected value of |v T A| is of the order O √ M , we can find a ball of radius r2 = O √ M that contains the vector v T A, with a high probability. Since channel identifiability occurs when r1 ≥ r2, we deduce that as M increases, and L decreases, channel identifiability should be more likely to occur.

Case when δ > 1 and δ ≤ min(L -1, M )

When δ > 1, the problem becomes more difficult, since v A is no longer Gaussian and minx Bx 1 x 2 has no closed-form expression. Besides E 1 α and E 2 α are no longer independent, thus making our computations less tighter. But, as we can see later, even if the lower bound probability is too loose, one can still draw conclusions about the effect of the system parameters on the channel identifiability probability.

Let us now deal with the probability of the event E α .

P E 1 α = min x Bx 1 x 2 ≥ α .
Since δ ≤ min(L -1, M ), it can be shown that:

min x Bx 1 x 2 ≥ min x Bx 1 x 2 (8) 
where

B = [hL, • • • , h L-δ+1 ]. Consequently, P E 1 α ≥ P min x Bx 1 x 2 ≥ α . (9) 
To determine a lower bound on the probability P E 1 α , we will use the following result: Theorem 5. [12] Let Φ be a M × δ Gaussian matrix, with iid entries, i.e, φi,j ∼ N (0, σ 2 ) . Let 1 > κ > 0 and choose η, ǫ > 0 such that κ = η+ǫ 1-ǫ . Then

Φx 1 ≥ M σ 2 π (1 -κ) x 2
holds uniformly for x ∈ R δ with probability exceeding

1 -(1 + 2/ǫ) δ exp - η 2 M 2c 2
where c = (31/40) 1 4 (1.13 + √ π).

Applying theorem 5, we get that for every 1 ≥ κ > 0, and α * = M 2 π(L+1) (1κ) we have :

P E 1 α * ≥ 1 -(1 + 2/ǫ) δ exp - η 2 M 2c 2 (10) 
where ǫ and η are positive reals satisfying κ = η+ǫ 1-ǫ . Remark 2. Note that in contrast to ǫ, increasing η improves the lower bound probability. Consequently, the values of η and ǫ can be set so as to maximize the lower bound probability.

According to Markov inequality, P E 2 α can be written as:

P E 2 α * = P A T v 2 ≤ α * ≥ 1 - E A T v 2 2 (α * ) 2 ≥ 1 - M δ(2L -δ + 1) 2 (α * ) 2 (L + 1) ≥ 1 - πδ (2L -δ + 1) 4M (1 -κ) 2 . (11) 
Using ( 6) and ( 11), the lower bound on the channel identifiability can be lower bounded by:

P ≥ max κ,ǫ,η κ= η-ǫ 1+ǫ 1 -(1 + 2/ǫ) δ exp - η 2 M 2c 2 - πδ (2L -δ + 1) 4M (1 -κ) 2 .
(12) Although the provided bound is not tight, it provides information about the impact of the system parameters on the channel indetifiability probability. One can obviously see that increasing the number of antennas M improves the channel identifiability probability, in contrast to the system parameters L and δ which tend to decrease it.

ℓp quasi-norm

this section, we will consider, only the case when δ = 1. Let hi = [hi,1, • • • , hi,M ] and si,j = sign(hi,j)sign(hi-1,j). Then, the probability that E 2 α is satified be expressed as:

P E 2 α = P p L k=1 M j=1
|hi,j| p-1 |hi-1,j| si,j ≤ α .

One can note that as p tends to zero, p

L k=1 M j=1 |hi,j| p-1 |hi-1,j| si,j
converges almost surely to zero, thus implying that P E 2 α tends to one as p tends to zero.

Let us deal with the complementary event of E 2 α . According to Markov inequality, P c E 2 α can be upper bounded by:

P c E 2 α ≤ E p L i=1 M j=1 |hi,j| p-1 |hi-1,j|si,j 1 2 α 1 2
.

To remove the expectation on the Rademacher sequence si,j, we will use the Kintchine's inequality that can be stated as follows:

Lemma 1. [START_REF] Foucart | Sparse Recovery with Pre-Gaussian Random Matrices[END_REF] Let x be a vector in R n , and sj a Rademacher sequence. Then, we have:

E n j=1 sjxj ≤ C n j=1 x 2 j 1 4
where

C = Γ( 3 4 ) 2 3 4 Γ( 3 2 )
.

Applying the Kintchine's inequality, we get:

E L i=1 M j=1 |hi,j| p-1 |hi-1,j|si,j 1 2 ≤ C L i=1 E M j=1 |hi,j| 2(p-1) |hi-1,j| 2 1 4 (13) 
Since p < 1, x → |x| p a concave function when x > 0, we can therefore prove, using Jensen inequality, that:

M j=1 |hi,j| 2(p-1) |hi-1,j| 2 ≤ M j=1 |hi-1,j| 2 p M j=1 hi-1,j hi,j 2 1-p (14) (a) ≤ p M j=1 |hi-1,j| 2 + (1 -p) M j=1 |hi-1,j| 2 |hi,j| 2 (15) 
where the second inequality referred to as (a) follows from the fact that a p b q ≤ pa + qb whenever and b are positive and p + q = 1. Combining ( 13) and ( 15), we get :

E p L i=1 M j=1 |hi,j| p-1 |hi-1,j|si,j 1 2 ≤ C √ p L i=1 E p M j=1 |hi-1,j| 2 1 4 + √ p (1 -p) 1 4 M j=1 E |hi-1,j| |hi,j| ≤ CL √ p 2p L + 1 1 4 Γ(M/2 + 1 4 ) Γ(M/2) + CLM √ p(1 -p) 1 4 π Γ(3/4)Γ( 1 4 
).

Consequently, for α = M 2 π(L+1) (1 -ǫ) P E 2 α ≥ 1 - A1p 3 4 √ 1 -ǫ - A2 √ p (1 -p) 1 4 √ 1 -ǫ (16) 
where

A1 = 2 1 4 LΓ(M/2 + 1/4)Γ(3/4) Γ(M/2) √ M π 1 4 A2 = L(L + 1) 1 4 √ M Γ(1/4)(Γ(3/4)) 2 π 5 4
.

We note that unlike A1, A2 tends to increase with M . Hence, the lower bound probability does not always decrease with M . Combining ( 10) and ( 16), it can be proved that the channel identifiability is lower bounded by:

P ≥ max ǫ 1 -exp(- M ǫ 2 π ) 1 - A1p 3 4 √ 1 -ǫ - A2 √ p (1 -p) 1/4 √ 1 -ǫ . (17) 

SIMULATION RESULTS

ℓ1 norm

We present here simulation results for the ℓ1 norm. Fig. 1 displays the effect of the system parameters L and M on the lower bound probability that we have computed by maximizing (7) numerically. We note that, as expected, increasing the number of antennas tends to enhance the channel identifiability probability. 

ℓp quasi-norm

For the ℓp quasi-norm, we study the effect of the parameter p on the lower bound probability. We set the system parameters M and L to 6 and 3, and we vary p from 10 -3 to 10 -6 . Fig. 2 displays the lower bound with respect to p. We note that as p tends to zero, the lower bound probability increases.

CONCLUSION

This paper analyses the robustness of certain blind channel identification methods when using ℓp quasi-norms. Necessary and sufficient conditions of channel identifiability are provided. Lower bounds on the channel identifiability probability are derived. Even though they are not tight, they provide some useful insights on the impact of the number of sensors M , the channel length L the quasi-norm parameter p on the identifiability conditions.
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