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Few projections challenge

Challenge: 3D CT cone beam reconstructions from limited projec-
tions (like in dose reduction context) require alternative methods to
standard analytical filtered backproprojection.
Proposed method: A bayesian iterative algorithm based on a
Gauss/Markov/Potts model.
Beyond limitations: Parallelization on a 8 GPUs server has allowed
us to go beyond the computing time limitations.
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A bayesian approach

Inverse problem: Getting the object f from the projection data g col-
lected from a cone beam 3D CT:

g = Hf + ε (1)
Prior model: Object f(r) is composed of K regions Rk corresponding
to K materials labeled by a hidden variable z(r)=k. A Markov/Potts
model corresponding to the compactness of materials is used for z.
It’s A Gaussian model corresponding to the homogeneity of materials
is used for each region Rk . It’s :

p(f (r )/z(r )) = k) = N (mk ,nk) (2)
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Steps of the Iterative method:
1) Reconstruction step: Updating f by computing f (i+1) =
arg maxf {p(f |z, θ, g)}. This is done by using a gradient type op-
timization algorithm:

f (i+1) = f (i) + α
[
H t(g −Hf (i)) + λDtDf (i)

]
(3)

2) Segmentation step: Updating z by generating a sample from
p(z|f , θ, g) with a sampling algorithm from a Potts-Markov model.
3) Characterization step: Updating the hyperparameters using
p(θ|f , z, g). This step can be done either analytically or by sampling
from known probability laws such as Gaussians or Inverse Gamma.

'

&

$

%

GPU implementation of the H and H t operators

Goal: Acceleration of the projection (Hf ) and backprojection (H tδg)
wich are the most time consuming operators.
GPU acceleration: Thanks to an implementation on Graphic Pro-
cessing Unit we reach a two orders of magnitude acceleration.

Operator Time
Projector 755 ms (128 ms for CPU/GPU memory transfer)
Backprojector 234 ms (133 ms for CPU/GPU memory transfer)

Reconstruction time on a GTX 295 (96 ∗ 2562 data)

8 GPUs server: Thanks to the use of a multi GPU server, another
acceleration factor (linearly propotional to the number of GPU used)
has been reached on 10243 volume reconstruction.
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Foam reconstructed (CEA-LIST real data set)

The data set is coming from a study on water kinetics in open-cell nickel
foams using x-ray microtomography. The experiments are conducted on
a small sample size (1 mm3 foam) to estimate the thin geometry and
model the water behavior at a scale of few pores.

Slice reconstructed with a FDK
method

Slice reconstructed with a non
bayesian method

Slice recontructed with our
method (after 50 iterations)

Segmentation obtained during
iterative reconstruction'
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Future works

•Optimization of our Gauss/Markov/Potts method
•Optimization of the CPU/GPU memory transfer
•Parallelization on the 8 GPU server of other operators (3D

convolution, Potts sampling...)
•Semi automatic setting ot the regularization parameters
•Technologic transfer with an industrial partner


