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ABSTRACT

A great number of image reconstruction algorithms, based on

analytical filtered backprojection, are implemented for X-ray

Computed Tomography (CT) [1, 3]. The limits of these meth-

ods appear when the number of projections is small, and/or

not equidistributed around the object. In this specific context,

iterative algebraic methods are implemented. A great num-

ber of them are mainly based on least square criterion. Re-

cently, we proposed a regularized version based on Bayesian

estimation approach. The main problem that appears when

using such methods as well as any iterative algebraic meth-

ods is the computation time and especially for projection and

backprojection steps. In this paper, first we show how we

implemented some main steps of such algorithems which are

the forward projection and backward backprojection steps on

GPU hardware, and then we show some results on real ap-

plication of the 3D tomographic reconstruction of metallic

foams from a small number of projections. Through this ap-

plication, we also show the good quality of results as well as a

significant speed up of the computation with GPU implemen-

tation.

Index Terms— Computed Tomograhy (CT), Iterative 3D

reconstruction, Bayesian estimation, GPU implementation

1. INTRODUCTION

The inverse problem we solve is to reconstruct the object f

from the projection data g collected by a cone beam 3D CT.

The link between f and g can be expressed as :

g = Hf + ǫ (1)

where H is the forward projection matrix operator modeling

the acquisition system and ǫ represents all the errors (model-

ing and measurement noise). The element Hij represents the

participation of the j pixel in the i data point.

In this discretized presentation of the CT forward prob-

lem, the backprojection (BP) solution can be expressed

as f̂BP = Htg where Ht is the transpose of H and
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the filtered backprojection (FBP) method which is also

equivalent to the Least squares (LS) solution can be ex-

pressed as f̂FBP = (HtH)−1Htg. The LS solution

f̂LS = arg minf

{
Q(f) = ‖g − Hf‖2

}
as well as the

quadratic regularization (QR) solution

f̂QR = arg min
f

{
J(f) = ‖g − Hf‖2 + λ‖Df‖2

}
(2)

can be obtained by a gradient based optimization algorithm

which can be described as follows:

{
f (0) = Htg

f (i+1) = f (i) + α
[
Ht(g − Hf (i)) + λDtDf (i)

]

(3)

where α is a fixed, variable or computed optimally step size

and (i) is the iteration number. Looking at this iterative al-

gorithm, we can distinguish, at each iteration the following

operations:

1. Forward projection operation: ĝ = Hf̂

2. Computation of the residuals: δg = g − ĝ

3. Backprojection operation of the residual: δf1 = Htδg

4. Computation of the regularization or a priori term:

δf2 = λDtDf̂

5. Updating of the solution for the next iteration:

f (i+1) = f (i) + α(δf1 + δf2)

As we can see the implementation of such iterative algorithm

as well as any other more sophisticated algorithm such as the

Bayesian estimation approach we propose needs these oper-

ations. The two main steps are the steps 1 and 3. As we

will see later, we implemented these two steps using GPU.

So, one of the main contribution of this paper is the presenta-

tion of this implementations and their relative performances.

The second contribution of this paper is adaptation of a par-

ticular Bayesian estimation approach with appropriate prior

modelling which is particularly adapted for our application

which is related to Non Destructive Testing (NDT) applica-

tion.



In the following, first, we present the basic ideas of our

Bayesian estimation approach and in particular the prior

model we proposed and used. Then, we present the main

steps of the resulting Joint Reconstruction-Segmentation-

Characterization Algorithm (JRSCA) we developped. Then,

we detail as much as possible the implementation on GPU

parts and their performances, and finally, we show the 3D

reconstruction results obtained for our application and we

conclude on this paper.

1.1. Bayesian method

The proposed Bayesian method lies on a prior model for the

object f = {f(r), r ∈ R} where r = (x, y, z) represents a

voxel position. This model considers that the object f(r) is

composed of a finite number K of materials; all voxels of the

same material are grouped in compact regions Rk, labeled by

a hidden variable z(r) = k, k = 1, · · · , K. We then have

Rk = {r : z(r) = k}. To translate the homogeneity in each

class of matierial, we use:

p(f(r)|z(r) = k,mk, vk) = N (mk, vk) (4)

and to translate the desir that all the voxels in a given class

be grouped in compact regions, we use a Potts-Markov model

for z = {z(r), r ∈ R:

p(z) ∝ exp




∑

r∈R

∑

k

αkδ(z(r) − k) + γ
∑

r′∈V(r)

δ(z(r) − z(r′))





(5)

where V(r) means the neighborhood of r and {αk, k =
1, · · · , K} and γ are the Potts model parameters. The pa-

rameters mk, vk and also standard variation of the noise

vǫ are called the hyperparameters θ = {(mk, vk, αk), k =
1, · · · , K; vǫ}. With this prior model and a centered uncor-

related Gaussian model for the noise, we can obtain the ex-

pression of all the probability laws p(g|f , vǫ), p(f |z,α,v),
p(z|γ,α) and the joint a posteriori law p(f ,z,θ|g) and all

the conditionals p(f |z,θ, g), p(z|f ,θ, g) and p(θ|f ,z, g)
which are needed to estimate jointly the object f , the image

of z which will show the segmented and classified volume

and the parameters θ which charcterize all the classes.

The iterative algorithm structure is then constituted of

three main steps, as follows:

• Reconstruction step: Updating f by computing

f̂ (i+1) = arg maxf {p(f |z,θ, g)}. This is done by

using a gradient type optimization algorithm.

• Segmentation step: Updating z by generating a sam-

ple from p(z|f ,θ, g). This needs a sampling algorithm

from a Potts-Markov model.

• Characterization step: Updating the hyperparameters

using p(θ|f ,z, g). This step can be done either ana-

lytically or by sampling from known probability laws

such as Gaussians or Inverse Gamma.

More details about this method can be found in [5].

2. ALGORITHM SPEED UP

2.1. Introduction

In this paper, we focus more on a hardware speed up of some

of these steps. A preliminary study has been conducted to es-

timate which hardware architecture is the more appropriate to

each calculation step: Cell [6], FPGA, CPU, cluster of PC’s,

graphic processing units [7, 8]. And so from the literature [9],

for gradient descent (95 % of the calculation time), graphic

processors such as GPU seem well adapted. The convergence

of the algorithm has to be warranted for the different chosen

parameters, such as: N (local number of iteration for gradient

descent), M (segmentation number of iterations) and I (global

number of iterations). The proposed method includes not only

a reconstruction of the CT data but also a segmentation of the

volume into classes. Recent works have been carried out on

similar approaches for binary cases using discrete tomogra-

phy [10]. Our approach allows to have any number of mate-

rials that needed, and also we associate a probability law to

belong to a given class [5]. Priors are also introduced on the

voxel class estimation according to their neighborhood.

2.2. Implementation of projector and backprojector

For the iterative step of gradient descent, the two main con-

suming time operations are projection (Hf ) and backprojec-

tion ( Htδg) which are used to estimate a convergence crite-

rion and its gradient. These two operations represent 95 % of

the computing time.

The follow up of the work aims at speeding up these two

steps. GPU hardware, since 2006 is one of the most used tool

inside research community. Both simplicity in implementa-

tion and performance improvements have imposed scientic

community to migrate to such a tool. Recent improvements

from NVidia have allowed to dispose of CUDA, this devel-

oping environment allows to design operating software with

high computing performances.

In order to compute the two matrix operations (Hf and

Htδg) without the too expensive memory use of H=(hij) (1

To is needed to store H for a 20483 reconstruction), projec-

tion and backprojection geometric operators are widely used.

This operators compute in line the coefficient hij , instead of

reading a matrix H stored in memory. Differents kinds of pro-

jection and backprojection algorithms can be used [11, 12].

For each operator, we choose the one which enables the

best implementation on Nvidia GPUs with CUDA. As a con-

sequence, our projection/backprojection pair is unmatched.

Thus each operator defines a different matrix H: Hp for pro-

jection and Hbp for backprojection. Use of unmatched back-

projection/projection pairs is widely used. Indeed, effect on

convergence is in pratice not penalising during the first itera-

tions [13]. Main difference on backprojection and projection



algorithm is the main loop of computation : for backprojec-

tion, the loop is on voxels (voxel-driven) and for projection it

is on X rays (ray-driven).

2.3. Backprojection

Backprojection algorithm used is a voxel-driven (main com-

putation loop on voxels) with a bi-linear interpolation done

on detector pixels. Loops are ordered in manner to exploit as

much as possible the spatial and temporal locality of memory

access as described in [9]. In CUDA parallelization scheme,

one thread is responsible to one voxel reconstruction. Mem-

ory accesses to the 2D projection of the volume is done via

the 2D texture available on GPUs which allows a cache ac-

cess to global memory and a hardwired bi-linear interpola-

tion. Standard software optimizations techniques have been

carefully used : pre-computation stored on constant cache-

memory, incremental computation used as much as possible

and loop unrolling.

2.4. Projection

Projection algorithm used is a ray-driven (main computation

loop on rays) with a tri-linear interpolation done on volume

voxels. In CUDA parallelization scheme, one thread is re-

sponsible to integrate the 3D volume along one X-ray. The

volume integration for a ray is done simply by sampling reg-

ularly the volume along the ray. Memory accesses to the

3D volume is done via the 3D texture available on GPUs

which allows a cache access to global memory and a hard-

wired tri-linear interpolation. Standard software optimization

techniques have been used for projection as well.

3. REAL DATA RECONSTRUCTION

3.1. Metallic foams

Solid foams are a class of materials with a complex behavior

related to the properties of the constitutive material, the ge-

ometry and the topology of the material distribution. These

materials present a very high porosity, and are thus very light,

but nevertheless very resistant due to a good distribution and

architecture of matter. The most known examples of such ma-

terials are bone and wood, or also coral and sponge.

Metallic foams are very recent materials. The application

field of these materials is very large: they can be used as de-

formation absorbers in mechanical engineering or fluid dis-

tributors for many applications such as thermal exchangers,

fuel cells and electrolysers. A strong need in modeling tools

as reliable as possible is necessary to make clearer the behav-

ior of these materials and to design optimal foams for desired

application [14]. It is necessary to estimate the mechanisms

that control their deformations, their durability versus time or

stresses to employ them. It is also necessary to study their

behavior versus mass and thermal transfers to address fluid

flow applications. In this context, our work is focused on col-

lecting basic knowledge on fluid two-phase flows in metallic

foams [15]. A scientific community works on flows in porous

media for geology or oil extraction. Our idea is to implement

the modelling methods developed in the context of fractured

geologic medias and adapt them to the metallic foam struc-

tures [16].

However, in order to obtain reliable results from these

modelling methods, it is necessary to obtain of a thin topology

and geometry foam structures. For topology characterization,

the pore size distribution and the specific surfaces are funda-

mental parameters, i.e. the normalized surface of the foam. A

high spatial resolution of three-dimensional structure of the

foam (in the magnitude of 5 m) is required for geometry char-

acterization [17]. In the follow-up, we present our studies on

water kinetics in open-cell nickel foams using x-ray microto-

mography. The experiments are conducted on a small sample

size (1 mm3 foam) to estimate the thin geometry and model

the water behavior at a scale of few pores.

Data set is made of 96 projections on the 2562 plane de-

tector. The volume is reconstructed inside the cylindric field

of view of the X ray tomograph. Thus, we reconstruct 256 (z

dimension) * Π · 1282 (x,y dimensions) voxels.

3.2. Reconstruction time

We have used a Nvidia GTX 295 to reconstruct the metal-

lic foam. Only one GPU is used here, no multi-GPU imple-

mentation has been done. Reconstruction time are greatly pe-

nalised by memory transfer between CPU and GPU.

The purpose of this work is not to evaluate the accelera-

tion factor obtained on GPU (see [9, 6] for time comparaison

on CPU and GPU). But compared to the former reconstruc-

tion ”C++” software used in the CEA lab , we reach about 100

acceleration factor. Previously a 100 iteration reconstruction

took days and now it takes hours.

Operator Time

Projector 755 ms (128 ms for memory transfer)

Backprojector 234 ms (133 ms for memory transfer)

Table 1. Reconstruction time on a GTX 295 (96 ∗ 2562 data)

3.3. Foams reconstructed

As first results, we present here the foam reconstructed with a

non Bayesian iterative algorithm and with our Bayesian itera-

tive algorithm. As we can observe on figure 1, while standard

algorithm like FDK (a) or an iterative quadratic regulariza-

tion method (b) does not suceed to reconstruct the water in-

side the metallic foam, our method suceeds to reconstrut it (c),

and provide a segmentation image (d) . The used prior model

which suppose that the reconstructed object is constituted of



N compact regions Rk,, is well adapted to this context of data

set.

(a) (b)

(c) (d)

Fig. 1. Foam reconstructed : (a) Slice reconstructed with

a FDK method (b) Slice reconstructed with a non bayesian

method (standard gradient descent after 50 iterations); (c)

Slice recontructed with our method (after 50 iterations); (d)

Segmentation obtained during iterative reconstruction

4. CONCLUSION AND PERSPECTIVES

We have presented an original method based on a Bayesian

statistical method for 3D tomographic reconstructions. The

main interest is to apply it to a context of non-consistent data

sets, for example with a small number of projections. We have

shown a good quality of our first results on an experimental

data set with low contrasted regions (air/water as compared to

nickel) acquired on the CT set-up of our lab and a signicant

speed up of the calculation with GPU implementation.

Both backprojection and projection steps were imple-

mented on GPU. The obtained performance for the global

reconstruction time is in the magnitude of 100. Hovewer,

performance of our projector can be still improved. In this

goal, a Joseph projector implemented also on GPU, would be

compared in term of time and qualiy of reconstruction. Our

futur work will be focusing on the study of the effect of the

unmatched projector/backprojector pair on the reconstruction

process. For this purpose, a matched voxel-driven projector

has been implemented on CPU.

Our futur goal is to reconstruct 10243 real data acquired

on the new CT set-up of the lab (10242 detector pixels). We

are currently working on a multi-GPU implementation in or-

der to handle such large data sets. GPU implementations

of computation costly steps as 3D convolution, segmentation

step would help to speed-up even more the reconstruction pro-

cess.
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