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CAPACITY BOUNDS FOR THE CDMA SYSTEM

AND A NEURAL NETWORK:
A MODERATE DEVIATIONS APPROACH

MATTHIAS LÖWE AND FRANCK VERMET

Abstract. We study two systems that are based on sums of weakly dependent Bernoulli
random variables that take values ±1 with equal probabilities. We show that already
one step of the so-called Soft-Decision Parallel Interference Cancellation, used in the
third generation of mobile telecommunication CDMA, is able to considerably increase
the number of users such a system can host. We also consider a variant of the well-known
Hopfield model of neural networks. We show that this variant proposed by Amari and
Yanai [2] has a larger storage capacity than the original model.
Both situations lead to the question of the moderate deviations behavior of a sum of
weakly dependent Bernoulli random variables. We prove a moderate deviations principle
for such a sum on the appropriate scale.

RÉSUMÉ. Nous étudions deux systèmes basés sur des sommes de variables aléatoires de
Bernoulli valant ±1 avec égale probabilité et faiblement dépendantes. Nous montrons
qu’une seule étape de la méthode de suppression d’interférences SD-PIC, utilisée dans
la troisième génération de télécommunication mobile CDMA, permet déjà d’augmenter
considérablement le nombre d’utilisateurs supporté par le système. Nous considérons
également une variante du modèle neuronal de Hopfield. Nous montrons que cette vari-
ante, proposée par Amari et Yanai [2], admet une capacité de stockage supérieure au
modèle original.
Les deux situations conduisent à l’étude des déviations modérées d’une somme de vari-
ables aléatoires de Bernoulli faiblement corrélées. Nous montrons un principe de déviations
modérées pour une telle somme convenablement normalisée.

1. Introduction

In this article we study two questions, which at first glance only have very little in common:
How many users is a third generation mobile communication system able to host, if it
works with a certain form of interference cancellation? and: How much information can
be safely stored in an improved form of the Hopfield model of neural networks?
The reason that these questions can be treated in an integrative framework is that both
models are formulated in terms of i.i.d. Bernoulli random variables that take the values
+1 and −1 with equal probabilities. For both these models the questions addressed
above then boil down to a problem of moderate deviations for a sum of Bernoulli random
variables that are correlated in a rather peculiar way. Interestingly, this correlation is the
same for the mobile communication system and the neural network and even more, one
also is interested in the same order or magnitude for the deviations.
In recent years the analysis of moderate deviations has been introduced as one branch
of the theory of limit theorems, next to well-established subjects such as central limit
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theorems and large deviations. Here the term ”moderate deviations” refers to the analysis
of probabilities in a regime between the regime of the Central Limit Theorem and the
regime of a Law of Large Numbers, which is referred to as the large deviations regime.
For example, it is known that for a sum of i.i.d. random variables Y1, Y2, . . . , under
appropriate conditions (the most general conditions can be found in [17]) the following
”subexponential” estimates holds true in the moderate deviations regime, i.e. for a scaling
between the 1√

n
-scaling for a Central Limit Theorem and the 1

n
-scaling for the Law of

Large Numbers:

lim
n→∞

n1−2α log P

(
n∑
i=1

Yi ≥ nαa

)
= −a2/2

as well as

lim
n→∞

n1−2α log P

(
n∑
i=1

Yi ≤ −nαa

)
= −a2/2

for a > 0 and 1/2 < α < 1.
Often, such moderate deviations estimates are very useful (see e.g. [34]) as we will also
see in the present paper. However, in our case the random variables will be dependent
and this often makes life much more complicated.
The rest of this paper is organized as follows. In Section 2 we will address a problem
in mobile telecommunication. This leads to a question about the moderate deviations
behavior of a sum of weakly correlated Bernoulli variables. Once this is settled we will be
able to analyze the number of users the telecommunications system can host. In Section
3, we will see that the analysis of the storage capacity of a variant of the well known
Hopfield model of neural networks leads to a very similar question. Section 4 will treat
the moderate deviations behavior of a sum of correlated Bernoulli variables in a theoretical
way and will thus provide us with the main estimate for Sections 2 and 3.

Acknowledgement: We are very grateful to two anonymous referees for their valuable
comments.

2. On the performance of third generation wireless communication
systems

In this section we will study the performance of third generation mobile communication
systems, which are based on a technique called code division multiple access (CDMA).
In these systems, users receive their own coding sequence to distinguish them from other
users. The resulting systems are much more flexible than systems used earlier and band-
with can be used much more efficiently.
In mathematical terms these CDMA systems can be described as follows. Suppose that
k users want to transmit data across a channel simultaneously. To this end, each user
multiplies his data by an individual coding sequence. The signals are decoded at the
receiver by taking the inner product with the corresponding coding sequence. Ideally, all
the coding sequences of k users are orthogonal. In this case, taking the inner product
with the m’th coding sequence will yield solely the information sent by the m’th user
(1 ≤ m ≤ k). However, in practice almost-orthogonal codes (pseudo-random codes) are
used. The technique of coding signals in order to transmit various signals simultaneously
is known as code division multiple access (CDMA), see for example [45]. So, let bm(t) be
the data signal of the m’th user. We let bm(t) = bm[t/T ], for 1 ≤ m ≤ k, where

bm = (. . . , bm,−1, bm0, bm1, . . .) ∈ {−1,+1}Z.
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Here for some real number x, [x] denotes the smallest integer larger than or equal to x.
In order to encode this signal, for each m, 1 ≤ m ≤ k, we have a sequence

am = (. . . , am,−1, am0, am1, . . .) ∈ {−1,+1}Z.

We put am(t) = am[t/Tc], where Tc = T/n, for some integer n. The coded signal of the
m’th user is then

sm(t) =
√

2Pmbm(t)am(t)cos(ωct), 1 ≤ m ≤ k, (1)

where Pm is the power of the m’th user and ωc the carrier frequency. The factor cos(ωct)
is used to transmit the signal at frequency ωc. CDMA turns out to reduce the signal-to-
noise ratio of the transmitter and the jammer by a factor n. The code am(t) is known to
the mobile phone of the transmitting person and to the base station.
The total transmitted signal is given by

r(t) =
k∑
j=1

sj(t).

To avoid technical complications we will assume that all users transmit using the same
time grid. For simplicity, we also assume that we are working on a noiseless channel, such
that the transmitted and received signals agree.
To retrieve the data bit bm1 from the received data, the signal r(t) is multiplied by
am(t)cos(ωct) and then averaged over [0, T ]. For simplicity, we pick ωcTc = πfc, where
fc ∈ N to get

1

T

∫ T

0

r(t)am(t)cos(ωct)dt =
1

2

√
2Pm bm1 +

k∑
j=1
6=m

1

2

√
2Pj bj1

1

n

n∑
i=1

ajiami (2)

The above procedure is is often referred to as Matched Filter (MF). As can be seen from
(2) the decoded signal consists of the desired bit (amplified by 1

2

√
2Pm) and interference

due to the other users. If the vectors (am1, . . . , amn) and (aj1, . . . , ajn), j = 1 . . . , k, j 6= m,
were orthogonal, then their inner product would disappear, such that

n∑
i=1

ajiami = 0.

However in practice, the a-sequences are often generated by a random number generator.
We model this by an array (Ami ),m = 1, 2, . . . k, i = 1, 2, . . . n of independent and identi-
cally distributed random variables taking values in {−1,+1} and accepting both values
with equal probability:

P(Ami = +1) = P(Ami = −1) =
1

2
.

In this case the signal (2) is turned to

Z(1)
m :=

1

2

√
2Pm bm1 +

k∑
j=1
6=m

1

2

√
2Pj bj1

1

n

n∑
i=1

AjiA
m
i .

Given this setup the signal bm1 can be estimated by

b̂
(1)
m1 := sgn

(
Z(1)
m

)
,
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where sgn(·) is the sign-function while sgn(0) = U where U is a random variable with

P(U = +1) = P(U = −1) =
1

2

and each time one needs to decide sgn(0) a fresh realization of U is taken.
The MF-system is used in the third generation telecommunication systems. The super-

script (1) indicates that potentially b̂
(1)
m1 is only a first step and further steps may be taken.

We will show how such further steps can improve the performance.
We will be interested in the probability of a bit-error, i.e., in

P(b̂
(1)
m1 6= bm1) and P(∃m : b̂

(1)
m1 6= bm1)

and when this probability will go to zero, depending on k, when n goes to infinity. One
can analyze this probability using Gaussian approximations as in [23], [27], [31], or other
approximation techniques as in [32], [7], [37].
In [22] we were able to give sharp bounds on the number of users k (as a function of

n) such that the probability of a bit error P(∃m : b̂
(1)
m1 6= bm1) converges to zero. More

precisely, we were able to show that for k = c n
logn

with c < 1/2 the above probability

converges to zero, while for c > 1/2 this probability converges to one.
There are various ways to exploit that interference experienced in a CDMA system is
different from completely random noise, and to thus improve the performance of matched
filter systems. A straightforward technique is called interference cancellation. The idea is
that we try to cancel the interference due to the other users (i.e., the users with subscript
j 6= m). Interference cancellation comes in various flavours. The one we will focus on
in this paper is called soft decision parallel interference cancellation (SD-PIC) (see e.g.
[19]). It is best understood when first explaining the concept of hard decision parallel
interference cancellation (HD-PIC) (see [11], [9], [25], [30], [1] and the references therein).

To this end, note that from our estimate b̂
(1)
m1 for bm1, we obtain an estimate for the signal

sm(t) sent by the m’th user, where for t ∈ [0, T ], our estimator is given by

ŝ(1)
m (t) = hm(Z(1)

m ) am(t)cos(ωct), 1 ≤ m ≤ k,

where, for general powers,

hm(x) =

{√
2Pm sgn(x) for HD-PIC,

2x for SD-PIC.

Obviously, for HD-PIC, we need to know the powers of the submitting users, whereas for
SD-PIC this is not necessary. The total multiple access interference experienced by the
m’th user (i.e., the interference of the m’th user from all other users) can be estimated

by r̂
(1)
m (t) =

∑
j 6=m ŝ

(1)
j (t). In the absence of noise, the multiple access interference is the

only possible cause for bit-errors.
The above estimate allows to correct our estimate of bm,1 by subtracting the estimator of
the multiple access interference from the signal. We thus obtain

b̂
(2)
m,1 = sgn(Z(2)

m ),

where Z
(2)
m is obtained by replacing r(t) in (2) by r(t)− r̂(1)

m (t), so that, if we set all powers
equal to 2 to simplify things, we obtain

Z(2)
m = bm1 +

k∑
j=1
j 6=m

1

n

n∑
i=1

AjiA
m
i (bj1 − hj(Z(1)

j )).
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If this procedure is successful, then we may iterate it. After s − 1 (note that our first
estimator does not involve any interference cancellation) steps of parallel interference

cancellation, we obtain b̂
(s)
m,1 = sgn(Z

(s)
m ), where

Z(s)
m = bm1 +

k∑
j=1
j 6=m

1

n

n∑
i=1

AjiA
m
i

(
bj1 − hj(Z(s−1)

j )
)
.

The question is, of course, how reliable these estimators are. In other words, we need

to investigate, how P(∃m : b̂
(s)
m,1 6= bm,1) behaves. In [22] we were able to show that a

large number (order log n) of iterations increases the capacity to k = kn = δn users (for
some δ > 0 small enough). However, simulations (cf. [22]) show that already one step
of interference cancellation can improve the capacity and the performance of the system
considerably. In this respect our theoretical results in [22] were rather poor. Our moderate
deviations estimates in Section 4 below now give us the opportunity to give a theoretical
analysis of the SD-PIC with just one step of parallel interference cancellation. We will see
that this single step improves the capacity from kn = n

2 logn
in the matched filter system

to kn = n√
2 logn

for one step of parallel interference cancellation in the SD-PIC.

Theorem 2.1 (Absence of bit-errors in SD-PIC systems with one iteration). Assume that
kn = n√

γ logn
for some γ > 2. Then

lim
n→∞

P(b̂
(2)
m,1 = bm,1, ∀m = 1, . . . , kn) = 1. (3)

Remarks 2.2. (1) In [22] we proved that for k = kn = δn with δ < (
√

2 − 1)2 there
exists M = M(δ) such that after s = M log n many steps the probability of having
no bit-error converges to one :

lim
n→∞

P(b̂
(s)
m,1 = bm,1, ∀m = 1, . . . , kn) = 1.

However, for all practical purposes, n ranges between 32 and 512, in which case
our bound on kn in Theorem 2.1 (for just one iteration) is superior to the bound
kn = δn quoted above for many iterations.

(2) In [22] we also showed that for the matched filter system kn = n
2 logn

is the optimal

bound, if we are interested in having no bit-errors. It would be interesting to see,
whether the same holds true for the bound kn = n√

2 logn
in Theorem 2.1. However,

the corresponding techniques (basically tilting and negative association) do not
easily carry over from the matched filter to the SD-PIC situation.

(3) It would be interesting to show a similar estimate for the HD-PIC system, which
in simulations even performs better than the SD-PIC system. However, here the
situation is mathematically much more involved.

Proof of Theorem 2.1. By definition, b̂
(2)
m1 = sgn(Z

(2)
m ), where

Z(2)
m = bm1 +

k∑
j=1
j 6=m

1

n

n∑
i=1

AjiA
m
i (bj1 − Z(1)

j )

and

Z(1)
m = bm1 +

k∑
j=1
j 6=m

bj1
1

n

n∑
i=1

AjiA
m
i .
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Without loss of generality, we may assume that bm1 = 1, for all m = 1, . . . , k, and we have

P[∃ m = 1, . . . , k, b̂
(2)
m1 6= bm1] ≤ k P[b̂

(2)
11 6= b11]

≤ k P[Yn ≥ 1],

where

Yn =
1

n2

n∑
i1=1

n∑
i2=1

k∑
j1=2

k∑
j2(6=j1)=1

A1
i1
Aj1i1A

j1
i2
Aj2i2 .

We decompose Yn into three parts

Yn =
1

n2

n∑
i1=1

n∑
i2=1
i2 6=i1

k∑
j1=2

k∑
j2=2
j2 6=j1

A1
i1
Aj1i1A

j1
i2
Aj2i2 +

1

n2

k∑
j1=2

(
n∑

i1=1

A1
i1
Aj1i1 )2 +

k − 2

n2

k∑
j1=2

n∑
i1=1

A1
i1
Aj1i1 .

From here we obtain for any δ > 0

P[b̂
(2)
11 6= b11] ≤ P[

1

n2

n∑
i1=1

n∑
i2=1
i2 6=i1

k∑
j1=2

k∑
j2=2
j2 6=j1

A1
i1
Aj1i1A

j1
i2
Aj2i2 ≥ 1− δ]

+P[
1

n2

k∑
j1=2

(
n∑

i1=1

A1
i1
Aj1i1 )2 ≥ δ1] + P[

k − 2

n2

k∑
j1=2

n∑
i1=1

A1
i1
Aj1i1 ≥ δ2],

with δ1, δ2 ∈ (0, 1) to be chosen later and δ = δ1 + δ2.
Now, we denote A1

i1A
j1
i1 by Āj1i1 for all i1 = 1, . . . , n and j1 = 2, . . . , k. These new variables

Āj1i1 are i.i.d. symmetric Bernoulli random variables as the initial variables Aj1i1 . Then
the second summand on the right will now be estimated with the help of an exponential
Chebyshev inequality

P[
1

n2

k∑
j1=2

(
n∑

i1=1

Āj1i1 )2 ≥ δ1] ≤ e−tδ1E[exp(
t

n2

k∑
j1=2

(
n∑

i1=1

Āj1i1 )2)]

= e−tδ1
k∏

j1=2

ENE[exp(

√
2t

n2
(
n∑

i1=1

Āj1i1 )N)],

where N is a standard normal random variable, and EN is the expectation with respect
to N . The last equality simply uses that for a Gaussian random variable G with zero
mean and any b ∈ R

EebG = e
1
2
b2EG2

.

Now, using that

E
[
e

q
2t
n2 Ā

j1
i1
N

]
= cosh

(√
2t

n2
N

)
≤ e

t
n2N

2

we obtain for t ∈ (0, n/2)

P

 1

n2

k∑
j1=2

(
n∑

i1=1

Āj1i1

)2

≥ δ1

 ≤ e−tδ1
(

EN

[
exp(

t

n
N2)

])k−1

≤ exp

(
−tδ1 −

k

2
log

(
1− 2t

n

))
.
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From the Taylor expansion of the natural logarithm we see that there exists u0 ∈ (0, 1)
such that for all u ∈ (0, u0), we have − log(1 − u) ≤ u + u2. We suppose now that
2t/n < u0. Then

P

[
1

n2

k∑
j1=2

(
n∑

i1=1

Āj1i1 )2 ≥ δ1

]
≤ exp

(
−t(δ1 −

k

n
) + 2k

t2

n2

)

If we choose δ1 = λ
k

n
, t = (δ1 −

k

n
)
n2

4k
for some λ > 1 such that 2t/n = (λ− 1)/2 < u0,

then we finally get

P

[
1

n2

k∑
j1=2

(
n∑

i1=1

Āj1i1 )2 ≥ δ1

]
≤ exp

(
−

(δ1 − k
n
)2

8

n2

k

)

≤ exp

(
−(λ− 1)2

8
k

)
(4)

For the third term, we also obtain by the exponential Chebyshev inequality

P

[
k − 2

n2

k∑
j1=2

n∑
i1=1

Āj1i1 ≥ δ2

]
≤ exp

(
−δ2

2n3

2k3
(1 + rn)

)
, (5)

with rn → 0 as n→ +∞.
For the first term, we can apply Theorem 4.1 in Section 4 below to obtain

P
[

1

n2

n∑
i1=1

n∑
i2=1
i2 6=i1

k∑
j1=2

k∑
j2=2
j2 6=j1

Āj1i1 Ā
j1
i2
Āj2i2 ≥ 1− δ

]
≤ 2 exp

(
− n2

2k2
(1− δ)2

)
. (6)

Finally, putting the above estimates together, we see that the contribution stemming
from the second summand is of order e−const.k, while the one stemming from the first

summand is of order e−const.n
2

k2 (possibly with different constants, of course), such that the
contribution of the second summand becomes negligible as soon as

e−k � e−n
2/k2

which is the case as soon as k ≥ nβ with β > 2/3. Choosing k = c n√
logn

, δ2 =
√

k
n
, we

obtain that

P
[
∃ m = 1, . . . , k, b̂

(2)
m1 6= bm1

]
≤ k exp

(
− n2

2k2
+O((log n)3/4)

)
≤ k exp

(
− 1

2c2
log n+O((log n)3/4)

)
which goes to 0 as n→ +∞ if c < 1√

2
.

�

3. Capacity of the Hopfield model with a nonmonotonic dynamics

The Hopfield model is one of the best-studied models of a neural network. It was originally
introduced by Pastur and Figotin [18] as a so-called frustrated spin system but it received
most of its attention by its reinterpretation by Hopfield [24] as a very simple model for
the associative memory in the brain (for reviews on mathematical work on this model, see
[43], [44], [6], [5], [4] and all the references given there). The Hopfield model is based on
a set of N formal neurons interconnected one to one. The state of the i-th unit is given
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by a spin variable σi with values in S = {−1,+1}, and the state of the network by the
configuration σ = (σi)i=1,...,N ∈ SN . This network is designed to memorize M patterns
ξµ = (ξµi )i=1,...,N , µ = 1, . . . ,M . Note that M = M(N) may and actually will depend on
N . First, we define a discrete time dynamical system on SN : given a configuration σ(t)
at time t, the configuration of the network at time t+ 1 is

σi(t+ 1) = sgn

(
N∑
j=1

Wijσj(t)

)
, i = 1, . . . , N,

where the synaptic weights Wij are defined according to the Hebb rule:

Wij =
1

N

M∑
µ=1

ξµi ξ
µ
j , for i, j ∈ {1, . . . , N}. (7)

The dynamics can be parallel, i.e., the updating is done simultaneously, or sequential if
we update all σi one after the other. Under some conditions, basically on the number
of stored patterns, starting from a configuration “close” to one of these patterns ξµ, the
dynamics will converge to ξµ. Naturally, this is only possible if the patterns ξµ are stable
points for the dynamics, and if we consider a starting point in a basin of attraction of
an original pattern. So, the first and most basic question for this model is whether the
patterns are fixed points of the dynamics: this question was first considered for i.i.d.
symmetric Bernoulli patterns by McEliece et al. [36]. We will adopt their definition
of storage capacity as the maximum number of patterns M that are stable under the
dynamics described above, with a probability converging to one as N → +∞.
It appears that in the standard Hopfield model (where the patterns are i.i.d. and take
values ±1 with equal probabilities) for this notion of capacity, where no error is tolerated,
and for this dynamics, the maximum number of stored patterns is N/2 logN . More
precisely, if M = cN/ logN for some c < 1/2 then any original pattern ξµ is stable with
a probability converging to 1 as N → +∞ ([43], [47]), while if M = cN/ logN for some
c > 1/2, any original pattern is unstable ([3]). This notion of capacity has also been
analyzed by Löwe and Vermet in more general situations: different types of dependent
patterns ([33],[34]), patterns with q ≥ 2 possible states for each pixel ([35]).
Various modifications of the original model have been proposed to increase the memory
capacity. One interesting idea is to consider nonmonotonic neurons (see [40], [28], [42],
[39], [41], [12]). Among these models, the so-called “partial reverse method” is worth to
be mentioned. This method was proposed by Morita et al [40], [39]. There, the authors
define a two-stage dynamics to realize the nonmonotonic behavior of a single neuron.
This technique was generalized by Amari and Yanai [2]. For their model the authors
obtain a memory capacity of order N/

√
logN , larger than N/ logN of the classical Hop-

field model. However, their analysis relies on a non-rigorous approximation by Gaussian
random variables, while a rigorous mathematical treatment of their improvement of the
memory capacity is missing.
We will now define the dynamics proposed by Amari and Yanai, and we will see that the
mathematical analysis of the stability of the original patterns is very close to the problem
that we considered in the previous section for the SD-PIC model.

We consider the application T = TN ◦ . . . ◦ T1 : {−1,+1}N → {−1,+1}N , where

Ti(σ) = sgn

(
N∑
j=1

(W − aW 2)ij σj

)
, i = 1, . . . , N.
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Here W = (Wij) i=1,...N,
j=1,...N

is the matrix of the synaptic weights Wij defined according to

the Hebb rule (7), and a ∈ (0, 1) is a parameter. Amari and Yanai set Wii = 0 for all
i = 1, . . . , N , but this minor difference becomes negligible for N large and does not change
the capacity. We will prove the following result, that was already announced in [2].

Theorem 3.1. Under the hypotheses that the (ξµi )i,µ are i.i.d. random variables with

P(ξµi = +1) = P(ξµi = −1) =
1

2

the following holds true:

(i) If a = 1
2

and M is such that M = c
N√

2 logN
, for some c ∈ (0, 1), then for any

µ = 1, . . . ,M ,
lim

N→+∞
P[T (ξµ) = ξµ] = 1.

(ii) If a ∈ (0, 1) ) \ {1
2
} and M is such that M = c

N

logN
, for some c ∈ (0, (1−a)2

2(1−2a)2 ), then

for any µ = 1, . . . ,M ,
lim

N→+∞
P[T (ξµ) = ξµ] = 1.

Remarks 3.2. (1) The dynamics proposed by Amari and Yanai is in fact related to
the pseudo-inverse learning rule, also called projection learning rule ([14], [15],
[26]). The idea of this learning rule is to search a matrix C which guarantees
the stability of all original patterns through the strong conditions Cξµ = ξµ,
for all µ = 1, . . . ,M . This can be written equivalently as Cξ = ξ, where ξ is
the matrix N ×M with columns ξµ = (ξµi )i=1,...,N , µ = 1, . . . ,M . A non-trivial
solution is the orthogonal projection matrix into the subspace spanned by the
vectors ξµ, µ = 1, . . . ,M , which can be written as C = ξξ+, where ξ+ is the
Moore-Penrose pseudoinverse of ξ. Some papers, based on not totally rigourous
techniques and simulations, indicate that this rule allows a higher capacity than
the classical Hebbian learning rule (see [14], [15], [26]). But theoretically, this
rule involves calculating the inverse of a M ×M matrix to get the pseudoinverse
matrix. To avoid matrix inversion, it is possible to consider iterative algorithms.
For instance, a Neumann-type expansion for ξ+ is a series representation of ξ+

analogous to the Neumann expansion for the inverse of a non-singular matrix (see
e.g. [8], [38]) :

ξ+ = α

∞∑
k=0

(I − αξT ξ)k ξT ,

for α ∈]0,mindii 6=0 2/|dii|2[, where D = (dij) is the diagonal matrix in the singular
value decomposition of ξ and ξT is the transpose of ξ. Truncating the series to
the second term, we get

C = ξξ+ ' C(2) := 2α(W̃ − α

2
W̃ 2),

where W̃ = N W and the dynamics

Ti(σ) = sgn(
N∑
j=1

C
(2)
ij σj), i = 1, . . . , N
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coincides with the dynamics proposed by Amari and Yanai.
(2) In the case a ∈ (0, 1) ) \ {1

2
}, the capacity is of the same order as for the classical

Hopfield model (a = 0), with a larger constant for a ∈ (0, 2/3).
(3) In the same paper, Amari and Yanai consider also the following dynamics :

Ti(σ) = sgn

(
N∑
j=1

Wijσj +
N∑
j=1

Wijf(
N∑
k=1

Wjkσk)

)
, i = 1, . . . , N

where f(u) = −au − (1 − 2a) sgn(u), for u ∈ R, a > 0. They assert that the
capacity is N√

2 logN
, independently of a. However, the situation is mathematically

much more complicated, resembles in a way the HD-PIC systems from the previous
sections and cannot be analyzed with the help of Theorem 4.1 in Section 4.

Proof. Without loss of generality, we may consider µ = 1. We can also replace everywhere
ξ1
i ξ
µ
i by ξµi for all i = 1, . . . , N and µ = 2, . . . ,M for the same reasons as in the previous

section. Then we have

P[T (ξ1) 6= ξ1] ≤ N P[T1(ξ1) 6= ξ1
1 ]

≤ N P[
N∑
j=1

W1j − a
N∑
j=1

W1j

N∑
k=1

Wjk ≤ 0].

This last event can be rewritten as

AN +BN

N∑
k=2

M∑
µ=2

ξµ1 ξ
µ
k −

a

N2

M∑
µ=2

(
N∑
j=1

ξµj )2 − a

N2

N∑
j=2

M∑
µ1=2

N∑
k=2
k 6=j

M∑
µ2=2
µ2 6=µ1

ξµ1

1 ξµ1

j ξ
µ2

j ξ
µ2

k ≤ 0,

with

AN = (1− a)(1 +
M − 1

N
)− a(M − 1)2

N2

and

BN =
1− 2a

N
− 3a

M − 1

N2
+

2a

N2
.

With this notation we obtain:

P[T1(ξ1) 6= ξ1
1 ] ≤ P

[ a
N2

N∑
j=2

M∑
µ1=2

N∑
k=2
k 6=j

M∑
µ2=2
µ2 6=µ1

ξµ1

1 ξµ1

j ξ
µ2

j ξ
µ2

k ≥ AN − δ
]

+P
[ a
N2

M∑
µ=2

(
N∑
j=1

ξµj )2 ≥ δ1

]
+ P

[
−BN

N∑
k=2

M∑
µ=2

ξµ1 ξ
µ
k ≥ δ2

]
,

with δ1 and δ2 strictly positive to be chosen later on and δ = δ1 +δ2 such that AN−δ > 0.
Note that, no matter whether M = cN/ logN or M = cN/

√
logN , M satisfies the

conditions on k in Theorem 4.1, if we set n = N .
For the first term, we have

P[
a

N2

N∑
j=2

M∑
µ1=2

N∑
k=2
k 6=j

M∑
µ2=2
µ2 6=µ1

ξµ1

1 ξµ1

j ξ
µ2

j ξ
µ2

k ≥ AN−δ] = P[
a

N2

N∑
j=2

M∑
µ1=2

N∑
k=2
k 6=j

M∑
µ2=2
µ2 6=µ1

ξµ1

j ξ
µ2

j ξ
µ2

k ≥ AN−δ],
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and we apply Theorem 4.1 in the next Section to get

P[
a

N2

N∑
j=2

M∑
µ1=2

N∑
k=2
k 6=j

M∑
µ2=2
µ2 6=µ1

ξµ1

j ξ
µ2

j ξ
µ2

k ≥ AN − δ] ≤ exp(− N2

2M2
(
AN − δ

a
)2(1 + εN)),

where εN → 0 as N → +∞.
For the second term, we can prove as in the second part that we can find δ1 = O(M

N
) and

a constant c1 > 0 such that

P[
a

N2

M∑
µ=2

(
N∑
j=1

ξµj )2 ≥ δ1] ≤ exp(−c1M).

For the third term, the exponential Markov inequality together with

E
[
etξ

µ
i

]
= cosh(t) ≤ et

2/2

gives

P[−BN

N∑
k=2

M∑
µ=2

ξµ1 ξ
µ
k ≥ δ2] ≤ exp(− δ2

2

2BN
2(M − 1)(N − 1)

)

The important fact is that for a = 1/2, BN is of order M/N2, while for a 6= 1/2, BN is of
order 1/N . We will now treat the two cases separately.

• If a = 1/2, we get from the preceding estimates

P[T1(ξ1) 6= ξ1
1 ] ≤ e−

N2

2M2 ((1−2δ)2+O(M
N

))(1+εN ) + e−c1M + e−
2
9
δ2

2 N3

M3 (1+ε′N )

If we choose M = c N√
2 logN

, δ2 = (logN)−1/8, then we get

P[T (ξ1) 6= ξ1] ≤ Ne−
1
c

logN(1+rN ) +Ne−c1M +Ne−c2(logN)5/4

,

with c1, c2 > 0 and rN such that rN → 0 as N → +∞. This implies that P [T (ξ1) 6= ξ1]→
0 as N → +∞ if c < 1.

• If a ∈ (0, 1 ) \ {1
2
}, we get from the preceding estimations

P[T1(ξ1) 6= ξ1
1 ] ≤ e−

N2

2M2 (
1−a−δ2

a
+O(M

N
))2(1+εN ) + e−c1M + e

− 1
2(1−2a)2

δ2
2 N
M

(1+ε′N )
(8)

The third summand is the dominating term in (8). Therefore

P[T (ξ1) 6= ξ1] ≤ Ne
− 1

2(1−2a)2
δ2

2 N
M

(1+r′N )
,

with r′N such that r′N → 0 as N → +∞. This implies that

P[T (ξ1) 6= ξ1]→ 0 as N → +∞,

if M = c3N/ logN and c3 <
δ2

2

2(1−2a)2 . Taking into account the constraint δ2 < 1−a+O(M
N

),

we can choose any c3 <
(1−a)2

2(1−2a)2 for N large enough. �
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4. A useful moderate deviations result

In order to present a unifying framework for both applications in Sections 2 and 3, let us
introduce an array of i.i.d. binary random variables (Aji ), i = 1, . . . , n, j = 1, . . . k with

P(Aji = 1) = P(Aji = −1) =
1

2
for all i, j.

The quantity of interest is

Ξn :=
n∑

i1=1

n∑
i2=1
i2 6=i1

k∑
j1=1

k∑
j2=1
j2 6=j1

Aj1i1A
j1
i2
Aj2i2 .

Note that

E[Ξn] = 0 for all n.

We analyze the moderate deviations of Ξn on the scale 1
n2 , i.e., we consider

Xn :=
1

n2
Ξn.

Note that the scale for a Law of Large Numbers and hence for a large deviation principle
is 1

n2k2 , while a Central Limit Theorem for Ξn holds on a scale 1
nk

(cf. [13]). Hence we
are genuinely in a moderate deviations regime as long as k = o(n). Presumably, the
techniques presented here will also be sufficient to analyze the moderate deviations of Ξn

on other scales, but this is not needed for the applications presented above. In fact, we
shall prove the following result.

Theorem 4.1. For Xn defined as above and k ≥ nβ for some 14
15
< β < 1, but k = o(n),

and all γ > 0, the following moderate deviations principle holds true

lim
n→∞

k2

n2
log P[Xn ≥ γ] = −γ

2

2

In particular, we obtain that for n large enough,

P[Xn ≥ γ] ≤ 2 e−
γ2

2
n2

k2 (9)

Remarks 4.2. • Note that the moderate deviations principle in Theorem 4.1 is the
same as for a sum n2k2 independent random variables scaled by a factor 1/n2. In
this respect, the correlation of the summands in Ξn is relatively weak.
• For k too small the estimate in (9) in Theorem 4.1 is certainly wrong. For example,

it was shown by van der Hofstad and Klok [20] that for k = 2 the speed of

convergence is O(e−cn) for some constant c > 0 rather than O(e−cn
2
). This could

also be expected, since for k = 2, Ξn is close to a U-statistics and we are in a large
deviations regime. Is is well known that for U-statistics the speed of convergence
in the large deviations principle is the number of free variables, hence n rather
than n2 (see e.g. [16]). An interesting open question would therefore be to find
an optimal bound on β that guarantees that the estimates of Theorem 4.1 and
Lemma 4.3 below remain true. In the context of this paper we did not bother
much about such an estimate, since in our applications k are always of the order
k = κn√

logn
for some κ > 0, and then the estimates of Theorem 4.1 are certainly

true.

The proof of Theorem 4.1 relies on the following lemma.
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Lemma 4.3. For p = O(n
2

k2 ) an even integer and k ≥ nβ for some β > 14
15

, but k = o(n),
it holds

E[(
1

n2

n∑
i1=1

n∑
i2=1
i2 6=i1

k∑
j1=1

k∑
j2=1
j2 6=j1

Aj1i1A
j1
i2
Aj2i2 )p] =

p!

2p/2(p/2)!

kp

np
(1 + εn,p), (10)

where limn→∞ εn,p = 0.

Proof. The sum

Ξn =
n∑

i1=1

n∑
i2=1
i2 6=i1

k∑
j1=1

k∑
j2=1
j2 6=j1

Aj1i1A
j1
i2
Aj2i2

can be written as
Ξn =

∑
a∈A

Ya,

where

A = {a = (i1, i2, j1, j2) ∈ {1, . . . , n}×{1, . . . , n}×{1, . . . , k}×{1, . . . , k}, i1 6= i2, j1 6= j2}
and

Ya = Aj1i1A
j1
i2
Aj2i2

(these Y ′s should, of course, not be confused with those occurring in the introduction).
Then

(Ξn)p =
∑

a1,··· ,ap∈A

Ya1 . . . Yap .

Now suppose that p is even. Then

E[Ya1 · · ·Yap ] = 1,

if and only if all the Aji appear in the product with an even exponent, and

E[Ya1 · · ·Yap ] = 0

in all other cases.
We will show that the dominating term of E[(Ξn)p] (in n and k) corresponds to the cases
where the indices a1, . . . , ap are themselves paired. As there are p!

2p/2(p/2)!
many pairings of

1, . . . , p and each of the ai’s can be taken from A, a set of size (slightly less than) n2k2,
we have that the total contribution of terms stemming from paired indices a1, . . . , ap is
(less than)

p!

2p/2(p/2)!
kpnp.

However, also other terms add to this sum, which is to say: the Aji can occur in pairs, even
though the Ya are not paired. One simple example for p = 4 is the following collection of
a′is:

a1 = (1, 2, 1, 2), a2 = (1, 2, 1, 3), a3 = (1, 2, 4, 2), a4 = (1, 2, 4, 3).

However, for such cases there are additional constraints on the i and j, and it will turn
out that their contribution is of lower order.
For Ya = Aj1i1A

j1
i2
Aj2i2 and Ya′ = A

j′1
i′1
A
j′1
i′2
A
j′2
i′2

, we distinguish 3 types of partial or total pairings

between these two terms :

(1) i1 = i′1, i2 = i′2, j1 = j′1 and j2 = j′2. This is the case of a total pairing, i.e. Ya and
Ya′ coincide.
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(2) The second type consists of partial pairings where two variables Aji of Ya are paired
respectively with two variables of Ya′ . This can occur under one of the following
constraints :
- i1 = i′1, i2 = i′2, j1 = j′1,
- i1 = i′2, i2 = i′1, j1 = j′1,
- i1 = i′2, i2 = i′1, j1 = j′2 and j2 = j′1,
- i2 = i′2, j1 = j′1 and j2 = j′2,
- i2 = i′2, j1 = j′2 and j2 = j′1.

(3) The third type consists of partial pairings where a single variable Aji in the product
constituting Ya is paired with one variable of Ya′ . This can occur only under a
constraint of the form: ie = i′f , and jg = j′h, where e, f, g, h ∈ {1, 2}. More
precisely, the nine possible cases which produce such a pairing are :
- i1 = i′1, j1 = j′1,
- i1 = i′2, j1 = j′1,
- i1 = i′2, j1 = j′2,
- i2 = i′1, j1 = j′1,
- i2 = i′2, j1 = j′1,
- i2 = i′2, j1 = j′2,
- i2 = i′1, j2 = j′1,
- i2 = i′2, j2 = j′1,
- i2 = i′2, j2 = j′2.

Now consider (Ξn)p. As Ξn consists of two sums with indices in {1, . . . , n} and two sums
with indices in {1, . . . , k} the p′th power (Ξn)p consists of 2p sums with indices varying
from 1 to n and 2p sums with indices varying from 1 to k. In order to give a non-zero
contribution to the expectation these sums have to be at least partially overlapping. But,
if the variables Ya are partially or totally paired, this reduces the number of such sums.
More precisely, we have

E[(Ξn)p] ≤
∑

p1,p2,p3≥0,

3p1+2p2+p3= 3
2 p

N(p1, p2, p3) n2p−2p1−p2−p3 k2p−2p1−2p2−p3 , (11)

where pi is the number of pairings of type i (i = 1, 2, 3) and N(p1, p2, p3) is the number
of ways to pair the 3p variables Aji such that there are p1 pairings of the Ya’s of type
1, p2 pairings of the Ya’s of type 2 and p3 pairings of the Ya’s of type 3. Once p1, p2, p3

are fixed, the number of constraints implying equalities between different indices il and
different indices jl is known. Then, if we have bounds u(p1, p2, p3) and v(p1, p2, p3) for the
number of free sums from 1 to n and the number of free sums from 1 to k respectively,
N(p1, p2, p3) nu(p1,p2,p3) kv(p1,p2,p3) will bound the number of terms of type “(p1, p2, p3)”
appearing in E[(Ξn)p].
In fact, we can prove that nu(p1,p2,p3) kv(p1,p2,p3) ≤ n2p−2p1−p2−p3 k2p−2p1−2p2−p3 . Indeed,
there are 3p random variables Aji in each summand of (Ξn)p. These variables have to be

organized in such a way that each Aji occurs an even number of times. These pairings of

the Aji can be represented as 3p/2 ”edges” in a graph with vertices (i, j). By definition
of the different types,

• For each pairing of type 1, we have 3 edges – we connect (i1, j1) to (i′1, j
′
1), (i2, j1)

to (i′2, j
′
1), and (i2, j2) to (i′2, j

′
2).

• For a pairing of type 2, there are 2 edges (for instance, in the first case, (i1, j1) is
connected to (i′1, j

′
1) and (i2, j1) to (i′2, j

′
1)).
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• For a pairing of type 3, there is one edge.

Since in total there are 3
2
p pairings, we obtain

3p1 + 2p2 + p3 = 3/2p.

Moreover, each pairing eliminates one of the sums : for a pairing of type 1, the condition
i′1 = i1 eliminates the summation over i′1 (the index i1 runs from 1 to n, but i′1 then is
fixed). Similarly, in the same case, the sums over i′2, j

′
1 and j′2 can be eliminated.

For a pairing of type 2, at least three sums can be eliminated :
(a) one sum over an index ”i” and two sums over indices ”j”,
or
(b) two sums over indices ”i” and one sum over an index ”j”,
or
(c) two sums over indices ”i” and two sums over indices ”j”.
Let p2,l for l ∈ {a, b, c} the number of pairings of the three different cases (a), (b), (c),
respectively. Trivially p2 = p2,a + p2,b + p2,c.
For a pairing of type 3, one sum over an index ”i” and one sum over an index ”j”
disappear.
Following these lines, the number of summations over indices “i” (running from 1 to n),
which is a priori 2p in (Ξn)p becomes 2p− 2p1− p2,a− 2p2,b− 2p2,c− p3. In the same way,
the number of summations over indices ”j” (running from 1 to k) is reduced from 2p to
2p− 2p1 − 2p2,a − p2,b − 2p2,c − p3. Since k ≤ n, we have that

n−2p2,bk−p2,b ≤ n−p2,bk−2p2,b

which explains the bound n2p−2p1−p2−p3k2p−2p1−2p2−p3 in (11).
Now one checks that the dominating term (in n and k) in (11) is obtained by setting
p1 = p

2
and p2 = p3 = 0. One then obtains terms of order O(npkp) (and this is the only

way to obtain terms of that size). We can therefore estimate the expectation of (Ξn)p by

E[(Ξn)p] ≤ p!

2p/2(p/2)!
kpnp(1 + εn,p),

with

εn,p =
∑

p1,p2,p3≥0,p1≤
p
2−2,

3p1+2p2+p3= 3
2 p

2p/2(p/2)!

p!
N(p1, p2, p3) np−2p1−p2−p3 kp−2p1−2p2−p3

≤
p/2−2∑
p1=0

(
p

2p1

)
(2p1)!

2p1p1!

2p/2(p/2)!

p!

∑
p2,p3≥0,

3p1+2p2+p3= 3
2 p

N ′(p2, p3) n−p/2+p1+p2 k−p/2+p1

In the latter inequality,
(
p

2p1

)
counts the number of possible choices of 2p1 indices amongst

p and we use the fact that there are (2p1)!
2p1p1!

many pairings of 1, . . . , 2p1. Moreover, we

exploit

p3 =
3

2
p− 3p1 − 2p2

to simplify the exponents of n and k. Now, if there are p1 pairings of type 1, the remaining
q := p − 2p1 factors Ya have to be such that all Aji composing their product are paired.
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The factor N ′(p2, p3) is the number of ways to pair these 3q variables Aji with p2 pairings
of the Ya’s of type 2 and p3 pairings of type 3. A trivial bound for N ′(p2, p3) is

N ′(p2, p3) ≤ (3q)3q.

Moreover p2 ≤ q/2, which implies

n−p/2+p1+p2 k−p/2+p1 ≤ k−q/2.

Putting things together and taking into account that there are at most p3 possible choices
for p1, p2, p3, this means

εn,p ≤ p3 max
p1=0,...,p/2−2

2p/2−p1
(p/2)!

(p− 2p1)!p1!

(
(p− 2p1)3

√
k

)p−2p1

.

Estimating

(p/2)!

(p− 2p1)!p1!
≤ (p/2)!

p1!
≤ (

p

2
)p/2−p1,

implies

εn,p ≤ p3 max
p1=0,...,p/2−2

(
√
p

(p− 2p1)3

√
k

)p−2p1

= p3 max
u=4,6,8...,p

(u3

√
p

k
)u.

Now, the function g : u 7→ exp(u log(u3
√

p
k
)) is strictly decreasing on the interval

[4, 1
e
(k
p
)1/6]. If k ≥ nβ for some β in (14

15
, 1) and p = O(n

2

k2 ), then 1
e
(k
p
)1/6 > p for n

large enough. Therefore,

max
u=4,6,8...,p

(u3

√
p

k
)u = g(4) = 412 p2

k2
,

and

εn,p ≤ 412 p5

k2
.

Therefore, εn,p → 0 as n goes to infinity, for p = O(n
2

k2 ) and k ≥ nβ for some β in

(14
15
, 1). �

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. For the upper bound, we apply a Chebyshev–Markov inequality
(with the increasing function x 7→ xp for an even p) together with a technique introduced

by Rio [46, page 44]. To this end recall that p = O(n
2

k2 ) and k ≥ nβ for some 14
15
< β < 1,

but k = o(n), such that we can apply the previous lemma. The announced inequality
yields for each γ > 0

P[Xn ≥ γ] ≤ γ−2pE[(Xn)2p]

≤ γ−2p (2p)!

2pp!

(
k

n

)2p

(1 + εn,2p) (12)
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where the first bound follows from a Chebyshev type inequality, while the second uses
Lemma 4.3. Now dividing the Stirling approximation for (2p)! by the Stirling approxima-
tion for p! we see that for large enough p:

(2p)!

2pp!
≈
(

2p
e

)2p√
2p

2p
(
p
e

)p√
p

=
√

2(2p/e)p. (13)

Inserting this into (12) we obtain

P[Xn ≥ γ] ≤ γ−2p
√

2(2p/e)p
(
k

n

)2p

(1 + εn,2p).

Putting

s :=
γ2

2

n2

k2
,

and taking logarithms we arrive at

s+ log P[Xn ≥ γ] ≤ s− p− p log

(
s

p

)
+ log

√
2 + log((1 + εn,2p))).

Now choose p = int(s + 1
2
), where int(x) is the integer part of x. Note that this choice

implies that indeed p = O(n
2

k2 ) and that

s ∈ [p− 1

2
, p+

1

2
].

Let

fp(s) := s− p− p log

(
s

p

)
.

One easily sees that fp is convex, f ′′p is decreasing on [p− 1
2
, p+ 1

2
] and therefore

fp(s) ≤ fp(p−
1

2
) = −1

2
+ p log(

2p

2p− 1
) ≤ −1

2
+ log 2,

the latter since x 7→ x log 2x
2x−1

is decreasing on [1,+∞).
Hence, we obtain

s+ log P[Xn ≥ γ] ≤ 3 log 2− 1

2
+ log((1 + εn,2p))),

which implies

P[Xn ≥ γ] ≤ 2 e−s (14)

for n large enough. By the definition of s, this is exactly what we claimed for the upper
bound.

The proof of the lower bound is based on the construction of a transformed measure,
similarly as in the proof of Lemma 2.3 in [29], by König and Mörters. We define for any
positive integer p the measure

dP̂2p(x) :=
x2p

Z2p

dPXn(x),

where Z2p =
∫
x2pdPXn . Moreover, define the random variable Wn = log(|Xn|/γ). We

first prove that for p = int(γ
2

2
n2

k2 ) and all ε > 0,

lim
n→+∞

P̂2p[|Wn| ≤ ε] = 1.
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To prove this, we consider an arbitrary ε > 0 and some small real α > 0 such that pα is
an integer. Then, by the Markov inequality, we get

P̂2p[Wn ≥ ε] = P̂2p[(Xn)2pα ≥ γ2pαe2pαε] ≤ γ−2pαe−2pαε Ê2p((Xn)2pα).

By definition of P̂2p, we have

Ê2p((Xn)2pα) =
Z2p(1+α)

Z2p

.

Using our Lemma 4.3 and Stirling’s formula, we see that

Ê2p((Xn)2pα) = (
2p

e
)αp (1 + α)(1+α)p(

k

n
)2αp (1 + rn),

where rn → 0 as n→ +∞. We deduce that

P̂2p[Wn ≥ ε] ≤ exp(αp(−1− 2ε+
1 + α

α
log(1 + α) + log(

2pk2

γ2n2
))) (1 + rn).

Choosing p =int(γ
2

2
n2

k2 ), we get for n large enough

P̂2p[Wn ≥ ε] ≤ C exp(αp(−1− 2ε+
1 + α

α
log(1 + α))),

for some constant C > 0. For a given ε > 0, we can choose α > 0 (depending on p) small
enough, such that the term inside the exponential is strictly negative and αp is an integer
going to infinity as n goes to infinity. For instance, we choose α =int(

√
p)/p for p large

enough. This implies that limn→∞ P̂2p[Wn ≥ ε] = 0.
Similarly, one shows that

lim
n→∞

P̂2p[Wn ≤ −ε] = 0.

Now, we can finish the proof of the lower bound. Let ε > 0 arbitrarily fixed. We have
then

P[Xn ≥ γe−ε] =
1

2
P[|Xn| ≥ γe−ε]

≥ 1

2
P[|Wn| ≤ ε]

=
1

2
Z2p Ê2p((Xn)−2p1{|Wn|≤ε})

≥ 1

2
Z2p e

−2pε γ−2p P̂2p[|Wn| ≤ ε].

Choosing p = int(γ
2

2
n2

k2 ) and using our Lemma 4.3 and Stirling’s formula to estimate Z2p,
we get

P[Xn ≥ γe−ε] ≥
√

2

2
e−

γ2

2
n2

k2 (1+2ε) P̂2p[|Wn| ≤ ε] (1 + rn),

from which we deduce

lim inf
n→∞

k2

n2
log P[Xn ≥ γe−ε] ≥ −γ

2

2
(1 + ε).

Since we can take ε > 0 arbitrarily small, we get the lower bound. �
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[34] M. Löwe, F. Vermet; The storage capacity of the Hopfield model and moderate deviations. Stat. &
Prob. Lett. 75, 237–248 (2005).
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