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Let a finite alphabet Ω. We consider a sequence of letters from Ω generated by a discrete time semi-Markov process {Z γ ; γ ∈ N}. We derive the probability of a word occurrence in the sequence. We also obtain results for the mean and variance of the number of overlapping occurrences of a word in a finite discrete time semi-Markov sequence of letters under certain conditions.

Introduction

Word occurrences in a sequence of letters are known to play an important role in molecular biology, in computer science, telecommunications and generally in applications of sequential analysis. Statistical and probabilistic properties of words have been studied when the underlying model is a bernoulli model and an homogeneous m-order Markov chain, m ∈ N, m ≥ 1 (N = {0, 1, 2, . . .}). An overview on these properties of words was recently given by Reinert et al. [START_REF] Reinert | Probabilistic and Statistical Properties of Finite Words in Finite Sequences[END_REF].

In this paper we shall give some results in a probabilistic framework when the underlying model is a discrete time semi-Markov (DTSM) process {Z γ ; γ ∈ N} with finite state space an alphabet Ω. Note that Discrete time semi-Markov processes are processes that generalize discrete time Markov chains and discrete time renewal processes. Under the Markovian hypothesis the distribution of the sojourn time in a state is geometrically distributed. In the semi-Markov case we allow arbitrarily distributed sojourn times in any state.

Recently, Barbu et al. [START_REF] Barbu | Discrete time semi-Markov processes for reliability and survival analysis[END_REF] studied a discrete time semi-Markov process {Z γ ; γ ∈ N} in order to derive some specific reliability measurements. Chryssaphinou et al. [START_REF] Chryssaphinou | On Discrete Time semi-Markov chains and applications in words occurrences[END_REF] defining the process {U γ ; γ ∈ N} to be the backward recurrence times of the DTSM process {Z γ ; γ ∈ N} studied the Markov process {(Z γ , U γ ); γ ∈ N}. As an application they considered a finite set of words W of equal length which are produced under the semi-Markovian hypothesis and focused on the waiting time for the first word occurrence from the set W in the semi-Markov sequence of letters. The time spent in the same state (that is, the number of occurrences of the same letter in succesion at the semi-Markov sequence) is included in the formation of the words. We clarify that one step transitions are not allowed from a state to itself in the embedded discrete time Markov chain.

Stefanov [START_REF] Stefanov | On Some Waiting Time Problems[END_REF], [START_REF] Stefanov | The intersite distances between pattern occurrences in strings generated by general discrete-and continuous-time models: an algorithmic approach[END_REF] studied waiting time problems for discrete time semi-Markov processes with finite number of states. However, the time spent in a state is not included in the formation of the words.

In this paper, we derive the probability of a word occurrence in the semi-Markov sequence when the time spent in a state is included in the formation of the words. This result generalizes the well known formula for the probability of a word occurrence in a Markovian sequence of letters, see [START_REF] Reinert | Probabilistic and Statistical Properties of Finite Words in Finite Sequences[END_REF].

Considering the number of overlapping occurrences of a word we obtain the mean number. The calculation of variance is achieved for the case of having a word which is not a run. The difficulty of the case of having a run arises from the following fact. It is well known that in the semi-Markov case the future depends both on the present state and on the time the process has been in that state. When a not run word occurs we know the backward recurrence time of the last letter of the word. When we have a run we don't have that information. Thus, the calculation of the corresponding covariances is restricted to the case of words which are not runs.

To illustrate our notations we use the DNA alphabet which is convenient. We note that this use does not mean that we examine a specific application of DNA sequences in this paper. However, it is well known that the study of occurrences of words is closely related to reliability problems, as well as to DNA problems. Thus, we conjecture that the theoretical results of this paper could be applied in such problems.

The paper is organized as follows: In section 1, we give the necessary notation for our DTSM model as well as notation relevant to word occurrences. We also present some theorems, which have been proved by Chryssaphinou et al. [START_REF] Chryssaphinou | On Discrete Time semi-Markov chains and applications in words occurrences[END_REF] concerning the Markov process {(Z γ , U γ ); γ ∈ N} and are used in order to prove the new results of this paper. In section 2, we derive the probability of a word occurrence in a DTSM model. We apply this result when the underlying model is a Markovian sequence and we get the expected formula. In section 3 we give explicit formulae for the mean and variance of the number of overlapping occurrences of a word in the discrete time semi-Markov sequence of letters under certain conditions.

Notation

The discrete time semi-Markov model

Let us consider a sequence of outcomes {Z γ ; γ ∈ N} generated by a semi-Markov chain with state space Ω = {α 1 , . . . , α }, 2 ≤ < ∞. It is α i = α j for all α i , α j ∈ Ω, i = j. We set S 0 = 0 and

S n+1 = inf{k > S n : Z k = Z S n }, n = 1, 2, . . . ,
provided that S n < ∞, the jump times of the process. The process {J n ; n ∈ N}, with J n = Z Sn , is the embedded Markov chain of the semi-Markov process. 

we obtain J 0 = A, S 0 = 0, J 1 = C, S 1 = 4, J 2 = A, S 2 = 6, J 3 = T, S 3 = 11, . . . .
The stochastic process {(J n , S n ); n ∈ N} is the associated Discrete Time Markov Renewal Process (DTMRP) of the semi-Markov chain {Z γ ; γ ∈ N}. We shall consider that {(J n , S n ); n ∈ N} is homogeneous with discrete time semi-Markov kernel q = {q(γ); γ ∈ N}, where q(γ) = (q(α, α , γ)) α,α ∈Ω and

q(α, α , γ) := IP(J n+1 = α , S n+1 -S n = γ | J n = α), ∀ n ∈ N, for γ = 1, 2, . . . . (1.1)
Moreover, q(α, α , 0) = 0 for every α, α ∈ Ω.

From the definition of our model we get that q(α, α, γ) = 0, for all α ∈ Ω, γ ∈ N.

The r-fold convolution of the semi-Markov kernel q of a DTMRP {(J n , S n ); n ∈ N} is

q (r) (α, α , γ) = IP(J r = α , S r = γ | J 0 = α), (1.2) 
for all α, α ∈ Ω, for all r = 1, 2, . . . and γ ∈ N. Moreover, q (0) (α, α , γ) = 1, for γ = 0 and α = α 0, elsewhere.

(

We let

ψ(α, α , γ) = γ r=0 q (r) (α, α , γ) , α, α ∈ Ω, γ ∈ N. (1.4)
We also consider the quantities

H(α, γ) = γ n=0 α ∈Ω q(α, α , n) and m α := γ≥0 [1 -H(α, γ)], ∀ α ∈ Ω, γ ∈ N (1.5)
which express the distribution function of the sojourn time in state α and the corresponding mean respectively.

Furthermore, Chryssaphinou et al. [START_REF] Chryssaphinou | On Discrete Time semi-Markov chains and applications in words occurrences[END_REF] defined {U γ ; γ ∈ N} the backward recurrence time for the semi-Markov process {Z γ ; γ ∈ N} by

U γ = γ -[sup{u < γ : Z u = Z γ } + 1].
(1.6) Generally, we make the convention that sup{u < γ :

Z u = Z γ } = -1 -U 0 for 0 ≤ γ < S 1 , γ ∈ N
and that for S 0 = 0 we set U 0 = 0. Generally, when observing a semi-Markov sequence at time 0, the variable U 0 could be not equal to 0. For example, if the Markov Renewal Process was a delayed process it would be U 0 = 0.

We note that if

Z γ-1 = Z γ then it is U γ = 0. Moreover if Z γ-1 = Z γ then U γ = U γ-1 + 1 for all γ ∈ N.
The following examples clarify the above definition for the backward recurrence time.

Example 1.2. Let Ω = {A, C, G, T }. For S 0 = 0, let the sequence of letters AAAACCAAAAAT GGT T A . . . . We see that

U 0 = 0, U 1 = 1, U 2 = 2, U 3 = 3, U 4 = 0, U 5 = 1, U 6 = 0, U 7 = 1, . . . . Example 1.3. Let Ω = {0, 1}. For S 0 = 0, let the sequence 00111010 . . . . It is U 0 = 0, U 1 = 1, U 2 = 0, U 3 = 1, U 4 = 2, U 5 = 0, U 6 = 0, U 7 = 0, . . . .
The stochastic process {(Z γ , U γ ); γ ∈ N} with state space Θ = ∪ α∈Ω Θα, where

Θ α := {(α, u) ∈ Ω × N : H(α, u) < 1} ∀ α ∈ Ω,
is a time homogeneous Markov process with transition probabilities p((α, u), (α , u )), (α, u), (α, u ) ∈ Θ. Its first order transition probabilities are given in the following theorem.

Theorem 1.4. (see [START_REF] Chryssaphinou | On Discrete Time semi-Markov chains and applications in words occurrences[END_REF]) The first order transition probabilities of the Markov chain

{(Z γ , U γ ); γ ∈ N} are p((α, u), (α , u )) =            q(α, α , u + 1) 1 -H(α, u) , if u = 0, I {α=α } [1 -H(α, u + 1)] 1 -H(α, u) , if u = u + 1, 0, elsewhere for every (α, u), (α , u ) ∈ Θ.
Theorem 1.5. (see [START_REF] Chryssaphinou | On Discrete Time semi-Markov chains and applications in words occurrences[END_REF]) The transition probabilities of γ order, γ = 2, 3, . . . , are

pγ ((α, u), (α , u )) = I {γ=u -u} I {α=α } 1 -H ( α , u ) 1 -H(α, u) + I {γ≥u +1} c∈Ω γ-u n=1 q(α, c, n + u)ψ(c, α , γ -u -n)[1 -H(α , u )] 1 -H(α, u) , for all (α, u), (α, u ) ∈ Θ.
Moreover, for all (α, u), (α , u ) ∈ Θ, we denote

p0 ((α, u), (α , u )) = I {(α,u)=(α ,u )} and p1 ((α, u), (α , u )) = p((α, u), (α , u )). (1.7)
Finally, denoting by µ α the mean recurrence time of the state α for the semi-Markov process {Z γ ; γ ∈ N} the following theorem is valid.

Theorem 1.6. (see [START_REF] Chryssaphinou | On Discrete Time semi-Markov chains and applications in words occurrences[END_REF]) Let the DTMRP {(J n , S n ); n ∈ N} with finite state space Ω be irreducible, aperiodic and m α < ∞ for all α ∈ Ω. Then the function π(α, u)

:= 1 -H(α, u) µ α , (α, u) ∈ Θ is a stationary probability distribution for the Markov process {(Z γ , U γ ); γ ∈ N}.

The words

Let us call the set Ω = {α 1 , . . . , α } alphabet and its elements letters. A word over the alphabet Ω is a finite sequence of elements of Ω. Following the notation of Lothaire [START_REF] Lothaire | Combinatorics on Words[END_REF] we define the set of words over the alphabet Ω

Ω + = {w : w = c 1 . . . c k , c 1 , . . . , c k ∈ Ω, k ∈ N, 1 ≤ k < ∞}. (1.8)
Note that k denotes the length of word w ∈ Ω + .

Let w ∈ Ω + . If w = b . . . b k that is a run of b's of length k we shall use this presentation w = b (k) , b ∈ Ω, k ∈ N, 1 ≤ k < ∞ (1.9)
If w is not a run, it can be obtained by concatenating words which are runs. That is word w of length k begins with a run in b 1 's of length k 1 followed by another run in b 2 's of length k 2 and at the end there is a run of b η 's of length k η . The variable η, η ∈ N, 1 ≤ η ≤ k, indicates the number of letter renewals in word w. Therefore every word w with η > 1 "contains" η word-runs:

w = w(1)w(2) . . . w(η), (1.10) where w(1) := b 1 (k1) , w(2) := b 2 (k2) , . . . , w(η) := b η (kη)
. Thus, in the sequel, we shall use the following presentation of a word w from the set Ω + , which will be proved useful in the study of word occurrences in a discrete time semi-Markov sequence of letters. We write

w = b 1 (k 1 ) . . . b η (k η ) , (1.11) where b 1 , . . . , b η ∈ Ω, b j = b j+1 , for j = 1, . . . , η -1 and k 1 + . . . + k η = k, where k 1 , . . . , k η ∈ N.
For example, let Ω = {A, C, G, T } and the word w = AGGT AAA, written in the common presentation, where k = 7. According to (1.11) it is η = 4 and w = A (1) G (2) T (1) A (3) , with

w(1) = A (1) , b 1 = A, k 1 = 1, w(2) = G (2) , b 2 = G, k 2 = 2, w(3) = T (1) , b 3 = T, k 3 = 1, w(4) = A (3) , b 4 = A, k 4 = 3. Considering a word w ∈ Ω + , let [w] γ = c k-γ+1 . . . c k a suffix of the word w of length γ for all γ = 1, . . . , k. Note that [w] 1 = b k and [w] k = w. Obviously, [w] γ ∈ Ω + . Therefore, using the representation (1.11) of a word, it is [w] γ =    b ζ-1 (k * γ ) b ζ (k ζ ) . . . b η (k η ) , for γ > k η b η (γ) , elsewhere, where ζ = min{j : k j + . . . + k η ≤ γ} and k * γ + k ζ + . . . + k η = γ with 0 ≤ k * γ < k ζ-1 . For example considering the word w = A (1) G (2) T (1) A (3) , for γ = 5 it is ζ = 3 and k * γ = γ -(k 3 + k 4 ) = 5 -(1 + 3) = 1. Thus we have [w] 5 = G (1) T (1) A (3) .
Guibas and Odlyzko [START_REF] Guibas | String Overlaps, pattern matching and nontransitive games[END_REF] gave the following useful definition concerning the periods of a word. Let a word w = c 1 . . . c k written in the common presentation. The number ρ, ρ ∈ {1, . . . , k -1}, is called a period of word w if c i = c i+ρ , for all i = 1, . . . , k -ρ. The set of all periods of w is denoted P(w). For all w ∈ Ω + we have

The probability of a word occurrence in the semi-Markov sequence of letters

IP(E w;γ ) =        0, for γ < k -1 (α,u)∈Θ IP(E w;γ | Z 0 = α, U 0 = u)IP(Z 0 = α, U 0 = u), for γ ≥ k -1. (2.
3)

The following remarks are useful in our study.

Remark 2.1. Let a word w ∈ Ω + , γ ≥ k -1. Recall from (1.10) that any word w is a concatenation of η words, which are runs. Thus, let us study at first a word w which is a run. If w is a run, where η = 1, it is w = w(1) = b (k) . From the definition of the backward recurrence time (1.6), since

Z γ-k+1 = Z γ-k+2 = . . . = Z γ it is U γ-k+2 = U γ-k+1 + 1, U γ-k+3 = U γ-k+2 + 1, . . . , U γ = U γ-1 + 1.
Since we don't know the state of Z γ-k , we have to consider all the possibilities for the U γ-k+1 , which may be 0, 1, 2, . . . thus

E w;γ = ∪ s≥0 E w;γ (s), (2.4) 
where

E w;γ (s) := {Z γ-k+1 = b, U γ-k+1 = s, . . . , Z γ = b, U γ = s + k -1}, s ∈ N, γ ≥ k -1. (2.5)
Now, if w is not a run it is η > 1. According to (1.10) it is w = w(1) . . . w(η) where w(1), . . . , w(η) are runs. Thus

E w;γ = E w(1);γ-k+k 1 ∩ E w(2);γ-k+k 1 +k 2 ∩ . . . ∩ E w(η);γ .
For the second run, since

Z γ-k+k 1 = b 1 and Z γ-k+k 1 +1 = b 2 , where b 1 = b 2 it is Z γ-k+k 1 = Z γ-k+k 1 +1 .
Using the definition of the backward recurrence time (1.6), it is

U γ-k+k 1 +1 = 0. Similarly U γ-k+k 1 +k 2 +1 = 0, . . . , U γ-k+k 1 +...k η-1 +1 = 0.
But for the first run we don't know the state of Z γ-k . Therefore, considering (2.4) and (2.5) we write

E w;γ = [∪ s≥0 E w(1);γ-k+k 1 (s)] ∩ E w(2);γ-k+k 1 +k 2 (0) ∩ . . . ∩ E w(η);γ (0), (2.6) 
where, for all j = 1, . . . , η,

E w(j);γ (s) := {Z γ-k j +1 = b j , U γ-k j +1 = s, . . . , Z γ = b j , U γ = s + k j -1}, s ∈ N, γ ≥ k j -1. (2.7) Remark 2.2. Let w = b (k) a run of b of length k. Using (2.5) it is IP(E w;γ (s)) = IP(Z γ-k+1 = b, U γ-k+1 = s, . . . , Z γ = b, U γ = s + k -1). (2.8) If (b, s + k -1) ∈ Θ then (b, s + k -1 -κ) ∈ Θ, for all κ = 1, . . . , k -1, where s ∈ N.
Let IP(Z γ-k+1 = b, U γ-k+1 = s) = 0. Since the process {(Z γ , U γ ), γ ∈ N} with state space Θ is a time homogeneous Markov process with first order transition probabilities given by theorem 1.4, for (b, s+k -1) ∈ Θ we have

IP(E w;γ (s)) = IP(Z γ-k+1 = b, U γ-k+1 = s)p((b, s), (b, s + 1)) . . . p((b, s + k -2), (b, s + k -1)) = = IP(Z γ-k+1 = b, U γ-k+1 = s) 1 -H(b, s + 1) 1 -H(b, s) . . . 1 -H(b, s + k -1) 1 -H(b, s + k -2) = IP(Z γ-k+1 = b, U γ-k+1 = s) 1 -H(b, s + k -1) 1 -H(b, s) .
Therefore, from the above equation we have that the condition (b, s + k -1) ∈ Θ is necessary for IP(E w j ;γ (s)) to be positive.

Thus according to remarks 2.1 and 2.2, if η > 1 we shall consider words with (b 2 , k 2 -1), . . . , (b η , k η -1) ∈ Θ. Therefore we define the set of words Ω + (Θ) as follows

Ω + (Θ) := {w ∈ Ω + : η = 1 or (η > 1 and (b 2 , k 2 -1), . . . , (b η , k η -1) ∈ Θ)}.
(2.9)

The following lemma is useful in proving our main result.

Lemma 2.3. Let w ∈ Ω + (Θ) . The probability IP(E w;r+γ | Z r = α, U r = u) is independent of r for all (α, u) ∈ Θ and γ ≥ k -1. Proof. Assume r ∈ N such that IP(Z r = α, U r = u) > 0. I. If w is a run, that is w = b (k) and η = 1. Using remark 2.1 it is IP(E w;r+γ | Z r = α, U r = u) = s≥0 IP(E w;r+γ (s) | Z r = α, U r = u)
Since the process {(Z γ , U γ ), γ ∈ N} is a time homogeneous with transition probabilities p(•, •), we have

IP(E w;r+γ | Z r = α, U r = u) = = s≥0 s: (b,s+k-1)∈Θ pγ-k+1 ((α, u), (b, s))p((b, s), (b, s + 1)) . . . p((b, s + k -2), (b, s + k -1)).
(2.10)

II. If w is not a run, that is w = b 1 (k1) . . . b η (kη) , η > 1, using remark 2.1 we have IP(E w;r+γ | Z r = α, U r = u) = = s≥0 IP([E w(1);r+γ-k+k 1 (s) ∩ E w(2);r+γ-k+k 1 +k 2 (0) ∩ . . . ∩ E w(η);r+γ (0)] | Z r = α, U r = u).
Since the process {(Z γ , U γ ), γ ∈ N} is a time homogeneous with transition probabilities p(•, •), we have

IP(E w;r+γ | Z r = α, U r = u) = = s≥0 s: (b 1 ,s+k 1 -1) ∈Θ pγ-k+1 ((α, u), (b 1 , s))p((b 1 , s), (b 1 , s + 1)) . . . p((b 1 , s + k 1 -2), (b 1 , s + k 1 -1)) p((b 1 , s + k 1 -1), (b 2 , 0))p((b 2 , 0), (b 2 , 1)) . . . p((b 2 , k 2 -2), (b 2 , k 2 -1)) (2.11) . . . p((b η-1 , k η-1 -1), (b η , 0))p((b η , 0), (b η , 1)) . . . p((b η , k η -2), (b η , k η -1)).
Since the above probabilities are independent of r we shall write

f (α,u) (w; γ) := IP(E w;r+γ | Z r = α, U r = u), ∀ (α, u) ∈ Θ, w ∈ Ω + (Θ) and γ ≥ k -1, ∀ r ∈ N.
(2.12) Now, we proceed to our main result.

Theorem 2.4. Let w ∈ Ω + (Θ) , (α, u) ∈ Θ and γ ≥ k -1. It is f (α,u) (w; γ) =                                            I {α=b} [1 -H(b, u + γ)]+ + c∈Ω γ-k s=0 γ-k+1-s n=1 q(α, c, n + u)ψ(c, b, γ -k + 1 -s -n) [1 -H(b, s + k -1)] σ(w) 1 -H(α, u) , for η = 1 I {α=b1} q(b 1 , b 2 , γ -k + 1 + k 1 + u)+ + c∈Ω γ-k s=0 γ-k+1-s n=1 q(α, c, n + u)ψ(c, b 1 , γ -k + 1 -s -n) q(b 1 , b 2 , s + k 1 ) σ(w) 1 -H(α, u) , for η > 1,
where

σ(w) =    q(b 2 , b 3 , k 2 ) • . . . • q(b η-1 , b η , k η-1 ) • [1 -H(b η , k η -1)], for η > 2 1 -H(b 2 , k 2 -1), for η = 2 1,
for η = 1.

(2.13)

Proof. We consider the cases for η = 1 and η > 1 separately. We have

I. For η = 1 it is w = b (k)
. Using (2.10) and applying theorem 1.4, which gives the transition probabilities of first order of the homogeneous Markov process {(Z γ , U γ ); γ ∈ N} with state space Θ, we have

f (a,u) (w; γ) = s≥0 pγ-k+1 ((α, u), (b, s)) 1 -H(b, s + 1) 1 -H(b, s) . . . 1 -H(b, s + k -1) 1 -H(b, s + k -2) = s≥0 pγ-k+1 ((α, u), (b, s)) 1 -H(b, s + k -1) 1 -H(b, s) . ( 2 

.14)

The transition probabilities of γ order are given by theorem 1.5. Therefore,

f (α,u) (w; γ) = s≥0 [I {α=b} I γ-k+1=s-u} 1 -H(b, s) 1 -H(α, u) + I {γ-k≥s} c∈Ω γ-k+1-s n=1 q(α, c, n + u)ψ(c, b, γ -k + 1 -s -n)[1 -H(b, s)] 1 -H(α, u) ] 1 -H(b, s + k -1) 1 -H(b, s) = I {α=b} 1 -H(b, u + γ) 1 -H(α, u) + + c∈Ω γ-k s=0 γ-k+1-s n=1 q(α, c, n + u)ψ(c, b, γ -k + 1 -s -n)[1 -H(b, s + k -1)]
1 -H(α, u) .

II. For η > 1 using (2.11) and applying theorem 1.4 we obtain the following.

f (α,u) (w; γ) = s≥0 pγ-k+1 ((α, u), (b 1 , s)) 1 -H(b 1 , s + 1) 1 -H(b 1 , s) . . . 1 -H(b 1 , s + k 1 -1) 1 -H(b 1 , s + k 1 -2) q(b 1 , b 2 , s + k 1 ) 1 -H(b 1 , s + k 1 -1) 1 -H(b 2 , 1) 1 -H(b 2 , 0) . . . 1 -H(b 2 , k 2 -1) 1 -H(b 2 , k 2 -2) . . . q(b η-1 , b η , k η-1 ) 1 -H(b η-1 , k η-1 -1) 1 -H(b η , 1) 1 -H(b η , 0) . . . 1 -H(b η , k η -1) 1 -H(b η , k η -2) .
Therefore,

f (α,u) (w; γ) = s≥0 pγ-k+1 ((α, u), (b 1 , s))q(b 1 , b 2 , s + k 1 )σ(w) 1 -H(b 1 , s) , (2.15)
where σ(w) is given by (2.13). Applying theorem 1.5 we get pγ-k+1 ((α, u),

(b 1 , s)) = I {α=b1} I {γ-k+1=s-u} 1 -H(b 1 , s) 1 -H(α, u) + I {0≤s≤γ-k} c∈Ω γ-k+1-s n=1 q(α, c, n + u)ψ(c, b 1 , γ -k + 1 -s -n)[1 -H(b 1 , s)] 1 -H(α, u) .
Therefore,

f (α,u) (w; γ) = I {α=b1} 1 -H(α, u -γ + k + 1) 1 -H(α, u) q(b 1 , b 2 , γ -k + 1 + k 1 + u)σ(w) 1 -H(b 1 , u -γ + k + 1) + + γ-k s=0 c∈Ω γ-k+1-s n=1 q(α, c, n + u)ψ(c, b 1 , γ -k + 1 -s -n)[1 -H(b 1 , s)] 1 -H(α, u) q(b 1 , b 2 , s + k 1 )σ(w) 1 -H(b 1 , s) = {I {α=b 1 } q(b 1 , b 2 , γ -k + 1 + k 1 + u)+ γ-k s=0 c∈Ω γ-k j +1-s n=1 q(α, c, n + u)ψ(c, b 1 , γ -k + 1 -s -n)q(b 1 , b 2 , s + k 1 )} σ(w) 1 -H(α, u)
and the proof is complete. Theorem 2.5. Let the DTMRP {(J n , S n ); n ∈ N} with finite state space Ω be irreducible, aperiodic and m α < ∞ for all α ∈ Ω. We assume that the homogeneous Markov chain

{(Z γ , U γ ), γ ∈ N} is stationary, that is IP(Z 0 = α, U 0 = u) = π(α, u) for all (α, u) ∈ Θ. Let w ∈ Ω + (Θ) then for all γ ≥ k -1, it is IP(E w;γ ) = π(w) =                    s≥k-1 [1 -H(b, s)] µ b σ(w), for η = 1 s≥k1 q(b 1 , b 2 , s) µ b1 σ(w), for η > 1.
(2.16)

Proof.

I. Let w be a run that is w = b (k) . Following analogous steps as for the proof of (2.14) we get that

IP(E w;γ ) = s≥0 IP(Z γ-k+1 = b, U γ-k+1 = s) 1 -H(b, s + k -1) 1 -H(b, s) Since the process {(Z γ , U γ ), γ ∈ N} is stationary it is IP(Z γ-k+1 = b, U γ-k+1 = s) = π(b, s). Using theorem 1.6 we obtain IP(E wj ;γ ) = s≥0 1 -H(b, s) µ b 1 -H(b, s + k -1) 1 -H(b, s) = s≥k-1 1 -H(b, s) µ b .
II. If w is not a run , that is w = w(1)w( 2) . . . w(η), η > 1, following analogous steps as for the proof of (2.15) we get

IP(E w;γ ) = s≥0 IP(Z γ-k+1 = b 1 , U γ-k+1 = s) q(b 1 , b 2 , s + k 1 )σ(w) 1 -H(b 1 , s) Since the process {(Z γ , U γ ), γ ∈ N} is stationary it is IP(Z γ-k+1 = b 1 , U γ-k+1 = s) = π(b 1 , s). Using theorem 1.6 we obtain IP(E w;γ ) = s≥0 1 -H(b 1 , s) µ b 1 q(b 1 , b 2 , s + k 1 )σ(w) 1 -H(b 1 , s) = s≥k 1 q(b 1 , b 2 , s) µ b 1 σ(w).
Remark 2.6. In order to clarify the above results notice the following.

Run: When a run w = b (k) occurs, the term [1 -H(b, k -1)] concerns the fact that a run of b's of length k occurs and we don't know what is the letter which appears after the last letter b of the word w. Moreover, the summation s≥k-1 is necessary because we do not know the letter which has appeared before the first letter b of the run. That is, because we do not know if this first letter b is a renewal letter. The following figure clarifies our remark for runs.

. . . . b . . . b . . . . ↑ k ↑ unknown unknown
Not run: When a word w = w(1)w(2) . . . w(η), η > 1, which is not a run, occurs the situation is analogous.

The term [1 -H(b η , k η -1)] which is included in the quantity σ(w) is about not knowing what is the letter which appears after the last letter b η of the word w (which is also the last letter of the run word w η ). However we know that the first letter of the run word w(η) is a renewal. The summation s≥k 1 concerns the fact that we do not know what is the letter which appears before the first letter of the word w (which is also the first letter of the run word w 1 ). On the other hand, we know what is the letter which comes after the last letter b 1 of the run word w(1). For the runs w(2), . . . , w(η) we know that their first letters are renewals. Thus the terms

q(b 2 , b 3 , k 2 ) • . . . • q(b η-1 , b η , k η-1
) appear in the quantity σ(w). The following figure clarifies our remark for not runs.

. . . . b 1 . . . b 1 b 2 . . . b 2 . . . b η . . . b η . . . . ↑ k 1 k 2 k η ↑ unknown unknown
Example 2.7. The Markov case.

We notice that if {Z γ ; γ ∈ N} is a Markov chain with transition probabilities p * (α, α ), α, α ∈ Ω, then it is a particular case of a DTMRP with semi-Markov kernel

q(α, α , γ) = (p * (α, α)) γ-1 p * (α, α ), if α = α and γ ∈ N, γ ≥ 1 0,
elsewhere.

(2.17)

Let us consider the case p * (α, α ) > 0, for all α, α ∈ Ω. Using (1.5) we have

H(α, γ) = γ n=0 α ∈Ω q(α, α , n) = γ n=1 α ∈Ω α =α (p * (α, α)) n-1 p * (α, α ) = γ n=1 (p * (α, α)) n-1 [1 -p * (α, α)] = γ-1 n=0 (p * (α, α)) n [1 -p * (α, α)] = 1 -(p * (α, α)) γ 1 -p * (α, α) [1 -p * (α, α)] = 1 -(p * (α, α)) γ .
(2.18)

It is H(α, γ) < 1 for all α ∈ Ω and all γ ∈ N.

m α = γ≥0 [1 -H(α, γ)] = γ≥0 (p * (α, α)) γ = 1 1 -p * (α, α) . (2.19)
It is m α < 1 for all α ∈ Ω. We observe that q(α, α , γ) > 0, for all α = α , γ > 0, which implies that the embedded Markov chain {J n ; n ∈ N} is irreducible and aperiodic.

We notice that under the conditions of theorem 2.5 we have

lim γ→∞ IP i (Z γ = α) = m α µ α (2.20)
(see [START_REF] Barbu | Discrete time semi-Markov processes for reliability and survival analysis[END_REF]). For p * (α, α ) > 0 the Markov chain {Z γ ; γ ∈ N} is irreducible and aperiodic with stationary distribution

π * (α) = m α µ α , α ∈ Ω.
Using (2.19) we have

µ α = 1 (1 -p * (α, α))π * (α)
, α ∈ Ω.

(2.21) Now, theorem 2.5 is written as follows.

For w = b (k) , w ∈ Ω + with η = 1 it is

π(w) = s≥k-1 [1 -H(b, s)] µ b = π * (b)[1 -p * (b, b)] s≥k j -1 (p * (b, b)) s = π * (b)(p * (b, b)) k-1 . (2.22) For w = w = b 1 (k 1 ) . . . b η (k η ) , : w ∈ Ω + with η > 1 it is π(w) = s≥k 1 q(b 1 , b 2 , s)σ(w) µ b 1 = π * (b 1 )[1 -p * (b 1 , b 1 )] s≥k 1 (p * (b 1 , b 1 )) s-1 p * (b 1 , b 2 )σ(w) = π * (b 1 )(p * (b 1 , b 1 )) k1-1 p * (b 1 , b 2 )σ(w), (2.23) 
where

σ(w) = (p * (b 2 , b 2 )) k 1 -1 p * (b 2 , b 3 ) . . . (p * (b η-1 , b η-1 )) k η-1 -1 p * (b η-1 , b η )(p * (b η , b η )) k η -1 . Relations (2.22
) and (2.23) were expected.

Remark 2.8. We note that σ(w) > 0 is a necessary condition for π(w) to be positive. We consider the cases I. For w = b (k) where η = 1 it is σ(w) = 1 > 0. Moreover the probability π(w) is positive if H(b, k -1) < 1.

In order to simplify our notation we set

S 1 := I {H(b,k-1)<1} I {η=1} . II. For w = b (k 1 ) 1 . . . b (k η ) η
where η > 1, according to (2.13) , σ(w) is positive if the following are valid

q(b 2 , b 3 , k 2 ) > 0, . . . , q(b η-1 , b η , k η-1 ) > 0, [1 -H(b η , k η -1)] > 0, for η > 2 and 1 -H(b 2 , k 2 -1) > 0, for η = 2.
(2.24)

We notice that the condition q(b j , b j+1 , k j ) > 0 implies the condition H(b j , k j -1) < 1, which means (b j , k j -1) ∈ Θ, j = 2, . . . , η -1. Moreover, in this case the probability π(w) is positive if there exists s, with s ≥ k 1 , such that q(b 1 , b 2 , s) > 0. Analogously, we set

S 2 := I {∃ s : s≥k 1 , q(b 1 ,b 2 ,s)>0} I {η>1} .
Therefore in the sequel, we shall consider the set of words W Ω,q := {w ∈ Ω + : σ(w) > 0, and S 1 + S 2 = 1}.

(2.25)

The number of overlapping occurrences

Let w ∈ W Ω,q of length k. The number of overlapping occurrences of w in the sequence Z 0 . . . Z n , n ∈ N is defined by

N (n) = n γ=k-1 E w;γ , n ≥ k -1. (3.1)
Reinert et al. [START_REF] Reinert | Probabilistic and Statistical Properties of Finite Words in Finite Sequences[END_REF] have called N (n) count of word w.

In this section we shall derive IE(N (n)) and Var (N (n)) under certain conditions.

The computation of IE(N (n)) is an immediate consequence of theorem 2.5 and relation (3.1). Hence we get the following. Theorem 3.1. Let the DTMRP {(J n , S n ); n ∈ N} with finite state space Ω be irreducible, aperiodic and m α < ∞ for all α ∈ Ω. We assume that the Markov chain

{(Z γ , U γ ), γ ∈ N} is stationary, that is IP(Z 0 = α, U 0 = u) = π(α, u). It is IE(N (n)) = (n -k + 2)π(w), ∀ w ∈ W Ω,q , n ∈ N, n ≥ k -1. (3.2)
In order to compute the variance of N (n), n ∈ N, n ≥ k -1 we need the probability IP(E w;r+γ | E w;r ), r ∈ N, γ ∈ N, γ ≥ 1 which is given in the following lemma. Lemma 3.2. For every w ∈ W Ω,q which is not a run and every γ ∈ N, γ ≥ 1 it is 

IP(E w;r+γ | E w;r ) = ψ(γ), ∀ r ∈ N, (3.3 
| [∪ s≥0 E w(1);r-k+k1 (s)] ∩ (E w(2);r-k+k1+k2 (0) ∩ . . . ∩ E w(η);r (0)).
The term E w(η);r (0) gives us the state of (Z, U ) at time r. Thus since the {(Z γ , U γ ); γ ∈ N} is an homogeneous Markov chain we get

• For γ < k the two occurrences happen when γ ∈ P(w), that is, there is an overlap of length k -γ.

Therefore it is

IP(E w;r+γ | E w;r ) = I {γ∈P(w)} IP(E [w]γ ;r+γ | Z r = b η , U r = k η -1).
• For γ ≥ k there is no overlap. Thus we get

IP(E w;r+γ | E w;r ) = IP(E w;r+γ | Z r = b η , U r = k η -1).
Using (2.12) the proof is complete.

Remark 3.3. Considering remark 2.1 we note that if w was a run we would'nt know the states of (Z, U ) at time r, r -1, . . . , r -k + 1. Thus an analogous lemma in this case could not be obtained.

We give now a theorem for the variance of the count of a word under certain conditions.

Theorem 3.4. Let the DTMRP {(J n , S n ); n ∈ N} with finite state space Ω be irreducible, aperiodic and m α < ∞ for all α ∈ Ω. We assume that the Markov chain

{(Z γ , U γ ), γ ∈ N} is stationary, that is IP(Z 0 = α, U 0 = u) = π(α, u), for all (α, u) ∈ Θ.
For all w ∈ W Ω,q , which is not a run and n ∈ N, n ≥ k - A note. As we mentioned above under the Markovian hypothesis the distribution of the sojourn time in a state is geometrically distributed. In the semi-Markov case we allow arbitrarily distributed sojourn times in any state. Under this general assumption our first aim was to derive the occurrence probability of a word as well as the mean and variance of the word count. According to our opinion, we believe that these results will be useful in generalizing further results which have been derived under the Markovian hypothesis.
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Example 1 . 1 .

 11 Let Ω = {A, C, G, T }. Considering the realization of the semi-Markov sequence AAAACCAAAAAT GGT T A . . . ,

  Let a word w ∈ Ω + . We shall say that the word w = c 1 . . . c k occurs at time γ in the semi-Markov sequence {Z γ ; γ ∈ N} if and only if Z γ-k+1 = c 1 , . . . , Z γ = c k . For every w ∈ Ω + and γ ∈ N let us consider the event E w;γ := {w occurs at γ} (2.1) and the associated random indicator E w;γ := I {w occurs at γ} (2.2)

1

 1 it isVar (N (n)) = (n -k + 2)π(w) 1 -(n -k + 2)π(w) + 2 γ∈P(w) (n -γ -k + 2)f (b η ,k η -1) ([w] γ ; γ)π(w) γ -k + 2)f (bη,kη-1) (w; γ)π(w).

(3. 5 )

 5 Proof. Let n ∈ N, n ≥ k -1. It is Var (N (n)) = Var ( w;r , E w;r+γ ).It is Var (Ew;γ ) = IP(E w;γ ) -[IP(E w;γ )]2 and cov (E w;r , E w;r+γ ) = IP(E w;r and E w;r+γ ) -IP(E w;r )IP(E w;r+γ ). Since the Markov chain {(Z γ , U γ ), γ ∈ N} is stationary, applying theorem 2.5, it is Var (E w;γ ) = π(w) -[π(w)] 2 and cov (E w;r , E w;r+γ ) = IP(E w;r and E w;r+γ ) -[π(w)] 2 . But IP(E w;r and E w;r+γ ) = IP(E w;r+γ | E w;r )IP(E w;r ) = ψ(γ)π(w), where ψ(γ) is given by lemma 3.2. Therefore, cov (E w;r , E w;r+γ) =            f (b η ,k η -1) ([w] γ ; γ)π(w) -[π(w)] 2 , for γ < k and γ ∈ P(w), -[π(w)] 2 ,for γ < k and γ / ∈ P(w),f (bη,kη-1) (w; γ)π(w) -[π(w)] 2 , for γ ≥ k. w;r , E w;r+γ ) = 2 γ∈P(w) (n -γ -k + 2){f (b η ,k η -1) ([w] γ ; γ)π(w) -[π(w)] 2 } + 2 γ<k γ / ∈P(w) (n -γ -k + 2){-[π(w)] 2 } + 2 n-k+1 γ=k (n -γ -k + 2){f (bη,kη-1) (w; γ)π(w) -[π(w)] 2 }. Therefore Var (N (n)) = n γ=k-1 π(w) -[π(w)] 2 + 2 γ∈P(w) (n -γ -k + 2)f (b η ,k η -1) ([w] γ ; γ)π(w) γ -k + 2)f (bη,kη-1) (w; γ)π(w) -2 n-k+1 γ=1 (n -γ -k + 2)[π(w)] 2 = (n -k + 2)π(w) 1 -(n -k + 2)π(w) + 2γ∈P(w) (n -γ -k + 2)f (b η ,k η -1) ([w] γ ; γ)π(w) γ -k + 2)f (bη,kη-1) (w; γ)π(w).

  Proof. Assume r ∈ N such that IP(E w;r ) > 0. Using remark 2.1 for η > 1 we have

	IP(E w;r+γ | E w;r ) = IP([∪ s≥0 E w(1);r+γ-k+k 1 (s)] ∩ (E w(2);r+γ-k+k 1 +k 2 (0) ∩ . . . ∩ E w(η);r+γ (0))

) where ψ(γ) = I {γ<k} I {γ∈P(w)} f (bη,kη-1) ([w] γ ; γ) + I {γ≥k} f (bη,kη-1) (w; γ).

(3.4) 
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