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Abstract. Service Oriented Computing is a paradigm for developing software systems as the composition of a number
of services. Services are loosely coupled entities, that can be dynamically published, discovered and invoked over a
network. The engineering of such systems presents novel challenges, mostly due to the dynamicity and distributed
nature of service-based applications. In this paper, we focus on the modelling of service orchestrations. We discuss the
relationship between two languages developed under the SENSORIA project: SRML as a high level modelling language
for Service Oriented Architectures, and STPOWLA as a process-oriented orchestration approach that separates core
business processes from system variability at the end-user’s level, where the focus is towards achieving business goals.
A fundamental challenge of software engineering is to correctly align business goals with IT strategy, and as such we
present an encoding of STPOWLA to SRML. This provides a formal framework for STPOWLA and also a separated
view of policies representing system variability that is not present in SRML.
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1. Introduction

Service Oriented Computing (SOC) is a paradigm for developing software systems as the composition of a number
of services. Services are loosely coupled entities that can be dynamically published, discovered and invoked over a
network. A service is an abstract resource whose invocation triggers a possibly interactive activity (i.e. a session) and
that provides some functionality meaningful from the perspective of the business logic [HA04]. A Service Oriented
Architecture (SOA) allows services with heterogeneous implementations to interact relying on the same middleware
infrastructure. Web Services and the Grid are the most popular implementations of SOA. Exposing software in this
way means that applications may outsource some functionalities and be dynamically assembled, leading to massively
distributed, interoperable and evolvable systems.

The engineering of service-oriented systems presents novel challenges, mostly due to this dynamicity [WBC+07].
In this paper we focus on the modelling of orchestrations. An orchestration is the description of the executable pattern
of service invocations/interactions to follow in order to achieve a business goal.

Considering this view, we encounter both: more typical Computer Science issues as well as a business oriented
perspective – each with their own challenges – but also a need to bridge the gap between the two. In the light of this,
we discuss the relationship between two modelling languages for service oriented systems developed in the context
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of SENSORIA, an IST-FET Integrated Project on Software Engineering for Service-Oriented Overlay Computers: the
Sensoria Reference Modelling Language (SRML) [FLB06, ABFL07] and STPOWLA: the Service-Targeted, Policy-
Oriented WorkfLow Approach [GMRMS07]. The former addresses the Computer Science needs of providing models
at a high level of abstraction but with the possibility of presenting quite refined descriptions. The latter is oriented
towards the business user. Their combined use provides an approach to bridge the gap between Computer Science and
Business needs.

SRML is a high-level modelling language for SOAs whose goal is “to provide a set of primitives that is expressive
enough to model applications in the service-oriented paradigm and simple enough to be formalised” [FLB06]. SRML
aims at representing the various foundational aspects of SOC (e.g. service composition, dynamic reconfiguration,
service level agreement, etc.) within one integrated formal framework. A declarative semantics has been provided
in [AF08, LFB07] that maps SRML to mathematical domains that make precise the meaning of the different constructs
made available in SRML. In particular, [AF08] provides a formal computational model for SRML which is being
mapped into a logic adapted from µUCTL, a formalism being developed within SENSORIA for supporting qualitative
analysis [GM05].

STPOWLA is an approach to process modelling for service-oriented systems. It has three ingredients: workflows
to express core processes, services to perform activities and policies to express variability. Workflows are expressed
using a graphical notation, such as in [GRM06c] or UML activity diagrams1. Policies can make short-lived changes
to a workflow instance, i.e. they last for the duration of the workflow instance and usually will be made during the
execution of the instance, rather than applied to the overall workflow model. STPOWLA allows for both functional and
non-functional changes to a workflow, the former have been introduced in [BGR08]. The non-functional changes are
called refinement and provide a means to select the most appropriate service based on the current environment when
a service is invoked. The functional changes are termed reconfiguration and are short lived structural changes to a
workflow instance.G2

Having considered the two languages in more detail, we can now add a few words to expand on the motivatation
why both are needed as a way to address the needs of the two communities mentioned above. One can say that SRMLis
complete in its expressive power with respect to the systems we intend to model. While expressivity is clearly an issue
to a Computer Scientist, usability is the more important factor for Business Analysts. STPOWLA addresses usability
partly in making use of graphical notations and more crucially in being modular in that the basic workflow and the
policies capturing variability are kept seperate while SRMLis essentially flat in that it merges both into the same
description.

The encoding of STPOWLA into SRML, on the one hand provides a formal framework to STPOWLA. Business
processes modelled in STPOWLA can be then represented as SRML models and either being analysed alone or as part
of more complex modules, where they are composed with other SRML models with heterogeneous implementations
(e.g. SRML models extracted from existing BPEL processes [BHLF07]).

A second reason for the encoding is providing a higher layer to the modelling of orchestrations in SRML that
includes a process-based approach to the definition of a workflow schedule, a separated view of policies, that had not
been yet considered in SRML, and the inter-relation between workflow and policies.

This paper extends on [BGR08] by introducing a mapping for the refinement aspects of STPOWLA and providing
more detail on the reconfiguration mapping to enhance clarity. Furthermore we consider an example for the use of
SRML and STPOWLA in combination based on an industrial case study from the SENSORIA project [sen]. Using the
example we present the envisaged methodology of using the two languages.

In this paper, we give an overview of the STPOWLA approach, including the extension for workflow reconfigura-
tions initially proposed in [BGR08] in section 2. We describe the main concepts of SRML, with respect to STPOWLA
in section 3. We then provide an encoding of basic workflow control flow constructs in section 4, and proceed to
describe the mapping of STPOWLA reconfiguration and refinement policies to SRML in section 5. We present the
forseen methodology for the combined use of STPOWLA and SRML in 6.1 by presenting a case study. Related work
and our position relative to these efforts in section 7 and a summary and conclusion in section 8 round the paper off.

2. Specifying and Reconfiguring StPowla Workflows

In this section, we give a brief introduction to the main concepts of STPOWLA, highlighting the motivation and then
focusing on workflows, and both refinement and reconfiguration policies.

1 http://www.agilemodeling.com/artifacts/activityDiagram.htm
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policyName
appliesTo task_id

when task_entry
do req(main, params, [])

Fig. 1. A STPOWLA task’s default policy.

2.1. Overview

STPOWLA has been designed with the business user in mind – typically businesses follow some business process
which is usually described as a workflow. However, the processes are often subject to temporary changes (for example
different procedures for holiday cover or large orders) as well as overarching rules applicable to all processes (for
example a travel policy requiring employees to travel 2nd class). Of course the tasks in the process need to be executed,
which is often done by automated procedures. With this in mind STPOWLA has three ingredients: workflows, policies
and SOA. Workflows specify core business processes, in which all task requirements are satisfied by services, that is a
service (possibly human) can be invoked to complete the task.

We model a workflow using a graphical notation presented in [GRM06c]. However, for the purpose of this paper
we also adapt the more concise textual grammar presented in [BGR08] which shows how complex processes can be
composed:

WF ::= start;P ; end root process
P ::= T simple task

| P ;P sequence
| λ?P : P condition and simple (XOR) join
| FJ(m, {P,B}, ..., {P,B}) split and complex (AND) join
| SP (P, ..., P ) strict preference
| RC(P, ..., P ) random choice
| Scope(P ) scope

Briefly, a workflow has a start and end node nesting the process. The simplest process consists of just one task, more
interesting processes contain operators that allow sequencing of processes, a conditional branching of the flow with a
simple join or a split into parallel processes with a complex merging operation. There are also operators to specify strict
preferences or random choice. A more formal description of the semantics of each construct is presented together with
with a description of the relevant SRML transition in section 4. We have mentioned in an earlier paper [GMRMS07]
that the choice of workflow notation in STPOWLA is essentially insignificant.

Policies are either Event-Condition-Action (ECA) rules (in which case they require a trigger), or goals (es-
sentially ECAs without triggers). The purpose of policies is to express system variability. Policies are written in
APPEL [RMTB05], a policy description language with formal semantics via a mapping to ∆DSTL [MRMS07,
MRMSon]. They are written by the end (business) user and are combined with the workflow at execution time. Poli-
cies can express refinement and reconfiguration and we will return our attention to each of these types in the next two
subsections. Generally policies have the following shape:

policyName
appliesTo task_id

when trigger
if condition
do action

Additionally to the user specified policies, each workflow task has a default policy as in Fig. 1. The semantics
of the req function are essentially to execute the processing of the task, as specified with functional requirements
described in the main argument, in accordance with invocation parameters in the second argument and keeping to
default SLR (Service Level Request) constraints in the third argument (that is no value is specified in the policy).

Workflows are executed by an enhanced workflow engine and at specific trigger points the policy engine is in-
voked; the policy engine will check for applicable policies and apply the relevant actions on the workflow. Clearly the
identification of a common set of triggers for ECA policies is of interest, as these present the interaction point between
the policies and the workflow at runtime. We have identified the following as valid triggers for reconfiguration policies
as this typeof policy can make changes to the workflow at large:
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Function Syntax Informal Description

req(action, [args], [SLR]) Request a service to fulfil action that satisfies Service Level Require-
ments SLR.

Table 1. APPEL policy: refinement action

• Workflow entry/success/failure/abort;
• Task entry/success/failure/abort;
• Service entry/success/failure.

Refinement policies are more local: they only influence the selection of the service for the task to be executed. Hence
the only trigger that needs to be considered for refinement policies is ‘Task entry’.

Note that in STPOWLA, we view services as a black box, i.e. they are invoked with the required data, but we cannot
intervene in their processing until they respond (or maybe time out).

2.2. Refining Tasks with Policies

Refinement policies in STPOWLA have been the focus of previous work [GMRMS07]. The overall idea is that policies2
can specify additional criteria on a service. In STPOWLA we refer to such extra requirements as Service Level Requests
(SLR) – in many ways they are similar to what one would understand as Service Level Agreements (SLA). The
similarities are focused on what is intended through them and the kind of issues that are expressed in these requests.
The overall aim of an SLR is that the chosen service provides the expected criteria; the criteria are often non-functional
attributes of a service. The main difference to SLAs is that no agreement has been found: there might not be a service
that fulfils the requested service levels, in which case negotiation or a suitable other technique needs to be applied to2
resolve the issue.

Action req is the essential bit of the Appel specialization to deal with selection and invocation of services. It is
generic, i.e. independent of the business domain.

Action req takes three arguments:

• the type of the service, expressing its basic functionality. By default it coincides with the name of the task, and is
denoted simply as main. Anyway, the type must be known in the domain description;

• the list of service parameters, in terms of the task parameters and attributes;
• the specification of the constraints on service selection: they express Service Level Agreements. In the default

policy the list of constraints is empty: any service of the required type will do.

Informally req request to find a service as described by the first and third arguments, bind it, and invoke it with the
values in the second argument. The action succeeds if a service is found, and its invocation is successful. It fails if
either no service is found or if the bound service fails. The binding acts as a commit: only one service is invoked, and
if its invocation fails no other found service is invoked.

2.3. Reconfiguring Workflows with Policies

A workflow reconfiguration is the structural change of a workflow instance. In STPOWLA, a policy can express a
reconfiguration rule based on a number of available functions, as described in Table 2. These changes are short-lived,
i.e. they only affect the workflow instance and not the overall workflow model.

As an example, consider a supplier whose business process is to receive an order from a registered customer, and
then to process that order (which includes collecting, packing and shipping the items, plus invoicing the client). There
are no extra constraints on each task, therefore the default task policies are effectively “empty”.

Now consider that under certain conditions (e.g. financial pressure), a financial guarantee is required from all
customers whose order is above a certain amount. We may have the following policy:
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Function Syntax Informal Description

fail() Declare the current task to have failed, i.e. discard further task processing
and generate the task failure event.

abort() Abort the current task and progress to the next task, generating the
task abort event.

block(s, p) Wait until predicate p is true before commencing scope s.
insert(x, y, z) Insert task or scope y into the current workflow instance after task x if z

is true, or in parallel with x if z is false.
delete(x) Delete scope x from the current workflow instance.

Table 2. APPEL policy: reconfiguration actions

receive 
Order

process 
Order

Transform with 
GetDepositIfLargeOrder policy

receive 
Order

process 
Order

get 
Deposit

Fig. 2. A simple reconfiguration example where a core business process is transformed via the insertion of the getDeposit task after the receiveOrder
task. The transformation rule comes from a policy.

GetDepositIfLargeOrder
appliesTo receiveOrder

when task_completion
if receiveOrder.orderValue > 250000
do insert(requestDeposit, receiveOrder, false)

Intuitively, this policy (named GetDepositIfLargeOrder) applies to the receiveOrder. It says that when the task
completes successfully and the attribute orderValue (bound to that task) is above £250000, then there should be an
action. The action in this case is the insertion of a task requestDeposit into the workflow instance after (not in parallel
to) the receiveOrder task. The workflow instance thus undergoes the transformation as shown in Fig. 2.

3. Encoding of StPowla to SRML - Foundational Concepts

In SRML composite services are modelled through modules. A module declares one or more components, that are
tightly bound and defined at design time, a number of requires-interfaces that specify services, that need to be provided
by external parties, and (at most) one provides-interface that describes the service that is offered by the module. A
number of wires establish interaction protocols among the components and between the components and the external
interfaces. Figure 3 shows the SRML module ProcurementService which includes: one provides-interface CR (i.e.,
the interface of the service provided to the customer), one requires-interface (i.e., the interface of the service that we
will discover at run-time) and two components, BP and PI, that orchestrate the interactions among the parties.

The internal nodes of a SRML module can reside at three different layers (top layer, service-oriented layer and
bottom layer). Layers in SRML are architectural abstractions that reflect different levels of organisation and change.
Each layer uses the layer underneath. The top layer uses the service-oriented layer to achieve some business goal. For
example, an application could be designed for the same organization that intend to use it and not for being published
as a service. We call this type of applications activity. The creation of the instance of an activity is triggered by a node
that belongs to the top layer and not by a provides-interface. The service oriented layer uses the bottom layer which
typically includes entities which are persistent as far as the life cycle of the activities is concerned, and can be shared
by multiple instances of the same activity (e.g., a database shared by all the instances of a service).

Here we focus on SRML modules where nodes reside only at the service-oriented layer. This simplification is
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PROCUREMENTSERVICE

PI:
PolicyInterface

BP:
BusinessProcess

PB

BO     CR:
     customer

OP:
orderProcessorCB

SLA

Fig. 3. The structure of a SRML module for the procurement service example

done without loss of generality since it does not have any influence on the encoding. In fact, STPOWLA does not
make any distinction about the type of entity that performs a task (e.g., dynamically discovered service vs persistent
resource). The role of the different layers will become interesting in the discussion on the methodology in Section 6.1.
The interested reader can refer to [BFL08b] for more details on the layered structure of SRML modules.

Components, external interfaces, wires and interfaces of the different layers are specified in terms of Business
Roles, Business Protocols, Interaction Protocols, and Layer Protocols respectively. The specifications define the type
of the nodes. Each specification provides a slightly different style of behavioural description. A business role defines
an execution pattern involving the interactions that it declares in its signature, what we call an orchestration. Business
protocols provide a set of properties that abstracts from details of the executable process implemented by the orchestra-
tion (e.g., the local state) and describe the behaviour that can be expected of the service (in case of provides-interface)
or specify the behaviour that is expected (in the case of requires-interface) of the external party. The interaction pro-
tocols define a collection of properties that establish how the interactions are coordinated, which may include routing
events or transforming sent data to the format expected by the receiver. However, each language has been captured in
the computational model presented in [AF08], which defines the activity of a configuration of SRML components in3
terms of transition systems where transitions represent the sending, receiving and processing of events by the entities
involved in the business activity. The logic UCTL [GM05] is being used to reason about such transition systems. The
aim is to provide (1) a notion of correctness for service modules (i.e., the properties of a provides-interface are entailed
by the body of a module, assuming the properties described in the requires/uses-interfaces), (2) a way of formalising
the matching of provides/requires-interfaces, and (3) a means for validation of activity and service design.

In this paper we provide an encoding to derive, from a business process specified in STPOWLA, an SRML compo-
nent that we call BP, of type BusinessProcess and a second component PI, of type PolicyInterface that is connected
to BP and represents the interface through which it is possible to trigger policies that modify the control flow. PI sup-
ports the set of interactions used to trigger a workflow modification in the component BP. Figure 3 illustrates the
structure of the SRML module representing the workflow and policies in the procurement example described earlier
in this section.

Components are instances of business roles specified in terms of (1) the set of supported interactions, and (2) the
way in which the interactions are orchestrated. The remainder of this section provides an overview of business roles.
The overview will not include the other types of SRML specification as they are not concerned in the encoding.

3.1. Business Roles: the Interactions

SRML supports asynchronous two-way conversational interactions: s&r denotes interactions that are initiated by the
co-party, which expects a reply, r&s denotes interactions that are initiated by the party, which expects a reply from
its co-party. SRML supports also asynchronous one-way and synchronous interactions that are not discussed here as
they are not required for the work presented in this paper.

This is followed by the specification of the interactions supported by PolicyInterface, each corresponding to one
of the STPOWLA functions in Table 2. The business role BusinessProcess supports the complementary interactions
(i.e. r&s instead of s&r) plus, other interactions that occur with the external parties. Each interaction can have ֠ -
parameters for transmitting data when the interaction is initiated and� -parameters for carrying a reply (which in this
case are not used as the reply event does not carry data). The index i represents a key-parameter that allows us to
handle occurrences of multiple interactions of the same type (as in SRML every interaction event must occur at most
once). In this case, we allow PI to trigger more instances of policy functions of the same type.
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BUSINESS ROLE PolicyInterface is

INTERACTIONS
s&r delete[i:natural]

֠ task:taskId
s&r insert[i:natural]

֠ task:taskId
newTask:taskId
c:condition

s&r block[i:natural]
֠ task:taskId

c:condition
s&r fail[i:natural]

֠ task:taskId
s&r abort[i:natural]

֠ task:taskId

3.2. Business Roles: the Orchestration

The way the declared interactions are orchestrated is specified through a set of variables that provide an abstract view
of the state of the component, and a set of transitions that model the way the component interacts with its co-parties.
For instance, the local state of the orchestrator is defined as follows:

local
start[root],start[x],start[ro],...:boolean, ...
state[root],state[x],state[ro],...:[toStart,running,exited]

A module can define an initialisation condition for the each component. For example, the module Procure-
mentService may define the following initial state for the component OR:

start[root]=true
∧ start[x]=start[ro]=...=false
∧ state[root]=state[x]=state[ro]=...=toStart ∧ ...

Similarly, a termination condition may specify the situations in which the component has terminated any activity.
The behaviour of components is described by transition rules. Each transition has a name, and a number of other
features:

transition policyHandlerExample
triggeredBy samplePolicy֠ [i]
guardedBy state[samplePolicy֠ [i].task] = toStart
effects policy[samplePolicy֠ [i].task]’ ∧ ......
sends samplePolicy� [i]

5, 6

triggeredBy is a condition, typically the occurrence of a receive-event or a state condition, which triggers the exe-
cution of the transition. In the example we engage in the policyHandlerExample transition when we receive the
initiation of the interaction samplePolicy (i.e., samplePolicy֠ [i]).

guardedBy is a condition that identifies the states in which the transition can take place. For instance, the policyHan-
dlerExample transitions should only be taken when the involved task is in state toStart (i.e. is not in execution and
it has not been executed yet). The involved task is identified by the parameter task of the interaction samplePolicy
(i.e., samplePolicy֠ [i].task).

effects concern changes to the local state. We use var ′ to denote the value the state variable var has after the transition.
sends is a sentence that describes the events that are sent and the values taken by their parameters. In the example we

invoke the samplePolicy reply event (i.e., samplePolicy� [i]) to notify of the correct management of the policy.
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3.3. Constraints for Service Level Agreement in a SRML Module

SRML offers primitives for modelling the dynamic aspects concerned with session management and service level
agreement, which together we call configuration policies. The external configuration policy concerns the constraints
that the process of discovery, negotiation and binding must satisfy to establish service level agreements (SLA) with
service providers. The external configuration policy models an orthogonal aspect with respect to the orchestration.7
Specifically, it defines a set of non-functional properties to be considered when, in a specific point of the orchestration
process, the run-time discovery of an external service for outsourcing the execution of a specific task is required.

In SRML, we use the algebraic approach developed in [SUF97] for constraint satisfaction and optimization. In the
following example we use a constraint system where the degree of satisfaction has fuzzy values, i.e. it takes value in
the interval [0, 1].

EXTERNAL POLICY

SLA VARIABLES
OP.LOCATION, CR.LOCATION

CONSTRAINTS
Closeness is <{OP.LOCATION, CR.LOCATION},def2> s.t.

if distance(OP.LOCATION, CR.LOCATION)<50 then def2(n,m)=1,
otherwise def2(n,m)=500/n

In order to define the constraints that we wish to apply to the module ProcurementService, we use the SLA variables
OP.LOCATION and CR.LOCATION which are the locations of the order processor and customer, respectively. We
define only one constraint Closeness, which minimises the distance between the customer CR and the order pro-
cessor OP. The best degrees of satisfaction are when the distance is less than 50 miles. Otherwise they are inversely
proportional to the distance. The function distance returns the distance between two locations.

For each potential order processor (i.e., the service, among the published ones, whose provides-interface matches
with OP, of type OrderProcessor), the set of constraints has to be solved. The solution assigns a degree of satisfaction
to each possible tuple of values for the SLA variables. Negotiation in our framework consists in finding an assignment
that maximizes the degree of satisfaction. Hence, the outcome of the negotiation between ProcurementService and
the potential partner is any tuple that maximizes the degree of satisfaction. Selection then picks a partner with a service
level agreement that offers the best degree of satisfaction.

4. Encoding StPowla Workflows in SRML

In this section we present an encoding from the control constructs of STPOWLA to SRML orchestrations. Our focus
is on the control constructs and we abstract from the interactions of the service and from the semantics of the simple
activities of the workflow tasks.

STPOWLA represents a business process as the composition of a number of tasks, either simple (e.g. interactions
with services) or complex (e.g. coordinating other tasks by executing them in sequence, parallel, etc.). In SRML we
associate an identifier, of type taskId, to any task. We denote with T the set of all the task indexes in the workflow
schedule.

For each task identifier x we define the following local variables, used to handle the control flow and coordinate8
the execution of the tasks:

• start[x] is a boolean variable that, when true, triggers the execution of x,
• done[x] is a boolean variable that signals the successful termination of x and triggers the continuation of the

workflow schedule,
• fail[x] is a boolean variable that signals the termination with failure of x and triggers the failure handler.

In general, the next activity in the control flow is executed when the previous one terminates successfully. In case
of task failure the flow blocks (i.e. the next task is waiting for a signal of successful termination from the previous
task) and the failure signal is collected by a failure handler that possibly involves a number of policies. According to
the failure handler, the execution of the process can be terminated, resumed, altered, etc. We leave the specification
of the failure handling mechanisms as a future work. Anyway, the construct of strict preference and random choice,
that try a number of alternative tasks until one terminates with success, handle the failure signal directly, within the
workflow. The scope construct can be extended in the future to support failure handling, as discussed in Section 4.6.G1,9
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Fig. 4. The sequence control construct in STPOWLA

We will introduce in section 5 a set of transitions, as a part of the orchestration of BP that model the policy handler.
The policy handler has the responsibility to enact the modifications of the control flow induced by the policies triggered
by PI. The policy handler blocks the normal flow by setting the variable policy[x] = true, where x is the identifier of
the first task involved in the modification. The variable policy[x] is a guard to the execution of x. We will describe the
policy handler more later in this paper, by now it is important to know that when a policy function has to be executed
on a task, the task has to be blocked. It is responsibility of the policy handler to reset the flow of execution.

Some policies can be applied only on running processes (e.g. abort) and some others only on tasks that have
not started yet (e.g., the deletion). We define a local variable state[x] for every task identifier x which identifies
the state of the execution of the transition associated to x by taking one of the following values: toStart (i.e., the
execution of the task has not started yet), running (i.e. the task is in execution) and exited (i.e. x has terminated).
The initialization conditions for the module set, for each task identifier x, state[x] = toStart, see for example the
initialization condition for ProcurementService presented in Section 3.1. The state variable state[x] isl be used to
ensure that policies act on a task in the correct state of execution (i.e., the deletion of task x can be performed only if
state[x] = toStart). 12

We consider the simple tasks as black boxes: we are not interested in the type of activity that they perform but
only on the fact that a task, for example task x, is activated by start[x], signals its termination along either done[x] or
failed[x] and notifies its state along state[x].

The execution of the workflow is started by a special transition root that sets start[x] = true where x is the
first task in the workflow schedule. The local variables are initialized as follows: ∀i ∈ T \ root, start[i] = false ∧
start[root] = true, ∀i ∈ T, done[i] = failed[i] = policy[i] = false and ∀i ∈ T, state[i] = toStart.

It follows the encoding of the workflow template start;P ; end where P is associated to the task identifier x:

transition root
triggeredBy start[root] ∨ done[x]
guardedBy ¬ policy[root]
effects
start[root]⊃ ¬ start[root]’ ∧ state[root]’=running ∧ start[x]’
∧ done[x] ⊃ ¬ done[x]’ ∧ done[root]’ ∧ state[root]’=exited

1
The guard of transition x ensures the execution of the transition only if no policy has been triggered on task root

(i.e., policy[root] is false). According to the trigger, root is executed twice:

1. at the beginning of the workflow (recall from Section 3.1 that the initialization condition of ProcurementService
includes the assignment start[root] = true). The transition in this case has the following effects: (1) disabling
the the triggering condition of root (i.e., start[root] is set to false, (2) setting the state of task root to running
and (3) triggering the transition for task x by setting start[x] to true.

2. when task x terminates (i.e., done[x] = true). The transition in this case has the following effects: (1) disabling
the termination signal for x is disabled (i.e., done[x] is set to false), (2) enabling the termination signal for root
iand (3) setting the state variable for root to exited.

11

4.1. Sequence

The sequence operator P1;P2, illustrated in Figure 4, first executes P1 and, after the successful termination of P1,
executes P2. We remark that failures are not handled in this document and will be addressed in the future. The
encoding of the sequence construct in SRML is as follows. The sequence is encoded in the following SRML transition,
with task identifier x, which triggers the execution of the first task, with task identifier p1, then collects the termination
signal from p1 and triggers the execution of the second subprocess, with task identifier p2:

transition X
triggeredBy start[x] ∨ done[p1] ∨ done[p2]
guardedBy ¬ policy[x]
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(a) Condition/simple join (b) Split/complex join

Fig. 5. Multiple branches constructs in STPOWLA

effects
start[x] ⊃ ¬ start[x]’ ∧ state[x]’=running ∧ start[p1]’
∧ done[p1] ⊃ ¬ done[p1]’ ∧ start[p2]’
∧ done[p2] ⊃ ¬ done[p2]’ ∧ done[x]’ ∧ state[x]’=exited

11
Transition X is executed three times:

1. when start[x] is true. The transition in this case has the following effects: (1) disabling the triggering condition
start[x], (2) changing the state of task x to running and (3) enabling the triggering condition start[p1].

2. when done[p1] is true (i.e., after p1 has been executed). The transition in this case has the following effects: (1)
disabling the termination signal p1 and (2) enabling the triggering condition start[p2].

3. when done[p2] is true. The transition in this case has the following effects: (1) disabling the termination signal for
p2 , (2) enabling the termination signal for x and (3) setting the state of task x to exited.

11

4.2. Condition and Simple Join (XOR)

The condition and simple join construct λ?P1 : P2, illustrated in Figure 5(a), consists of the combination of the flow
junction, that diverts the control flow down one of two branches P1 and P2, represented by the task identifiers p1 and
p2, respectively, according to a condition λ, and the flow merge of a number of flows where synchronization is not an
issue. The condition and simple join are encoded into the following SRML transition:

transition X
triggeredBy start[x] ∨ done[p1] ∨ done[p2]
guardedBy ¬ policy[x]
effects
start[x] ⊃ ¬ start[x]’ ∧ state[x]’=running

∧ (λ ⊃ start[p1]’) ∧ (¬ λ ⊃ start[p2]’)
∧ done[p1] ⊃ ¬ done[p1]’ ∧ done[x]’ ∧ state[x]’=exited
∧ done[p2] ⊃ ¬ done[p2]’ ∧ done[x]’ ∧ state[x]’=exited

11
Transition X is executed twice:

1. when start[x] is true. The transition in this case has the following effects: (1) disabling triggering condition
start[x], (2) setting the state of x to running and (3) triggering either p1 or p2 depending on the condition λ.

2. when either done[p1] or done[p1] is true (either p1 or p2 was executed)). The transition in this case has the
following effects: (1) disabling the termination signal for p1 or p2, (2) enabling the termination signal of x and (3)
setting the state variable of x to exited.

11
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(a) Strict preference (b) Random choice

Fig. 6. Strict preference and random choice in STPOWLA

4.3. Split and Complex Join (AND)

The split and complex join construct FJ(m, {P1,B1}, . . . , {Pn,Bn}) consists of the combination of the flow split,
that splits the control flow over many branches, and the conditional merge, that synchronizes two or more flows
into one. The value of m, that is statically determined, represents the minimum number of branches that have to be
synchronized. Furthermore, any branch is associated to a boolean Bi that determines whether the i − th branch is 13
mandatory in the synchronization. The graphical notation of the construct is illustrated in Fig. 5(b).

The encoding is as follows. Let S be the set, with cardinality n, of the task indexes associated to the branches of the
split/join. Let the identifiers for the subtasks of x to range over p1, . . . , pn. LetN be the set of indexes of the necessary
tasks and m ∈ N be the minimum number of branches that have to be synchronized. We assume that m ≤ |N |. The
complex join is encoded in the following SRML transition, where Kcomb is the set of (m−|N |)−subsets of S \N .

transition X
triggeredBy start[x] ∨ (∧i∈Ndone[pi]∧(∨K∈Kcomb(∧k∈Kdone[pj])))
guardedBy ¬ policy[x]
effects
start[x] ⊃ ¬ start[x]’ ∧ state[x]’=running ∧i∈[1,...,n] start[pi]’
∧ ¬ start[x] ⊃ done[x]’ ∧ state[x]’=exited ∧i:[1..n](¬ done[pi]’)

11
The transition above is parametric with respect to N and Kcomb in order to model the general case. In a real

workflow schedule the general construct would be instantiated (at design-time) and the parameters in the conjuc-
tion/disjunctions would disappear (e.g., ifN = {1, 2} the term∧i∈Ndone[pi] becomes done[p1]∧done[p2]. Transition 14
X is executed twice:

1. when start[x] is true. The transition in this case has the following effects: (1) disabling the triggering condition
start[x], (2) setting the state of task x to running and (3) enabling the triggering condition for each sub-task i by
setting start[i] to true.

2. in case of successful termination of all the necessary subtasks (i.e., ∧i∈Ndone[pi]) and of a number of tasks greater
or equal to m (i.e., ∨K∈Kcomb(∧k∈Kdone[pj])). The transition in this case has the following effects: (1) enabling
the termination signal for x, (2) setting the state of x to exited and (3) disabling the successful termination of all
the subtasks.

11

4.4. Strict Preference

The strict preference SP (P1, . . . , Pn), illustrated in Figure 6(a), attempts the tasks P1, . . . , Pn one by one, in a specific
order, until one completes successfully. In this case, with no loss of generality we consider the tasks ordered by
increasing index numbers.

The strict preference is encoded in the following SRML transition:

transition X
triggeredBy start[x] ∨i:[1..n](done[pi] ∨ failed[pi])
guardedBy ¬ policy[x]
effects
start[x] ⊃ ¬ start[x]’ ∧ state[x]’=running ∧ start[p1]’
∧i:[1..n−1]failed[pi] ⊃ ¬ failed[pi]’ ∧ start[p(i+1)]’
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∧ failed[pn] ⊃ ¬ failed[pn]’ ∧ failed[x]’ ∧ state[x]’=exited
∧ ∨i:[1..n]done[pi] ⊃ done[x]’ ∧ state[x]’=exited ∧i:[1..n]¬ done[pi]’

11
Transition X is executed a number of times in the following cases:

1. when the task x is triggered. The transition in this case has the following effects: (1) disabling the triggering
condition start[x], (2) setting the state of x to running and (3) triggering the first sub-task p1 of x.

2. when either any of the tasks pi terminates with failure (failed[pi] = true) or success (done[pi] = true).

• If the task failed (i.e., failed[pi] = true) and it was not the last task pn, then the transition has the following
effects: (1) disabling the termination variable of pi and (2) enabling the next task by setting start[p(i+ 1)] to
true.

• If the last task failed (failed[pn] = true) then the transition has the following effects: (1) disabling the signal
of failed termination of pn, (2) enabling the signal failed[x] of failed termination for x and (3) setting the state
of x to exited.

• If any of the sub-tasks terminated successfully (done[pi] = true) then the transition has the following effects:
(1) enabling the signal of successful termination for x, (2) setting the state of x to exited and (3) disabling the
successful terminations of all the sub-tasks.11

4.5. Random Choice

The random choice RC(P1, . . . , Pn), illustrated in Figure 6(b), attempts the tasks P1, . . . , Pn simultaneously and
completes when one completes successfully. The random choice is encoded in the following SRML transition:

transition X
triggeredBy start[x] ∨i:[1..n](done[pi])∨ (∧i:[1..n](failed[pi]))
guardedBy ¬ policy[x]
effects
start[x] ⊃ ¬ start[x]’ ∧ state[x]=running ∧i:[1..n]start[pi]’
∧ (∧i:[1..n]failed[pi])⊃ failed[x]’∧ state[x]’=exited ∧i:[1..n]¬ failed[pi]’
∧ (∨i:[1..n]done[pi]) ⊃ done[x]’ ∧ state[x]’=exited

∧i:[1..n](¬ done[pi]’ ∧ ¬ failed[pi]’)
11

Transition X is executed a number of times, in the following cases:

1. when the task x is triggered. The transition in this case has the following effects: (1) disabling the triggering
condition start[x], (2) setting the state variable of x to running and (3) enabling the triggering condition of all
the sub-tasks.

2. when any of the tasks pi terminates with success (i.e., done[pi] = true). The transition in this case has the
following effects: (1) enabling the successful termination of x, (2) setting the state of x to exited and (3) disabling
the successful and faulty terminations for all the sub-processes.

3. when all the sub-tasks pi terminates with failure (i.e., failed[pi] = true). The transition in this case has the
following effects: (1) enabling the faulty termination of x, (2) setting the state of x to exited and (3) disabling the
faulty terminations for all the sub-processes.

11, 15

4.6. Scope

The scope construct Scope(P ), where P is associated to the task identifier y behaves similarly to the root process. It is
illustrated in Figure 7. Within larger business processes it often makes sense to group parts of the process together as
these are controlled by one division in the company or the tasks are more intrinsically linked together. We represented
scopes separately, even though at the moment little is done with them. The scope construct will in the future be
extended to include notions of compensation and fault handling (that is they will form a way to express long running
transactions), however this aspect is beyond the scope of this paper. An idea is to support the mechanism of fault
handling by taking into account the semantics given in [BLZ03] through an extension of the asynchronous π− calculus.
The intuition is to associated at design time a scope with two process: a compensation process and a fault handler.
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Fig. 7. The scope control construct in STPOWLA

The compensation process can be triggered only after the successful completion of the activity of the scope, in order
to compensate the effects of the scope. The failure handler is triggered in case of failure during the execution of the
scope and include (among other activities that depend on the specific process that is being modelled) the triggering of
the compensations of all the scopes, enclosed in the failing scope, that have already terminated successfully.

The Scope choice is encoded in the following SRML transition:

transition X
triggeredBy start[x] ∨ done[y]
guardedBy ¬ policy[x]
effects
start[x] ⊃ ¬ start[x]’ ∧ state[x]’=running ∧ start[y]’
∧ done[y] ⊃ ¬ done[y]’ ∧ done[x]’ ∧ state[x]’=exited

11
Transition X is executed twice:

1. when the triggering condition start[x] is enabled. The transition in this case has the following effects: (1) disabling
the triggering condition start[x], (2) setting the state of task x to running and (3) enabling the triggering condition
for the sub-task y.

2. when y terminates with success (i.e., done[y] = true). The transition in this case has the following effects: (1)
disabling the successful termination of y, (2) enabling the signal of successful termination for x and (3) setting the
state of x to exited. 11

5. Encoding StPowla Policies in SRML

5.1. Refinement Policies

Recall that in STPOWLA refinement policies are those requesting the req(action, [args], [SLR]) as action.
The element that requires encoding in SRML is the Service Level Requirements list. This list contains expressions
that specify acceptable values for a domain specific attribute: e.g. [cup temperature = warm] which specifies
that the chosen service (here a beverage service) should offer warm cups.

In SRML we have seen that the EXTERNAL POLICY element allows to express such issues. The expression
language in SRML is much more powerful than what STPOWLA offers currently: in SRML complex behaviour such
as that seen in the example in Section 3.3 can be expressed. The example did show a case where complete satisfaction
was achieved by a delivery distance of less than 50 miles, and otherwise satisfaction did decrease in line with distance.
In STPOWLA currently only simpler relations such as less, equal or more can be expressed but there will be ongoing
work in enhancing the mechanisms in STPOWLA.

In general the mapping from STPOWLA to SRML involves creating an external policy for SLRs where for
each STPOWLA attribute an SLAVARIABLE is created in SRML. The relation and values are then captured as a
CONSTRAINT in the SRML policy rule.

Let us consider, for example, the following STPOWLA policy for the procurement service (see workflow in Fig-
ure 2):

CheapService
appliesTo processOrder

when on_task_entry
req(mail,[],[ServiceCost<10])
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The policy CheapService ensures that the cost of the transaction with the service for processing the order is
less then 10£. In SRML, we can express CheapService as a constraint that applies to the requires-interface OP of
the module ProcurementService (see Figure 3). Since STPOWLA, at the moment, only allows to express sharp
requirements, we use a constraint system where the degree of satisfaction has boolean values (i.e. {0, 1}).

EXTERNAL POLICY

SLA VARIABLES
OP.SERVICECOST

CONSTRAINTS
CheapService is <{OP.SERVICECOST},def1> s.t.

if n<10 then def1(n)=1,
otherwise def1(n)=0

18
The constraint uses the SLA variable OP.SERVICECOST (i.e., the price for enacting a transaction with the order

processor), which assign degree of satisfaction of 1 if the service costs less then 10£ and degree of satisfaction of
0 otherwise. The constraint ensures that any service which does not ensure a degree of satisfaction of 1 will not be
selected.

5.2. Reconfiguration Policies

One of the aims of this paper is to illustrate how policies can influence the control flow and how this can be modelled
in SRML. In this section we discuss the encoding of policies, as described in STPOWLA, into SRML orchestrations.
Each interaction is handled, in the orchestration of BP, by one or more transitions that model the policy handler. We
will see in detail such transitions when discussing the single interactions, in the rest of this section.

A policy related to a task can have an effect (1) on the state prior to the task execution (i.e. delete, block and
insert) or (2) during the execution of a task (i.e. fail and abort). The state of a task is notified through the variable
state[y]. The policy handler must check that the task is in the correct state according to the specific policy that has
to be enacted. The policy handler prevents the execution of either (1) the task or (2) the rest of the task by using the
variable policy[x]: the condition ¬policy[x] guards the transition(s) corresponding to the execution of task. Notice
that for most of the control constructs it is not possible to trigger policies of this second type on atomic tasks whose
state changed directly from toStart to done.

5.2.1. Delete Task

The deletion of task (i.e. delete(x) in STPOWLA) skips the execution of x. The policy manager prevents the execution
of x by signaling a policy exception (i.e. policy[x] = true).

transition policyHandler_delete_1
triggeredBy delete[i]֠ 

guardedBy state[delete[i]֠ .task] = toStart
effects policy[delete[i]֠ .task]’

Transition policyHandler delete 1 is triggered by the event delete[i]֠  , sent by PI. The guard ensures that a task
can be deleted only if its execution has not started yet (i.e., its state has value toStart). The transition has the effect
of setting the value of the variable policy to true. This will prevent the regular execution of the deleted task (recall
that the execution of each task x is guarded by the condition ¬policy[x]). When the triggering condition for task x
becomes true, the transition policyHandler delete 2 is executed instead of the transition of the deleted task.18

transition policyHandler_delete_2
triggeredBy start[x]
guardedBy P_delete[i]֠ ? ∧ delete[i]֠ .task=x
effects ¬ start[x]’ ∧ done[x]’ ∧ state[x]’ = done
sends delete[i]� 

The guard of policyHandler delete 2 ensures its execution only if a deletion policy has been triggered for x.
The effects of the transition are: (1) to disable the triggering condition of x, (2) to notify the correct termination of x
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(which in fact has not been executed) and (3) to set the state of x to done. The transition also sends the reply event to
the interaction delete to notify PI of the completed enactment of the reconfiguration policy. 18

5.2.2. Block Task

The function block(x, p) in STPOWLA blocks a task until p is true. In SRML the policy handler prevents x from
executing (i.e. policy[x] becomes true) temporary until p is true. The policy handler notifies the enactment of the
policy to the environment after that the task has been unblocked.

transition policyHandler_block_1
triggeredBy block[i]֠ 

guardedBy state[block[i]֠ .task] = toStart
effects policy[block[i]֠ .task]’

Transition policyHandler block 1 is triggered by the event block[i]֠  , sent by PI. The guard ensures that a task
can be deleted only if its execution has not started yet (i.e., its state has value toStart). The transition has the effect
of setting the value of the variable policy to true. This will prevent the regular execution of the blocked task. When
the condition specified through condition p, which has been communicated by PI, becomes true then the transition
policyHandler block 2 unblocks the task. 18

transition policyHandler_block_2
triggeredBy block[i]֠ .condition
guardedBy P_block[i]֠ 

effects ¬ policy[block[i]֠ .task]’
sends block[i]� 

Transition policyHandler block 2 is triggered by the condition block[i]֠  .condition and the guard ensures its
execution only the task has previously been blocked. The transition has the effect of setting the variable policy for the
task to which the policy applied to false so that the task can be executed as soon as its triggering condition becomes
true. The transition also sends the reply event to the interaction block to notify PI of the completed enactment of the
reconfiguration policy. 18

5.2.3. Insert

The insertion of a task, represented by the function insert(x, y, z) in STPOWLA, inserts the task y in sequence or
in parallel with respect to x depending by the value of the boolean variable z. In SRML the insertion is triggered
by the interaction insert[i]� with parameter insert[i]� .task representing the task x, insert[i]� .insertedTask
representing the task y and insert[i]� .condition representing the condition z. We assume that the set of tasks that it
is possible to insert is determined a priori, in this way we assume that the SRML encoding has a set of transitions for
each possible task, including the task to possibly insert, that is executed by setting start[y] to true. We introduce in
this way a limitation on the number of task types that we can insert and on the fact that a task can be inserted only once
(we will manage multiple insertions in the future, when we will encode looping constructs) but we do not provide any
limitation on the position of the insertion.

We rely on a function next : taskId→ taskId that returns, given a task, the next task to execute in the workflow.
Such function can be defined by induction on the syntax of STPOWLA defined in Section 2.1.

transition policyHandler_insert_1
triggeredBy insert[i]֠ 

guardedBy state[insert[i]֠ .task]=toStart
effects policy[insert[i]֠ .task]’

The transition policyHandler insert 1 prevents the execution of the task on which the policy applies (i.e.,
insert[i]� .task) by setting the its policy variable to true. When the task on which the policy applies is triggered,
policyHandler insert 2 is executed instead of the regular transition for the task. 18

transition policyHandler_insert_2
triggeredBy start[x]
guardedBy P_insert[i]֠ ∧ insert[i]֠ .task=x
effects
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insert[i]֠ .condition ⊃ ¬ policy[insert[i]֠ .task]’
∧ ¬ insert[i]֠ .condition ⊃ policy[insert[i]֠ .task]’

∧ start[insert[i]֠ .insertedTask]’

The transition policyHandler insert 2 starts the execution of the task on which the policy applies (in paral-
lel with the inserted task if insert[i]� .condition = true). The transitions policyHandler insert sequence and
policyHandler insert parallel coordinate the execution of the tasks (the one on which the policy applies and the
inserted one) in sequence or in parallel, according to the condition.18

transition policyHandler_insert_sequence
triggeredBy done[x] ∨ done[y]
guardedBy P_insert[i]֠ ∧ insert[i]֠ .condition
∧ (insert[i]֠ .task=x ∨ insert[i]֠ .insertedTask=y)
effects
done[x] ⊃ ¬ done[x]’ ∧ start[y]’
∧ done[y] ⊃ ¬ done[y]’ ∧ start[next(x)]’
sends
done[y] ⊃ insert[i]� 

transition policyHandler_insert_parallel
triggeredBy done[x] ∧ done[y]
guardedBy P_insert[i]֠ ? ∧ ¬ insert[i]֠ .condition
∧ insert[i]֠ .task=x ∧ insert[i]֠ .insertedTask=y
effects ¬ done[x]’ ∧ ¬ done[y]’ ∧ start[next(block[i]֠ .task)]’
sends insert[i]� 

Transitions policyHandler insert sequence and policyHandler insert parallel are similar to regular sequence
and paralel transitions (see Section 4.6), but they are guarded by the fact that an insertion policy with positive/negative
condition has been triggered in the past. The effects are similar to those of a regular sequence/parallel transitions. A
reply event for the interaction insert is sent to notify PI of the completed enactment of the reconfiguration policy
when, in the case of policyHandler insert sequence transition the inserted task terminates (i.e., done[y] ⊃= true)
and in the case of policyHandler insert parallel both of the parallel tasks terminate.18

5.2.4. Fail Task

The failure of a task must occur during the execution of the task (it has no effects otherwise). The failure can be
triggered autonomously, within the task or induced externally by the execution of the policy fail. We consider here
the second case.

transition policyHandler_fail
triggeredBy fail[i]֠ 

guardedBy state[fail[i]֠ .task]=running
effects policy[i][fail[i]֠ .task]’ ∧ state[fail[i]֠ .task]’=failed
sends fail[i]� 

Transitions policyHandler fail is triggered by the event fail[i]֠  , sent by PI. The guard ensures that a task can
fail only if it is currently in execution (i.e., its state has value running). The transition has the effect of setting the
value of the variable policy to true and the state of the task to failed (so that the normal flow of execution blocks). A
reply event for the interaction fail is sent to notify PI of the completed enactment of the reconfiguration policy.18

5.2.5. Abort Task

The abortion of a task is similar to a deletion, but it involves a running task. An abort of a task occurring not during its
execution has no effects.

transition policyHandler_abort
triggeredBy abort[i]֠ 

guardedBy state[abort[i]֠ .task]=running
effects policy[abort֠ .task]’ ∧ state[abort[i]֠ .task]’=done
sends abort[i]� 
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Transitions policyHandler abort is triggered by the event abort[i]֠  , sent by PI. The guard ensures that a task
can fail only if it is currently in execution (i.e., its state has value running). The transition has the effect of setting
the value of the variable policy to true and the state of the task to done (so that the flow of execution can continue
normally). A reply event for the interaction fail is sent to notify PI of the completed enactment of the reconfiguration
policy. 18

5.3. An Example: the Reconfiguration of the Procurement Scenario

The orchestration of the business role BusinessProtocol would consist of the sequence of the tasks request order (i.e.
task ro) and process order (i.e. task po).

transition X
triggeredBy start[x] ∨ done[ro] ∨ done[po]
guardedBy policy[x]
effects
start[x] ⊃ ¬ start[x]’ ∧ state[x]’=running ∧ start[ro]’
∧ done[ro] ⊃ ¬ done[ro]’ ∧ start[po]’
∧ done[po] ⊃ ¬ done[po]’ ∧ done[x]’ ∧ state[x]’=exited

18
In case of a receive event of type insert[i]� , triggered by the component PI , with parameter task equal to po, pa-

rameter insertedTask equal to gbd (i.e. get deposit), and the parameter condition equal to true. The policy handler
would: (1) block the execution of ro (preventing in this way ro to trigger its continuation po = next(ro)) by setting
policy[ro] = policy[po] = true, (2) wait for the condition start[ro] = true that is triggered by transitionX , (3) since
the parameter condition is true, the policy handler would unblock ro, (4) the transition policyHandler insert sequence
would handle the execution of gd after ro and, finally, trigger po by setting start[po] = true.

6. Methodology by Example – a case study of using StPowla and SRML

In this section we present a methodology for developing services, which involves STPOWLA and SRML. The discus-
sion on the methodology illustrates the rationale of the work presented in this paper by discussing the benefits of a
joint usage of SRML, STPOWLA and the encoding.

Some of the methodological aspects concerning SRML have been discussed in previous work [BLF08], which
proposes a process to arrive at (formal) service models in SRML starting from informal (or semi-formal) specifications
in notations that are typically described in UML. In Section 6.1 we use the extension of UML use-case diagrams
presented in [BLF08] to capture requirements in a service-oriented scenario and derive the structure of SRML models.

From the use-case diagram we can determine the services and resources our application relies on. The definition of
the internal structure of the SRML module (i.e. the components and wires that define the internal workflow) depends
in general on the portfolio of components already available for reuse within the business organisation. The definition
of a complex internal structure from scratch, deriving from the decomposition of the orchestration in a number of
coordinated units, can be done, in general, using traditional techniques for Component Based Development.

SRML offers primitives based on events that allow to suitably model those scenarios where process-based mod-
elling could result in over-specification. However, the primitives of SRML are general enough to support process based
modelling. For example, [BHLF07] presents an encoding from the process-base style of modelling of WS-BPEL to
SRML. Another example is the encoding presented in this paper where STPOWLA provides SRML with a means
to define, at a higher level of abstraction, a process-based behaviour (i.e. workflow schedule) which is dynamically
reconfigured by policies.

In Section 6.1 we use STPOWLA to model the internal behaviour of the SRML module. The workflows shown
in this section use the same workflow notation that we have used earlier and are complete in that notation. To ease
readability we have added “swimlanes” to highlight the stake holders as often seen in UML Activity diagrams, but
note that these are not used in the translation. By using the encoding we derive the internal structure of the SRML
module and the SRML specifications for each component to model the business process. As described in Section 3,
the resulting internal structure of the SRML module consists of one main component BP that models the behaviour of
the workflow, and the policy handler PI which handles the reconfiguration policies.

The methodology presented through the example involves three different languages that suit the needs of different
stages of the modelling process:
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VoIP Procurement
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Fig. 8. VoIP Case Study use-case diagram

Requirements UML Use Case diagrams are used to capture the requirements of the service-oriented application that
has to be developed. The application may involve a number of related services (i.e., they may share resources and
are modelled as a single business unit). The usage of UML Use Case diagrams provides a human friendly notation
suitable in this phase which involves the intervention of non experts in the engineering process (e.g., members
of the business company commissioning the development of the application). The outcome of this phase is a Use
Case diagram. By using the mapping defined in [BLF08] it is possible to derive, from the diagram, the structure for
a number of SRML modules where the orchestration and the behavoural specification of the external interfaces is
left unspecified. An Eclipse plugin is currently under development to automate this transformation.

Business Modelling StPowla is used to perform the modelling, at the business level, of the orchestration in terms of
workflow schedule and reconfiguration policies. This phase can be performed by experts in business modelling
who can benefit by the level of abstraction provided by StPowla (i.e., modular definition of control-based process
and business policies). The outcome of this phase is a StPowla model of the business process that, by using the
encoding to SRML, can provide each of the SRML module structures resulting from the previous phase with an
the internal orchestration.

Service-Oriented Modelling The SRML modules obtained in the previous phase can be extended to include the
behavioural specifications for the external interfaces, modified to include other components in the internal structure
(for example component extracted from implementations in BPEL [BHLF07] or any other language for which an
encoding into SRML has been provided), and analyzed with the formal framework provided by SRML.

6.1. Use Case Driven Example

In this section, we present a case study supplied by an industrial partner of the SENSORIA project. The case study is
based on a Voice over IP (VoIP) procurement example between a customer and a reseller. If viewed at a higher level,
it can represent most, if not all, procurement examples.

The requirements are expressed in Figure 8. Figure 8 uses the notation for use-case diagrams proposed in [BLF08].
The customized icons represent different types of roles that an actor can have in a service-oriented context (e.g.,
dynamically discovered services, statically bound persistent resources, service requester, etc.).

The diagram models a service, provided to a service requester represented by the actor Customer, which manages
the order for a VoIP connection. The service relies on the persistent resource Legal, which is shared among the different
instances of the service, and the external service Test which is dynamically discovered and selected according to the
customer’s location.

As mentioned in Section 3, SRML distinguish among the different types of actors by representing nodes at dif-
ferent layers. The SRML module derived by the diagram in Figure 8 is illustrated in Figure 9. The module has one
provides-interface CU of type Customer, one bottom-layer interface LE of type Legal and one requires-interface TE
of type Test. The internal structure of the module is defined according to Section 3: the component BP of type Busi-
nessProcess defines the base workflows for orchestrating the service, the component PI of type PolicyInterface
handles the reconfiguration requests.
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Fig. 9. VoIP Case Study SRML module.

The workflow implemented by BP is modelled with STPOWLA as follows. The STPOWLA base workflow is shown
in Figure 10. In addition to the workflow specification, we attach a workflow ontology as follows:

STPOWLAWorkflow is
Invariants:

LowBusinessValueThreshold: int
LowOrderValueThreshold: int

Actors:
Legal: Actor
Test: Actor
OrderManagement: Actor
Customer: Actor

Scopes:
s1: [PerformServiceTest, ..., ResultsAcceptance]
s2: [RequestLegalAssistance, ..., SendSLA]

Variables:
Customer.orderValue: int
Customer.businessValue :int

What is important to note is that there are two workflow invariants LowBusinessValueThreshold and
LowOrderValueThreshold, which refer to the level of spend from a customer for which to be regarded as a
small customer and the upper value of an order which would be considered as small, respectively. Furthermore, on
invocation of the workflow, two variables attached to the Customer actor specifying the customer’s spend in the last
year and the value of the current order.

The following policies should be activated on the workflow:

TelcoPolicy1
when workflow.started

if customer.businessValue < LowBusinessValueThreshold
and

customer.orderValue < LowOrderValueThreshold
do delete(s1)

TelcoPolicy2
when workflow.started

if Customer.orderValue < LowOrderValueThreshold
do delete(s3)

andthen
insert(PrepareFinalSLA,...,...)

andthen
insert(CreateAContract, ..., ...)

The first policy TelcoPolicy1 states that on commencing the workflow, if the customer could be considered small
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Fig. 10. VoIP Case Study base workflow.

VoIP Activation – 3: Pre-Delivery (Base Workflow)
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Fig. 11. VoIP Case Study base workflow.

and the order value was also small, the order management system should forgo the testing process. If this were applied,
the reconfigured workflow instance would be as in Figure 11.

The second policy TelcoPolicy2 states that on commencing the workflow, if the order value could be considered
small, then the order management system should not invoke legal assistance. Noting the trigger position of the policy
and the initial area of effect, the trigger could also have been IdentifyOfferProposal.task started or
IdentifyOfferProposal.task completed. The choice of which trigger to use is down to the author and this
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Fig. 12. VoIP Case Study base workflow.

can have a significant effect depending on the existence of other policies. The policy TelcoPolicy2, which eliminates
the branch at the bottom of the split/join, is implemented by deleting the whole scope s3 and reinserting the upper
branch (this is required as just deleting the tasks along the lower branch will leave the operatoes in place and would
provide a direct path bypassing the task that we do want to enforce).

For example, if the trigger of the second policy were bound to an event from a task in scope s1, it is possible that
the scope would be deleted and the policy never initiated. Whereas instead the required functionality was to initiate
the policy regardless.

If the customer could firstly be identified as a small customer and also the order value is below the low order
threshold, it is clear that both policies would be applied. The resulting workflow is shown in Figure 13.

According to the encoding, the process triggered by the root transition (see Section 4) is represented in SRML by
the transition x which executes in sequence the scope s1 and then the scope s2 .

transition X
triggeredBy start[x] ∨ done[s1] ∨ done[s2]
guardedBy ¬ policy[x]
effects start[x] ⊃ ¬ start[x]’ ∧ state[x]’=running ∧ start[s1]’
∧ done[s1] ⊃ ¬ done[s1]’ ∧ start[s2]’
∧ done[s2] ⊃ ¬ done[s2]’ ∧ done[x]’ ∧ state[x]’=exited

Transition X is executed when the sequence task is triggered and when any of the two sub-tasks of the sequence
terminate. The guard ensures that no policies have been triggered for x. In the first execution, the state of x is set
to running and the first task s1 in the sequence is triggered. In the second execution of the transition s1 completed
successfully and the second task s2 in the sequence is triggered. In the third execution of the transition s2 completed
successfully and the sequence task x terminates successfully.

Fragments of the transitions s1 and s2, which illustrate triggers and guards, are reported below. The variables y
and z represent the root process started within each scope.

transition scope1
triggeredBy start[s1] ∨ done[y]
guardedBy ¬ policy[s1]
...

transition scope2
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Fig. 13. VoIP Case Study base workflow.

triggeredBy start[s2] ∨ done[z]
guardedBy ¬ policy[s2]
...

The business role BusinessProcess provides transitions to handle the reconfiguration for each sub-process. When
the customer creates a new instance of the service OrderManagment, the SLA variables concerning the business value
of the customer and the order value are set. Depending on those values, PI will either request to apply TelcoPolicy1
and TelcoPolicy2, or not. In order to apply TelcoPolicy1, for instance, PI sends an event delete[s1]֠  ! to BP.
The transitions deleteScope1 1 and deleteScope1 2, defined as described in Section 5, handle the request of the
component PI to delete the scope s1 (i.e., TelcoPolicy1).

transition deleteScope1_1
triggeredBy delete[s1]֠ 

guardedBy state[delete[s1]֠ .task] = toStart
effects policy[delete[s1]֠ .task]’

transition deleteScope1_2
triggeredBy start[s1]
guardedBy P_delete[s1]֠ ∧ delete[s1]֠ .task=s1
effects ¬ start[s1]’ ∧ done[s1]’ ∧ state[s1]’ = done
sends delete[s1]� 

The transition deleteScope1 1 is triggered by the deletion request, only if scope s1 has not started its execution
yet, and sets the variable policy[delete[s1]֠  .task to true. When the transition x sets start[s1] = true, the trantision
s1 can not be triggered because of the false guard. The transition deleteScope1 2 is triggered instead. The effects of
deleteScope1 2 are to set the variables for s1 as if the scope had been successfully executed (but in fact it has not
been executed at all), and to notify PI of the deletion through the interaction delete[s1]� !. The following transition
to be executed is, again, x which triggers the next process in the sequence (i.e., s2).
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7. Related Work

SRML is inspired by the Service Component Architecture (SCA) [MHD+05]. SCA is a set of specifications, proposed
by an industrial consortium, that describe a middleware-independent model for building over SOAs. Similarly to
SCA, SRML provides primitives for modelling, in a technology agnostic way, business processes as assemblies of
(1) tightly coupled components that may be implemented using different technologies (including wrapped-up legacy
systems, BPEL, Java, etc.) and (2) loosely coupled, dynamically discovered services. Differently from SRML, SCA
is not a modelling language but a framework for modelling the structure of a service-oriented software artifact and
for its deployment. SCA abstracts from the business logic provided by components in the sense that it does not
provide a means to model the behavioural aspects of services. SRML is, instead, a modelling language that relies on a
mathematical framework and that provides the primitives to specify such behavioural aspects.

A (formal) model of services based on Component Based Development (CBD) can be found in [BKM07]. There,
services are seen as “crosscutting elements of the system under consideration”, describing “partial views on the set of
components in the system under consideration” [BKM07]. SRML captures a different notion of SOC in that there is
no “system under consideration”, conceived a priori, that services crosscut. The configuration, consisting of a set of
components and connectors which together provide a certain functionality, can dynamically change to include other
components, procured according to given (functional) types and service level constraints from a universe that is not
fixed a priori. The underlying middleware (SOA) supports the discovery and selection from a set of services that
is itself dynamically changing as, for example, new services are published. SRML supports, in an integrated way,
both CBD and SOC-based service provision in terms of its layered architecture that separates the service-oriented
(horizontal) layer from the component-based (vertical) one. In this way, SRML captures the positive aspects of SOC
(i.e., the service-oriented layer provides extensibility and adaptability to change) without unnecessary overhead when 24
discovery is not needed (i.e., for resources and components).

The declarative primitives of SRML capture a comprehensive view of the foundational aspects of services at a
high level of abstraction. SRML provides a more domain-level support for service-oriented modelling with respect to
formalisms based on Petri-Nets (e.g., [Rei05]) or process calculi(e.g., [LPT07, GLG+06, BBC+06]). For example, 24
SRML abstracts on the actual process of discovery, selection, binding, reconfiguration and session management, 24
whereas COWS (Calculus for Orchestrating Web Services) [LPT07] addresses a lower level of abstraction in which
the dynamic aspects need to be explicitly modelled. SRML has been related to cows in [BFL+08a] to provide an
operational semantics of SRMLto make explicit in COWS some of the run-time aspects that the denotational semantics
for SRML provided in [AF08, LFB07] abstracts from.

Process modelling at a business level is generally achieved using natural English or, more interestingly, structured
languages such as the Business Process Modelling Notation (BPMN) [Whi04] or UML Activity Diagrams. BPMN
describes process flows, with additional structure provided through the use of swimlanes. One particular advantage of
BPMN is that it can be used to model a BPEL process, although it is still limited by its inability to express service
selection criteria including non-functional service properties [OEtH05]. However, these notations do not cater for all
workflow patterns [vdAtHKB03], as described in [WvdAD+06] and [RvdAtHW06], respectively.

YAWL [vdAtH05] caters for all workflow patterns and has a graphical syntax with formal semantics, based on Petri
Nets. At a lower business level, languages such as BPEL or WS-CDL are capable of expressing business processes,
but with a code-based approach that is not high level enough for the end user.

Process calculi and Petri nets offer a formal method in which to express workflows as processes. The formalisms
provide operational semantics allowing for reasoning about the process, e.g. [HB03] and [FBS02].

As we have previously mentioned, the syntax of the workflow language is not significant, but rather the places
where a policy can interact. We have used the language of [GRM06c] for its simplicity, expressive power and our 24
familiarity with it

Policies have generally been used as an administration technique in system management (e.g. access control [Mos05]
or Internet Telephony [RM03]). Policies are descriptive and essentially provide information that is used to adapt
the behaviour of a system. Most work deals with declarative policies. Examples are the formalisms to define access
control policies, and to detect conflicts [SCZ03, HW03]; formalisms for modelling the more general notion for usage
control [ZPPSP05]; formalisms for SLA, i.e. to specify client requirements and service guarantees, and to sign a
contract with an agreement between them [BM07, BFMM07].

RuleML is a language for rule-based and knowledge-based systems, and allows Web-based rule storage, retrieval
and interchange [BTW01]. Like APPEL, it is XML-based and allows for the definition of ECA rules (note that for
readability we have not used APPEL’s XML syntax in this paper).
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WS-Policy [(ed06] seems the obvious candidate when considering policies in the context of Web Services; however
WS-Policy addresses mostly aspects related to access control and encryption which are at a much more technical
level then the business concepts that we consider in policies. It might be possible to extend WS-Policy with suitable
constructs and then compile the policies into this framework, which is an avenue worthwhile of future investigation.

In addition, a methodology has been proposed to extract workflows from business policies [Wan06]. However, we
are not aware of policies being used as a variability factor in service-targeted processes.

Dynamic processes that are based on the end-user’s needs are more difficult to find. Reichert and Dadam [RD98] and
Adams et al [AtHEvdA06] introduce ideas for flexibility in workflows. The former discuss a framework for dynamic
process change, but their approach does not include a flexible external system (like our policies) that can affect the
workflow in progress. The latter, presents Worklets, a system based on an extensible repertoire of sub processes aligned
to each task, one of which is chosen at runtime.

Possibly AgentWork [MGR04], where ECA rules can be used to drop or add individual tasks to workflows, is
closest to our initial discussions on linking policies with workflows [GRM06b, GRM06a]. However, there is no notion
of tasks being linked to services in this work, and the policies are concerned with task replacement rather than task
implementation, service selection or the more significant workflow restructuring discussed here.

8. Summary and Conclusion

The engineering of Service Oriented applications, as opposed to more traditional application development, is faced
with novel challenges arising from the dynamicity of component selection and assembly, leading to massively dis-
tributed, interoperable and evolvable systems. Furthermore, a continuing challenge is to correctly align business goals
with IT strategy. As such, the development approach must change to accommodate these factors.

In this paper, we have presented SRML - a high level modelling language for service-based applications. SRML is
based on a formal framework and can model service compositions and configurations. The orchestration of the services
is modelled by a central agent in each SRML module. However, the business process is less clear. The orchestration
according to the business process is defined by STPOWLA, an approach that combines workflows, policies and SOA.

The main contributions of this paper are 1) an encoding of basic STPOWLA workflow constructs in SRML, 2)
an encoding of STPOWLA reconfiguration and refinement policies in SRML and (3) a methodology by example on a
realistic case study showing how the combination of STPOWLA and SRML can be used.

The benefits of this work are twofold. The mapping between SRML and STPOWLA creates a formal framework
for the latter (where it only previously had formal semantics for the APPEL policy language). Since applications are
often designed based on the business process, STPOWLA can create process models easily, then transformed to SRML
modules such that they can be analysed alone or as part of more complex modules. Even further, BPEL processes can
be mapped to SRML modules for a clearer path between the defining the process and using the service. Looking at the
encoding bottom-up, STPOWLA adds a higher level of modelling to SRML modules in the form of a process-oriented
workflow schedule, with system variability separated from the core business concerns, which is considered for the first
time here.
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[LFB07] Antónia Lopes, José Luiz Fiadeiro, and Laura Bocchi. Algebraic Semantics of Service Component Modules. In Algebraic Develop-
ment Techniques, volume 4409 of Lecture Notes in Computer Science, pages 37–55. Springer, 2007.

[LPT07] Alessandro Lapadula, Rosario Pugliese, and Francesco Tiezzi. A calculus for orchestration of web services. In European Symposium
of Programming, volume 4421 of Lecture Notes in Computer Science, pages 33–47. Springer, 2007.

[MGR04] Robert Müller, Ulrike Greiner, and Erhard Rahm. Agentwork: a workflow system supporting rule-based workflow adaptation. Data
Knowl. Eng., 51(2):223–256, 2004.

[MHD+05] M. Beisiegel, H Blohm, D. Booz, J. Dubray, A. Colyer, M. Edwards, D. Ferguson, B. Flood, M. Greenberg, D. Kearns, J.
Marino, J. Mischkinsky, M. Nally, G. Pavlik, M. Rowley, K. Tam, and C. Trieloff. Building Systems using a Service Ori-
ented Architecture. Whitepaper, SCA Consortium, 2005. http://www.oracle.com/technology/tech/webservices/
standards/sca/pdf/SCA_White_Paper1_09.pdf.

[Mos05] Tim Moses. extensible access control markup language specification. Available from www.oasis-open.org, 2005.
[MRMS07] Carlo Montangero, Stephan Reiff-Marganiec, and Laura Semini. Logic-based detection of conflicts in APPEL policies. In F. Arbab

and M. Sirjani, editors, FSEN2007, volume 4676 of Lecture Notes in Computer Science. Springer Verlag, 2007.
[MRMSon] C. Montangero, S. Reiff-Marganiec, and L. Semini. Logic-based conflict detection for distributed policies. Fundamentae Informatica,

2008, accepted for publication.
[OEtH05] J. O’Sullivan, D. Edmond, and A. H. M. ter Hofstede. Formal description of non-functional service properties. Technical Report

FIT-TR-2005-01, Queensland University of Technology, Brisbane, Feb 2005.
[RD98] M. Reichert and Peter Dadam. Adeptflex-supporting dynamic changes of workflows without losing control. J. Intell. Inf. Syst.,

10(2):93–129, 1998.
[Rei05] Wolfgang Reisig. Modeling- and analysis techniques for web services and business processes. In Martin Steffen and Gianluigi

Zavattaro, editors, Formal Methods for Open Object-Based Distributed Systems, volume 3535 of Lecture Notes in Computer Science,
pages 243–258. Springer, 2005.



26 L. Bocchi and S. Gorton and S. Reiff-Marganiec

[RM03] Stephan Reiff-Marganiec. Policies: Giving users control over calls. In Mark Dermot Ryan, John-Jules Ch. Meyer, and Hans-Dieter
Ehrich, editors, Objects, Agents, and Features, volume 2975 of Lecture Notes in Computer Science, pages 189–208. Springer Verlag,
2003.

[RMTB05] Stephan Reiff-Marganiec, Kenneth J. Turner, and Lynne Blair. APPEL: the ACCENT project policy environment/language. Technical
Report TR-161, University of Stirling, 2005.

[RvdAtHW06]Nick Russell, Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, and Petia Wohed. On the suitability of uml 2.0 activity diagrams
for business process modelling. In Markus Stumptner, Sven Hartmann, and Yasushi Kiyoki, editors, APCCM, volume 53 of CRPIT,
pages 95–104. Australian Computer Society, 2006.

[SCZ03] F. Siewe, A. Cau, and H. Zedan. A compositional framework for access control policies enforcement. In Proceedings of the 2003
ACM workshop on Formal Methods in Security Engineering, pages 32–42, NY, NY, USA, 2003. ACM Press.

[sen] Software engineering for service-oriented overlay computers (SENSORIA).
Web site: http://sensoria.fast.de/.

[SUF97] Stefano Bistarelli, Ugo Montanari, and Francesca Rossi. Semiring-based constraint satisfaction and optimization. J. ACM, 44(2):201–
236, 1997.

[vdAtH05] Wil M. P. van der Aalst and Arthur H. M. ter Hofstede. Yawl: yet another workflow language. Inf. Syst., 30(4):245–275, 2005.
[vdAtHKB03]Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, Bartek Kiepuszewski, and Alistair P. Barros. Workflow patterns. Distributed and

Parallel Databases, 14(1):5–51, 2003. Information also available from www.workflowpatterns.com.
[Wan06] Harry Jiannan Wang. A Logic-based Methodology for Busines Process Analysis and Design: Linking Business Policies to Workflow

Models. PhD thesis, University of Arizona, 2006.
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