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Abstract

The aim of the paper is to establish a convergence theorem for multi-dimensional stochastic
approximation when the “innovations” satisfy some “light” averaging properties in the presence of
a pathwise Lyapunov function. These averaging assumptions allow us to unify apparently remote
frameworks where the innovations are simulated (possibly deterministic like in Quasi-Monte Carlo
simulation) or exogenous (like market data) with ergodic properties. We propose several fields of
applications and illustrate our results on five examples mainly motivated by Finance.

Keywords Stochastic Approximation, sequence with low discrepancy, quasi-Monte Carlo, α-mixing
process, Gàl-Koksma theorem, stationary process, ergodic control, two-armed bandit algorithm, cali-
bration, optimal asset allocation, Value-at-Risk, Conditional Value-at-Risk.
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1 Introduction

The aim of this paper is to establish a convergence theorem for multi-dimensional recursive stochastic
approximation in a non-standard framework (compared to the huge literature on this field, see [6],
[13], [19], [4], etc): we will significantly relax our assumption on the innovation process by only asking
for some natural “light” ergodic or simply averaging assumptions, compensated by a reinforcement of
the mean reversion assumption since we will require the existence of a pathwise Lyapunov function.
We will show that this approach unifies seemingly remote settings: those where the innovations are
simulated or even deterministic (quasi-Monte Carlo simulation) and those where the innovations are
exogenous data (like market data). Especially in the latest case it may be not realistic to make a
priori too stringent assumptions on the dynamics of such data process, like mixing or Markov. On
the other hand, the pathwise Lyapunov assumption is definitely an intrinsic limitation to the kind of
problem we can deal with, compared to the procedures extensively investigated in [6] or more recently
in [11] where innovations are Markovian and share mixing properties.

However, we provide several examples, mainly inspired by Finance, to illustrate the fact that the
field of application of our framework is rather wide and can solve efficiently various kinds of problems,
some of them having already been considered in the literature.
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Let us be more specific: this paper presents convergence results for Rd-valued stochastic approxi-
mation procedures of Robbins-Monro type (see [37] for the original paper), namely

θn+1 = θn − γn+1H(θn, Yn), n ≥ 0, θ0 ∈ R
d, (1.1)

where H : Rd×R
q → R

d is a Borel function, (γn)n≥1 a sequence of positive steps and the “innovation”
sequence (Yn)n≥0 satisfies some “elementary” averaging assumptions (θ0 is assumed to be deterministic
in this introduction for convenience simplicity). In fact, we will consider a slightly more general setting
which includes an extra noisy term

θn+1 = θn − γn+1 (H(θn, Yn) + ∆Mn+1) , n ≥ 0, (1.2)

where (∆Mn)n≥1 is a sequence of Rd-valued Fn-adapted martingale increments for a filtration Fn.
To establish the a.s. convergence of the sequence (θn)n≥0 toward its “target” θ∗ (to be specified later

on), the idea is to make the assumption that the innovation sequence (Yn)n≥0 satisfies an averaging
property in a “linear” setting: typically that, for a wide enough class V of integrable functions (with
respect to a probability measure ν),

∀f ∈ V, 1

n

n−1∑

k=0

f(Yk) −→
n→∞

∫

Rq

fdν (1.3)

at a common rate of convergence to be specified further on. If V ⊃ Cb(Rq,R), this implies

1

n

n−1∑

k=0

δYk

(Rq)
=⇒
n→∞

ν a.s.

by a separability argument (
(Rq)
=⇒ denotes the weak convergence of probability measures). Such a

sequence (Yn)n≥0 is often called “stable” in the literature, at least when it is a Markov chain. If
V = L1(ν), the sequence (Yn)n≥0 may be called in short “ergodic” although no true ergodic framework
comes in the game at this stage. The target of our recursive procedure (1.2) is then, as expected, a
zero, if any, of the (asymptotic) mean function of the algorithm defined as

h(θ) :=

∫

Rq

H(θ, y)ν(dy).

The key assumption is the existence of pathwise Lyapunov function with respect to the innovation i.e.
a function L satisfying

〈∇L(θ) |H(θ, y)−H(θ∗, y)〉 ≥ 0

for every θ and y. This assumption may look very stringent but in fact, it embodies standard framework
of Stochastic Approximation with Markov representation of the form (1.1) when the (Yn)n≥0 is i.i.d.
since, under appropriate integrability assumptions, it can be rewritten as follows in canonical form

θn+1 = θn − γn+1

(
H̃(θn, Yn) + ∆M̃n+1

)
, n ≥ 0, θ0 ∈ R

d,

where H̃(θ, ·) = h(θ) and ∆M̃n+1 = H(θn, Yn) − h(θn), n ≥ 0. Then (∆M̃n)n≥1 is a sequence of

σ(Y0, . . . , Yn−1)-martingale increments (under appropriate integrability assumptions). Finally H̃(θ, ·) =
h(θ) does not depend on y so that the above notion of pathwise Lyapunov function reduces to the
standard one. The above canonical form has been extensively investigated (and extended) in many
textbooks on Stochastic Approximation (see [6], [13], [18], [19]).
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Our main theorem (Theorem 2.1) let us retrieve almost entirely the classical results about Lp-
boundedness and a.s. convergence of this procedure under standard Lyapunov assumption. Many
extensions have been developed when (Yn)n≥0 or even (θn, Yn)n≥0 have a Markovian dynamics (see
the seminal textbook [6] and more recent contributions like [11] and several references therein). The
main constraint induced by such an approach is that the existence as well as assumptions on the
solution of the Poisson equation related to this chain are needed.

As a first field of applications, we are interested in quasi-random numbers. The original idea
of replacing by uniformly distributed sequences (with low discrepancy) i.i.d. innovations in recursive
stochastic approximation procedures goes back to the early 1990’s in [24], leading to “Quasi-Stochastic
Approximation” (QSA, referring to QMC for Quasi-Monte Carlo). The framework in [24] was purely
one-dimensional whereas many numerical tests h proved the efficiency of QSA in a multi-dimensional
setting. The aim is to establish a convergence theorem in this higher dimensional setting under
natural regularity assumptions (i.e. based on Lipschitz regularity rather than finite variation in the
Hardy & Krause or in the measure sense, often encountered in the QMC world). As concerns the low
discrepancy sequences, our framework is probably close to the most general one to get pointwise a.s.
convergence of stochastic approximation.

As a second setting, we consider the case when (Yn)n≥0 is a functional of α-mixing process satisfying
a priori no Markov assumption. These processes are stationary and dependent, so more realistic to
model inputs made of real data. To describe the class of functions V we need to prove the convergence
of the series of covariance coefficients of the innovations. To this end we use some results in [35] and
the covariance inequality for α-mixing process (see [12]). Next with the probabilistic version of the
Gàl-Koksma theorem (see [16] and [1, 2, 3]) we prove that this class is large enough (L2+δ(ν) ⊂ V,
δ > 0). Finally we examine the case of homogeneous Markov chain with (unique) invariant distribution
ν. Several convergence results of stochastic approximation have been proved in this setting in [6], but
they all rely on the existence (and some regularity properties) of a solution to Poisson equation. To
describe V we add an assumption on the transition of the chain which allows us to prove that this
class does not depend on the initial value of the chain.

Finally we propose several examples of applications illustrated with numerical experiment. They
can be parted in two classes: the first one devoted to simulated innovations (i.e. Numerical Probability
methods) and the second one deals with the applications involving real data. Primarily we present a
simple case of calibration: the search, for a derivative product in a financial model, of an implicit model
parameter fitting with its market value. We implement the algorithm with both an i.i.d. sequence
and a quasi-Monte Carlo sequence to compare their respective rates of convergence. The second
example is devoted to the recursive computation of risk measures commonly considered in energy
portfolio management: the Value-at-Risk and the Conditional-Value-at-Risk. We design a stochastic
gradient and a companion procedure to compute risk measures (like in [5, 15]) and we show that they
can be successfully implemented in a QSA framework. In the third example, we solve numerically
a “toy” long term investment problem leading to a static potential minimization derived from an
ergodic control problem (see [30]). The potential is related to the invariant measure of a diffusion so
that the innovation relies on (inhomogeneous Markov) Euler schemes with decreasing step introduced
in [20] (see also [27]). These three stochastic approximation procedures relie on simulated data. The
fourth example is the so-called two-armed bandit introduced in learning automata and mathematical
psychology in the 1950’s (see [32]). Its a.s. behaviour in the i.i.d. setting has been extensively
investigated in [23] and [21] and then partially extended in [40] to a more general ergodic framework.
We show how the starting point of this extension appears as a consequence our multiplicative case
(Theorem 2.2). The last example describes a model of asset allocation across liquidity pools fully
developed in [26] involving exogenous real market data, a priori sharing no Markov property but on
which an averaging assumption seems natural (at least within a medium laps of time).
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The paper is organized as follows: in Section 2 are stated and proved the two main results: Theorem
2.1 and its counterpart Theorem 2.2, for multiplicative noise. Section 3 is devoted to quasi-Stochastic
Approximation, i.e. the case where the innovation process is an uniformly distributed deterministic
sequence over [0, 1]q . Section 4 is devoted to applications to random innovations, namely additive
noise, mixing process (functionals of α-mixing process), ergodic homogeneous Markov chain. Section
5 presents five examples of applications including numerical illustrations, mostly in connection with
Finance: implicit correlation search, recursive computation of VaR and CVaR, long term investment
evaluation, two-armed bandit algorithm and optimal allocation problem (more developed in [26]).

Notations 〈· | ·〉 denotes the canonical Euclidean inner product and |·| its related norm on R
d. The

almost sure convergence will be denoted by
a.s.−→ and

(Rq)
=⇒will denote the weak convergence of probability

measures on (Rq,Bor(Rq)). ∆an = an − an−1 for every sequence (an)n.

2 Algorithm design and main theoretical result

In this paper, we consider the following general framework for recursive stochastic algorithms of the
following form

θn+1 = θn − γn+1 (H(θn, Yn) + ∆Mn+1) , n ≥ 0, (2.4)

where (Yn)n≥0 is an R
q-valued sequence of Fn-adapted random variables and (∆Mn)n≥1 is a sequence

of Fn-adapted martingale increment, all defined on a same filtered probability space (Ω,F , (Fn)n≥0,P).
Moreover θ0 ∈ L1

Rd(Ω,F0,P) and θ0 is independent of (Yn,∆Mn+1)n≥0. The positive step sequence

(γn)n≥1 is non-increasing and H is a Borel function from R
d × R

q to R
d.

In the following, we adopt a kind of compromise by assuming that (Yn)n≥0 is a process satisfying
some averaging properties and that the function H(θ∗, ·) belongs to a class of functions (to be specified
further on) for which a rate of convergence (a.s. and in Lp) holds in (1.3). Moreover we need to reinforce
the Lyapunov condition on the pseudo-mean function H which limits, at least theoretically, the range
of application of the method.

2.1 Framework and assumptions

Let (Yn)n≥0 be an R
q-valued random variables sequence. We will say that the sequence (Yn)n≥0

satisfies a ν-stability assumption or equivalently is ν-averaging if

P(dω)-a.s.
1

n

n−1∑

k=0

δYk(ω)
(Rq)
=⇒
n→∞

ν. (2.5)

We will see that the stochastic approximation procedure defined by (2.4) is a recursive zero search
of the (asymptotic) mean function

h(θ) :=

∫

Rq

H(θ, y)ν(dy). (2.6)

Let p ∈ [1,∞) and let (εn)n≥0 be a sequence of nonnegative numbers such that

εn −→
n→∞

0 and lim
n

inf nεn = 0. (2.7)

We denote by Vεn,p the class of functions which convergence rate in (1.3) in both a.s. and in Lp(P)
sense is ε−1

n , namely

Vεn,p =

{
f ∈ Lp(ν) | 1

n

n−1∑

k=0

f(Yk)−
∫

fdν
P-a.s. & Lp(P)

= O(εn)

}
. (2.8)
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2.2 Main result

Now we are in a position to state an a.s.-convergence theorem “à la” Robbins-Siegmund.

Theorem 2.1. (a) Boundedness. Let h : Rd → R
d satisfying (2.6), H : Rd×R

q → R
d a Borel function

and let (Yn)n≥0 be a ν-stable sequence (i.e. satisfying (2.5)). Assume there exists a continuously
differentiable function L : Rd → R+ satisfying

∇L is Lipschitz continuous and |∇L|2 ≤ C (1 + L) (2.9)

and that the pseudo-mean function H satisfies the pathwise Lyapunov assumption

∀θ ∈ R
d\{θ∗}, ∀y ∈ R

q, 〈∇L(θ) | H(θ, y)−H(θ∗, y)〉 ≥ 0. (2.10)

Let p ∈ [1,∞) and let (εn)n≥1 be a sequence satisfying (2.7). Assume that

H(θ∗, ·) ∈ Vεn,p. (2.11)

Moreover, assume that H satisfies the following (quasi-)linear growth assumption

∀θ ∈ R
d, ∀y ∈ R

q, |H(θ, y)| ≤ CHφ(y)(1 + L(θ))
1
2 (2.12)

and that the martingale increments sequence (∆Mn)n≥1 satisfies for every n ≥ 0,

P-a.s.





E

(
|∆Mn+1|2∨

p
p−1 | Fn

)
≤ CMφ(Yn)

2∨ p
p−1 (1 + L(θn))

1∨ p
2(p−1) if p > 1,

|∆Mn+1|
(1+L(θn))

1
2
≤ CM if p = 1

(2.13)

where CM is a positive real constant and supn≥0 ‖φ(Yn)‖2∨ p
p−1

< +∞.

Let γ = (γn)n≥1 be a nonnegative non-increasing sequence of “admissible” gain parameters satisfying

∑

n≥1

γn = +∞, nεnγn −→
n→∞

0, and
∑

n≥1

nεnmax
(
γ2n, |∆γn+1|

)
< +∞. (2.14)

Then, the recursive procedure defined by (2.4) satisfies (L(θn))n≥0 is L1-bounded, L(θn) −→
n→∞

L∞ <

+∞ a.s., ∆θn −→
n→∞

0 a.s. and
∑

n≥1

〈∇L(θn) | H(θn, Yn)−H(θ∗, Yn)〉 < +∞.

(b) A.s. convergence toward θ∗. Furthermore, if {θ∗} is a connected component of {L = L(θ∗)} and
the pseudo-mean function H satisfies the strict pathwise Lyapunov assumption

∀δ > 0, ∀θ ∈ R
d\{θ∗}, ∀y ∈ R

q, 〈∇L(θ) | H(θ, y)−H(θ∗, y)〉 ≥ χ
δ
(y)Ψδ(θ) (2.15)

where ν(χ
δ
) > 0, Ψδ is l.s.c. and positive on R

d\{θ∗} and
⋂

δ>0{Ψδ = 0} = {θ∗}, then

θn
a.s.−→

n→∞
θ∗.

Remark. The conditions on the step sequence γ = (γn)n≥1 and (εn)n≥1 are satisfied for example by

εn = n−β, β ∈ (0, 1], and γn =
c

na
, 1− β < a ≤ 1, c > 0. (2.16)
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Proof. First step: We introduce the function

Λ(θ) :=
√

1 + L(θ)

as a Lyapunov function instead of L(θ) like in the classical case. It follows from the fundamental
formula of calculus that there exists ξn+1 ∈ (θn, θn+1) such that

Λ(θn+1) = Λ(θn) + 〈∇Λ(θn) |∆θn+1〉+ 〈∇Λ(ξn+1)−∇Λ(θn) |∆θn+1〉
≤ Λ(θn) + 〈∇Λ(θn) |∆θn+1〉+ |∇Λ(ξn+1)−∇Λ(θn)||∆θn+1|.

Lemma 2.1. The new Lyapunov function Λ satisfies the two following properties

(i) ∇Λ is bounded (so that Λ is Lipschitz).

(ii) ∀θ, θ′ ∈ R
d, |∇Λ(θ′)−∇Λ(θ)| ≤ CL

|θ′−θ|
Λ(θ) .

Proof of Lemma 2.1. (i) ∇Λ = ∇L
2
√
1+L

is bounded by (2.9), consequently Λ is Lipschitz.

(ii) Let θ, θ′ ∈ R
d,

∣∣∇Λ(θ)−∇Λ(θ′)
∣∣ ≤ |∇L(θ)−∇L(θ′)|

2
√

1 + L(θ)
+

|∇L(θ′)|
2

∣∣∣∣∣

√
1 + L(θ′)−

√
1 + L(θ)√

1 + L(θ)
√

1 + L(θ′)

∣∣∣∣∣

≤ [∇L]Lip

2
√

1 + L(θ)

∣∣θ − θ′
∣∣+ C

2
√

1 + L(θ)
[Λ]Lip

∣∣θ − θ′
∣∣

≤ 1

2
([∇L]Lip + C[Λ]Lip)

|θ − θ′|
Λ(θ)

= CL
|θ − θ′|
Λ(θ)

. �

Thus, applying the above lemma to θ = θn and θ′ = ξn+1, and noting that |ξn+1−θn| ≤ |∆θn+1| yields

Λ(θn+1) ≤ Λ(θn)− γn+1 〈∇Λ(θn) |H(θn, Yn)〉 − γn+1 〈∇Λ(θn) |∆Mn+1〉+ CL
|∆θn+1|2√
1 + L(θn)

= Λ(θn)− γn+1 〈∇Λ(θn) |H(θn, Yn)−H(θ∗, Yn)〉 − γn+1 〈∇Λ(θn) |H(θ∗, Yn)〉

−γn+1 〈∇Λ(θn) |∆Mn+1〉+ CLγ
2
n+1

|H(θn, Yn) + ∆Mn+1|2√
1 + L(θn)

.

We have for every n ≥ 0,

|γn+1 〈∇Λ(θn) |H(θ∗, Yn)〉| ≤ CΛγn+1φ(Yn) ∈ L1(P)

since ∇Λ is bounded. Besides E [〈∇Λ(θn) |∆Mn+1〉 | Fn] = 0, n ≥ 0, since ∆Mn is a true martingale
increment and ∇Λ is bounded. Furthermore, owing to (2.12) and (2.13)

E

[
|H(θn, Yn) + ∆Mn+1|2√

1 + L(θn)
| Fn

]
≤ Cφ2(Yn)Λ(θn)

(where conditional expectation is extended to positive random variables). Consequently,

E [Λ(θn+1) | Fn] ≤ Λ(θn)
(
1 + C ′

Lγ
2
n+1φ(Yn)

2
)
− γn+1 〈∇Λ(θn) |H(θn, Yn)−H(θ∗, Yn)〉

−γn+1 〈∇Λ(θn) |H(θ∗, Yn)〉 . (2.17)
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We set Vn :=
An

Bn
, n ≥ 1 where

An := Λ(θn) +

n−1∑

k=0

γk+1 〈∇Λ(θk) |H(θk, Yk)−H(θ∗, Yk)〉 , Bn :=

n∏

k=1

(
1 + C ′

Lγ
2
kφ(Yk−1)

2
)
.

Using the mean-reverting assumption (2.15) implies that (An)n≥0 is a nonnegative process and Bn is
Fn−1-adapted, n ≥ 1. Elementary computations first show that

E [An+1 | Fn] ≤ An
Bn+1

Bn
− γn+1 〈∇Λ(θn) |H(θ∗, Yn)〉

which finally yields
∀n ≥ 0, E [Vn+1 | Fn] ≤ Vn −∆Wn+1, (2.18)

where Wn :=
∑n−1

k=0 γ̃k+1 〈∇Λ(θk) |H(θ∗, Yk)〉 with γ̃n := γn
Bn

, n ≥ 0.

Second step: Now our aim is to prove that the sequence (Wn)n≥0 is L1-bounded and a.s. converges.
To this end we set S∗

n :=
∑n−1

k=0 H(θ∗, Yk), then it follows

Wn =

n−1∑

k=0

γ̃k+1

〈
∇Λ(θk) |∆S∗

k+1

〉
= γ̃n 〈∇Λ(θn−1) |S∗

n〉 −
n−1∑

k=1

〈S∗
k | γ̃k+1∇Λ(θk)− γ̃k∇Λ(θk−1)〉 .

First, since ∇Λ is bounded, note that

γ̃n |∇Λ(θn−1)| |S∗
n| ≤ ‖∇Λ‖∞ nεnγ̃n

|S∗
n|

nεn
≤ ‖∇Λ‖∞ nεnγn

|S∗
n|

nεn

which a.s. goes to 0 as n goes to infinity since nεnγn −→
n→∞

0 by (2.14) and

(
S∗
n

nεn

)

n≥1

remains a.s.

bounded. Moreover

E [γ̃n |∇Λ(θn−1)| |S∗
n|] ≤ nεnγn ‖∇Λ‖∞

∥∥∥∥
S∗
n

nεn

∥∥∥∥
1

which converges to 0 in L1 because nεnγn −→
n→∞

0 and H(θ∗, ·) ∈ Vεn,p. On the other hand,

n−1∑

k=1

〈S∗
k | γ̃k+1∇Λ(θk)− γ̃k∇Λ(θk−1)〉 =

n−1∑

k=1

〈S∗
k |∇Λ(θk)〉∆γ̃k+1 +

n−1∑

k=1

γ̃k 〈S∗
k | ∇Λ(θk)−∇Λ(θk−1)〉 .

As ∇Λ =
∇L

2
√
1 + L

is bounded by construction, we have

n∑

k=1

|∆γ̃k+1 〈S∗
k |∇Λ(θk)〉| ≤

n∑

k=1

|∆γ̃k+1| |S∗
k | ‖∇Λ‖∞ ≤ ‖∇Λ‖∞

n∑

k=1

kεk |∆γ̃k+1|
∣∣∣∣
S∗
k

kεk

∣∣∣∣ .

Now, using that a
1+a ≤ √

a, a > 0,

|∆γ̃k+1| ≤ |∆γk+1|+ γk
C ′
Lγ

2
k+1φ(Yk)

2

Bk+1
≤ |∆γk+1|+ γk

C ′
Lγ

2
k+1φ(Yk)

2

1 + C ′
Lγ

2
k+1φ(Yk)2

≤ |∆γk+1|+C ′
Lγkγk+1φ(Yk).

Hence

n∑

k=1

|∆γ̃k+1 〈S∗
k |∇Λ(θk)〉| ≤ ‖∇Λ‖∞

(
n∑

k=1

kεk |∆γk+1|
∣∣∣∣
S∗
k

kεk

∣∣∣∣+ C ′
L

n∑

k=1

kεkγkγk+1φ(Yk)

∣∣∣∣
S∗
k

kεk

∣∣∣∣

)
.
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By Hölder’s Inequality

E

(
φ(Yk)

∣∣∣∣
S∗
k

kεk

∣∣∣∣
)

≤ ‖φ(Yk)‖ p
p−1

∥∥∥∥
S∗
k

kεk

∥∥∥∥
p

.

As

(
S∗
k

kεk

)

n≥0

is bounded, γ is admissible and sup
k≥0

‖φ(Yk)‖ p
p−1

< +∞, then the series
∑n

k=1∆γ̃k 〈S∗
k | ∇Λ(θk)〉

is absolutely converging in L1(P).

We study now the series

n∑

k=1

γ̃k 〈S∗
k |∇Λ(θk)−∇Λ(θk−1)〉. We have

|∇Λ(θk)−∇Λ(θk−1)| ≤ C ′
L

|∆θk|√
1 + L(θk−1)

≤ C ′
Lγk

|H(θk−1, Yk−1)|+ |∆Mk|√
1 + L(θk−1)

.

We are interested in the L1-convergence of the series

n∑

k=1

γ2k |S∗
k|

|H(θk−1, Yk−1)|√
1 + L(θk−1)

and
n∑

k=1

γ2k |S∗
k |

|∆Mk|√
1 + L(θk−1)

.

For the first sum, as
|H(θk−1, Yk−1)|√

1 + L(θk−1)
≤ CHφ(Yk−1), we then come to

∑n
k=1CHγ2kE [|S∗

k | |φ(Yk−1)|] and
by Hölder’s inequality we obtain

E [|S∗
k | |φ(Yk−1)|] ≤ ‖S∗

k‖p ‖φ(Yk−1)‖ p
p−1

< +∞

because ‖S∗
k‖p = O (kεk) by (2.8) and sup

n≥0
‖φ(Yn)‖ p

p−1
< +∞. Furthermore, as

∑

k≥1

kεkγ
2
k < +∞ by

(2.14), then the series
n∑

k=1

γ2k |S∗
k |

|H(θk−1, Yk−1)|√
1 + L(θk−1)

converges in L1.

For the second sum, we derive from Hölder’s inequality (with p and p
p−1) and (2.13) that

E

[
|S∗

k |
|∆Mk|√

1 + L(θk−1)

]
≤ ‖S∗

k‖p

∥∥∥∥∥
|∆Mk|√

1 + L(θk−1)

∥∥∥∥∥
p

p−1

≤ CM ‖S∗
k‖p ‖φ(Yk−1)‖ p

p−1
∨2 < +∞.

This yields that

n∑

k=1

γ2k |S∗
k|

|∆Mk|√
1 + L(θk−1)

converges in L1 too. Finally we then obtain that Wn
a.s.−→

n→∞

W∞ and supn≥0 ‖Wn‖1 < +∞. Thus we have that

(Vn +Wn)
− ≤ W−

n ≤ |Wn| ∈ L1(P) since sup
n≥0

‖Wn‖1 < +∞.

As V0 = Λ(θ0) ≤ C(1+|θ0|) ∈ L1, it follows by induction from (2.18) that, for every n ≥ 0, EVn < +∞.
Hence Sn := Vn +Wn, n ≥ 0, is a true supermartingale with an L1-bounded negative part. We then
deduce that

Sn
a.s.−→

n→∞
S∞ ∈ L1.

Now Wn
a.s.−→

n→∞
W∞ implies Vn

a.s.−→
n→∞

V∞ < +∞ a.s.

Third step: Now we show that the product Bn converges a.s. to derive that An converges a.s..
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In fact
∑

n≥1

γ2nφ
2(Yn−1) < +∞ a.s.,

since sup
n≥0

E
[
φ2(Yn)

]
< +∞ and

∑
n≥1 γ

2
n < +∞ by combining (2.7) and (2.14), which in turn implies

that Bn
a.s.−→

n→∞
B∞ < +∞. As a consequence An

a.s.−→
n→∞

A∞ < +∞. Therefore using the mean reverting

property (2.15) of H with respect to ∇Λ, we classically derive that

∑

n≥1

γn 〈∇Λ(θn−1) |H(θn−1, Yn−1)−H(θ∗, Yn−1)〉 < +∞ a.s. (2.19)

Consequently Λ(θn)
a.s.−→

n→∞
Λ∞ < +∞ a.s.

As lim
|θ|→+∞

L(θ) = +∞, lim
|θ|→+∞

Λ(θ) = +∞, then the sequence (θn)n≥0 is a.s.-bounded and

L(θn)
a.s.−→

n→∞
L∞ < +∞ a.s.

Now let us show that ∆θn −→
n→+∞

0. In fact, |∆θn+1|2 ≤ Cγ2n+1

(
|H(θn, Yn)|2 + |∆Mn+1|2

)
, so that

E

[
|∆θn+1|2 | Fn

]
≤ Cγ2n+1φ(Yn)

2(1 + L(θn))

and (L(θn))n≥0 being a.s. bounded,

∑

n≥0

E

[
|∆θn+1|2 | Fn

]
< +∞. a.s.

which classically implies that
∑

n≥0 |∆θn+1|2 < +∞ a.s.

Fourth step: To prove the convergence of θn toward θ∗, we use Assumptions (2.15) and (2.19) to
deduce that ∑

n≥1

γnχδ
(Yn−1)Ψδ(θn−1) < +∞ a.s. (2.20)

Now,
n∑

k=0

γk+1χδ
(Yk) =

n∑

k=0

γk+1∆Sχ
k = γn+1S

χ
n−

n−1∑

k=1

∆γk+2S
χ
k

where Sχ
n =

∑n
k=0 χδ

(Yk) and we set Sχ
0 = 0 and ∆Sχ

0 = 0.

By Assumption (2.5),
Sχ
n

n
→ ν(χ

δ
) > 0 as n → ∞. Let n0 be the smallest integer such that

∀n ≥ n0,
Sχ
n

n
≥ ǫ0 =

ν(χ
δ
)

2
> 0.

Then, a standard discrete integration by part yields

∀n ≥ n0,
n∑

k=n0

γk+1χδ
(Yk) = nγn+1

Sχ
n

n
− Cn0 +

n−1∑

k=n0

k(−∆γk+2)
Sχ
k

k
a.s.,

9



where Cn0 = γn0+1S
χ
n0−1. Therefore, using that the sequence (−∆γn)n≥1 is nonnegative,

n∑

k=n0

γk+1χδ
(Yk) ≥ nγn+1ǫ0 − Cn0 +

n−1∑

k=n0

k(−∆γk+2)ǫ0 = ǫ0

(
nγn+1 +

n−1∑

k=n0

k(−∆γk+2)
)
− Cn0

= ǫ0

(
γn+1 + n0γn0+1 +

n−1∑

k=n0+1

γk+1

)
− Cn0

by a reverse discrete integration by parts. Finally

n∑

k=n0

γk+1χδ
(Yk) ≥ ǫ0

(
γn+1 +

n−1∑

k=n0+1

γk+1

)
− Cn0 → ∞ as n → ∞

since
∑

n≥1

γn = +∞. We have then shown that

∑

k≥0

γk+1χδ
(Yk) = +∞ a.s.

Combining this fact with (2.20) classically implies that

lim inf
n

Ψ̃δ(θn) = 0.

Let Θ∞ be the set of limiting points of the sequence (θn)n≥0. Θ∞ is a compact connected set since
(θn)n≥0 is bounded and ∆θn −→

n→∞
0. Moreover {Ψδ = 0} is closed because Ψδ ≤ 0 and l.s.c. and Θ∞

is closed too. So Θ∞ ∩ {Ψδ = 0} is a family of nonempty compact sets which decreases as δ ց 0 since
it is bounded. As a consequence, ⋂

δ>0

(Θ∞ ∩ {Ψδ = 0}) 6= ∅.

The other assumption on Ψδ implies

⋂

δ>0

(Θ∞ ∩ {Ψδ = 0}) ⊂
⋂

δ>0

{Ψδ = 0} = {θ∗},

so that in fact it is reduced to θ∗. Hence θ∗ is a limiting point of (θn)n≥0 which implies that L(θn) con-
verges towards L(θ∗). By the assumption on the Lyapunov function L, {θ∗} is a connected component
of {L = L(θ∗)} and as Θ∞ is connected, Θ∞ = {θ∗}. Therefore

θn
a.s.−→ θ∗ as n → ∞. �

Back to the i.i.d. innovation setting. ⊲ Theorem 2.1 contains the standard martingale ap-
proach “à la” Robbins-Siegmund in the i.i.d. setting. Indeed, we consider the recursive procedure

θn+1 = θn − γn+1K(θn, Yn+1), n ≥ 0,

where (Yn)n≥1 is i.i.d. with distribution ν and θ0 is independent of (Yn)n≥1 (all defined on (Ω,A,P)).
We set Fn = σ(θ0, Y1, . . . , Yn), n ≥ 0, p = 2,

H(θ, y) = h(θ) with h(θ) =

∫

Rq

K(θ, y)ν(dy) and ∆Mn+1 = K(θn, Yn+1)−E [K(θn, Yn+1) | Fn] .
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Assume that
∀θ ∈ R

d, ‖K(θ, Y1)‖2 ≤ CK(1 + L(θ))
1
2 .

Then Assumption (2.12) is satisfied by h and (2.13) holds (with φ ≡ 1). Furthermore, by combining
(2.7) and (2.14), we retrieve the step assumption in the standard Robbins-Monro Theorem, namely

∑

n≥1

γn = +∞ and
∑

n≥1

γ2n < +∞.

⊲ Another (naive) way to apply Theorem 2.1 in this i.i.d. setting is to focus, under the above
assumption on the averaging property so that: then H = K and ∆Mn ≡ 0. We still consider the
above procedure but we assume furthermore the existence of a pathwise Lyapunov function. By
noticing that (K(θ∗, Yn))n≥1 is i.i.d. and in L2, it follows from the quadratic law of large numbers (at

rate n− 1
2 ) and the Law of Iterated Logarithm at rate O(εn) with εn =

√
log logn

n that K(θ∗, ·) ∈ Vεn,2.

As a consequence the condition (2.14) is clearly more restrictive than the above regular one, however
any step of the form γn = c

nα , c > 0, 3
4 < α ≤ 1 satisfies (2.14).

2.3 The case of multiplicative noise

If we assume that the function H in (2.4) is of the following form

∀θ ∈ R
d, ∀y ∈ R

q, H(θ, y) = χ(y)h(θ) +H(θ∗, y), (2.21)

where χ is a Borel function such that ν(χ) = 1, χ ∈ Vεn,p and supn≥0 ‖χ(Yn)‖2∨ p
p−1

< +∞, H(θ∗, ·) ∈
Vεn,p and supn≥0 ‖H(θ∗, Yn)‖2∨ p

p−1
< +∞, h is Lipschitz bounded with h(θ∗) = 0, then we replace the

growth assumption (2.12) on H by one on the mean function h, i.e.

∀θ ∈ R
d,∀y ∈ R

q, |h(θ)| ≤ Ch

√
1 + L(θ) (2.22)

and the pathwise mean-reverting assumption (2.15) is the classical

∀θ ∈ R
d \ {θ∗}, 〈∇L | h〉 (θ) > 0. (2.23)

Theorem 2.2. The recursive procedure (2.4) with the function H defined by (2.21) and the previous
assumptions on χ and (2.22)-(2.23) on h satisfies

θn
a.s.−→

n→∞
θ∗.

Proof. First step: This setting cannot be reduced to the general setting. We use the same notations
as in the proof of Theorem 2.1. With the new form of the function H, we obtain

Λ(θn+1) ≤ Λ(θn)− γn+1 〈∇Λ(θn) |χ(Yn)h(θn)〉 − γn+1 〈∇Λ(θn) |H(θ∗, Yn)〉

−γn+1 〈∇Λ(θn) |∆Mn+1〉+ CLγ
2
n+1

|H(θn, Yn) + ∆Mn+1|2√
1 + L(θn)

.

By the same arguments as before we get

E [Λ(θn+1) | Fn] ≤ Λ(θn)
(
1 + C ′

Lγ
2
n+1φ(Yn)

2
)
−γn+1 〈∇Λ(θn) |χ(Yn)h(θn)〉−γn+1 〈∇Λ(θn) |H(θ∗, Yn)〉 .
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We set Vn :=
An

Bn
, where An := Λ(θn)+

∑n−1
k=0 γk+1 〈∇Λ | h〉 (θk) and Bn :=

∏n
k=1

(
1 + C ′

Lγ
2
kφ(Yk−1)

2
)
.

Using the mean-reverting assumption (2.23) implies that (An)n≥0 is a nonnegative process whereas
(Bn)n≥0 is still Fn−1-adapted. Elementary computations show that

E [An+1 | Fn] ≤ An
Bn+1

Bn
− γn+1 〈∇Λ(θn) |H(θ∗, Yn)〉 − γn+1χ̃(Yn) 〈∇Λ |h〉 (θn)

where χ̃(Yn) := χ(Yn)− ν(χ), n ≥ 0. Finally we have

∀n ≥ 0, E [Vn+1 | Fn] ≤ Vn −∆Wn+1 −∆Zn+1, (2.24)

where Wn :=
∑n−1

k=0 γ̃k+1 〈∇Λ(θk) |H(θ∗, Yk)〉 and Zn :=
∑n−1

k=0 γ̃k+1χ̃(Yk) 〈∇Λ |h〉 (θk) with γ̃n :=
γn
Bn

, n ≥ 0.

Second step: Following the lines of the proof of Theorem 2.1 we show that the sequence (Wn)n≥0 is
L1-bounded and a.s. converges. Now our aim is to prove the same results for the sequence (Zn)n≥0.

To this end we set Sχ̃
n :=

∑n−1
k=0 χ̃(Yk), then it follows

Zn =
n−1∑

k=0

γ̃k+1∆Sχ̃
k+1 〈∇Λ |h〉 (θk) = γ̃nS

χ̃
n 〈∇Λ |h〉 (θn−1)−

n−1∑

k=1

Sχ̃
k (γ̃k+1 〈∇Λ |h〉 (θk)− γ̃k 〈∇Λ | h〉 (θk−1)) .

By the same methods as for the sequence (Wn)n≥0 (i.e. using assumptions on H, Λ and (γn)n≥1), we
obtain that

Zn
a.s.−→

n→∞
Z∞ and sup

n≥0
‖Zn‖1 < +∞.

Thus we have that

(Vn +Wn + Zn)
− ≤ (Wn + Zn)

− ≤ |Wn + Zn| ∈ L1(P) since sup
n≥0

‖Wn + Zn‖1 < +∞.

As V0 = Λ(θ0) ≤ C(1+|θ0|) ∈ L1, it follows by induction from (2.18) that, for every n ≥ 0, EVn < +∞.
Hence Sn := Vn +Wn + Zn, n ≥ 0, is a true supermartingale with a L1-bounded negative part. We
then deduce that

Sn
a.s.−→

n→∞
S∞ ∈ L1.

Now Wn
a.s.−→

n→∞
W∞ and Zn

a.s.−→ Z∞ imply that Vn
a.s.−→

n→∞
V∞ < +∞ a.s.

Third step: Like in the proof of Theorem 2.1, we have that Bn
a.s.−→

n→∞
B∞ < +∞ which implies that

An
a.s.−→

n→∞
A∞ < +∞. Therefore using the mean-reverting property (2.23) of h with respect to ∇Λ, we

classically derive that ∑

n≥0

γn+1ν(χ) 〈∇Λ |h〉 (θn) < +∞ a.s. (2.25)

The end of the proof follows the lines of the one of Theorem 2.1. �

3 Application to quasi-stochastic approximation

This section is devoted to quasi-random innovations: the innovation sequence (Yn)n≥0 becomes a
deterministic uniformly distributed (u.d.) sequence (ξn+1)n≥0 over a unit hypercube [0, 1]q , i.e.

θn+1 = θn − γn+1H(θn, ξn+1), n ≥ 0, θ0 ∈ R
d.
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We extend the one-dimensional result first introduced in [24] (see more recently [31, 39]) to a general
multi-dimensional setting with unbounded function H. We first recall few definitions and properties
of u.d. sequences (see [33] and the reference therein). We emphasize how to apply Theorem 2.1 when
H has “bounded variation” on [0, 1]q and when H is Lipschitz continuous.

3.1 Definition and characterisation

Definition 3.1. A [0, 1]q-valued sequence (ξn)n≥1 is uniformly distributed (u.d.) on [0, 1]q if

1

n

n∑

k=1

δξk
(Rq)
=⇒ U([0, 1]q) as n → ∞.

The proposition below provides a characterisation of uniform distribution for a sequence (ξn)n≥1.

Proposition 3.1. (a) Let (ξn)n≥1 be a [0, 1]q-valued sequence. Then (ξn)n≥1 is uniformly distributed
on [0, 1]q if and only if

D∗
n(ξ) := sup

x∈[0,1]q

∣∣∣ 1
n

n∑

k=1

1J0,xK(ξk)−
q∏

i=1

xi
∣∣∣ −→ 0 as n → ∞,

where D∗
n(ξ) is called the discrepancy at the origin or star discrepancy.

(b) There exists sequences, called sequences with low discrepancy such that D∗
n(ξ) =

(
logd n

n

)
. We

refer to [33, 7] for examples of such sequences (like Halton, Kakutani, Sobol’ sequences, etc).

3.2 Standard classes Vεn,1 for quasi-stochastic approximation

We set here Yn = ξn+1, Fn = {∅,Ω} and ∆Mn+1 ≡ 0, n ≥ 0. The strong Lyapunov condition on H is
crucial here. Note that the function φ becomes useless since we always consider the case p = 1. To
apply Theorem 2.1, we mainly need to specify the accessible classes Vεn,1 in such a framework.

⊲ Function with finite variation. A function f : [0, 1]q → R has finite variation in the measure
sense if there exists a signed measure ν on ([0, 1]d,Bor([0, 1]q) such that ν({0}) = 0 and

∀x ∈ [0, 1]q, f(x) = f(1) + ν([[0,1 − x]])

where [[x, y]] =
∏q

i=1[x
i, yi] if x ≤ y (componentwise) and is empty otherwise and 1 = (1, . . . , 1). The

variation V (f) of f is then defined as |ν|([0, 1]q) where ν denotes the total variation measure attached
to ν. For further details on this notion of variation, see [7]. When q = 1 this notion coincide with
left continuous functions with finite variations. As concerns the slightly more general notion of finite
variation in the the Hardy and Krause sense, see [33] and the references therein). The role of finite
variation is emphasized by the following error bound.

Proposition 3.2 (Koksma-Hlawka Inequality). Let ξ = (ξ1, . . . , ξn) ∈ ([0, 1]q)n and let f be a function
with finite variation V (f), either in the Hardy & Krause or in the measure sense. Then

∣∣∣ 1
n

n∑

k=1

f(ξk)−
∫

[0,1]q
f(u)λq(du)

∣∣∣ ≤ V (f)D∗
n(ξ).

Hence, if (ξn)n≥1 has a low discrepancy, the class V = {f : [0, 1]q → R s.t. V (f) < +∞} of functions

with finite variations satisfies V ⊂ Vεn,1 with εn = (logn)q

n . Consequently, if H(θ, ·) ∈ V, the assump-
tions on admissible (non-increasing) step sequences (γn)n≥1 in Theorem 2.1 reads

∑

n≥1

γn = +∞, γn(log n)
q → 0 and

∑

k≥1

max(|∆γn+1| , γ2n)(log n)q < +∞.
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so that the choice of γn := c
nρ ,

1
2 < ρ ≤ 1, is admissible (like in the i.i.d. setting).

⊲ Lipschitz continuous functions. If q ≥ 2 it is difficult to check whether f has finite variations in
any sense: in fact these functions become “rare” as q increases. If we look for more natural regularity
assumption to be satisfied by H(θ∗, ·) like Lipschitz continuity, the following theorem due to Proinov
(see [36]) provides an alternative (but less “attractive”) error bound.

Theorem 3.1. (Proinov) Assume R
q is equipped with the ℓ∞-norm

∣∣(x1, . . . , xq)
∣∣
∞ := max1≤i≤q

∣∣xi
∣∣.

Let (ξ1, . . . , ξn) ∈ ([0, 1]q)⊗n. For every continuous function f : [0, 1]q → R,

∣∣∣ 1
n

n∑

k=1

f (ξk)−
∫

[0,1]q
f(u)λq(du)

∣∣∣ ≤ Cqwf

(
D∗

n (ξ1, . . . , ξn)
1
q

)

where wf (δ) := sup
x,y∈[0,1]q,|x−y|∞≤δ

|f(x)− f(y)|, δ ∈ (0, 1), is the ℓ∞-uniform continuity modulus of f

and Cq ∈ (0,∞) is a universal constant only depending on q. If q = 1, Cq = 1 and if q ≥ 2, Cq ∈ [1, 4].

As a consequence Lip([0, 1]q ,R) ⊂ Vεn,1 with εn = logn

n
1
q

(with obvious extensions to Hölder functions).

Consequently, if H(θ∗, ·) ∈ V, the assumptions on admissible (non-increasing) step sequences (γn)n≥1

in Theorem 2.1 reads
∑

n≥1

γn = +∞, γn(log n)n
1− 1

q → 0 and
∑

k≥1

max(|∆γn+1| , γ2n)(log n)n1− 1
q < +∞.

so that the choice of γn := c
n is always admissible (more generally γn = cn−ρ, 1 − 1

q < ρ ≤ 1). An
application of “quasi-Stochastic Approximation” is proposed in Section 5.1 (see also [15]).

4 Applications to different types of random innovations

This section is devoted to some first applications of the above theorem. By applications, we mean
here printing out some classes of random innovation processes (Yn)n≥0 for which the averaging rate
assumption (2.8) is naturally satisfied by “large” class Vεn,p.

First we present a simple framework of stochastic approximation where the noise is additive which
is studied in [9] with some mixing properties, but here we only need (2.5). We showed in [26] how easily
our result applies to real life stochastic optimization problem (as far as convergence is concerned).

Afterwards we focus on mixing innovations: we consider that the sequence (Yn)n≥0 is a functional
of a stationary α-mixing process (satisfying condition on the summability of the mixing coefficients).

The last application is the case of an homogeneous Markov chain which can be seen as a possible
more elementary counterpart of some (convergence) result obtained e.g. in [6]. Some (quasi-optimal)
a.s. rate of convergence can be obtained if H is smooth enough in θ (see [25]), but to establish a regular
Central Limit Theorem it is most likely that we cannot avoid to deal with the Poisson equation.

4.1 Recursive procedure with additive noise

We consider here the case where the function H is the sum of the mean function h and a noise, namely

∀θ ∈ R
d, ∀y ∈ R

q, H(θ, y) = h(θ) + y, and ∆Mn+1 ≡ 0.

In this framework, the Lyapunov assumption (2.15) becomes classical involving only the mean function
h, namely

∀θ ∈ R
d \ {θ∗} 〈∇L | h〉 (θ) > 0.
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Likewise, the growth control assumption (2.12) amounts to

∀θ ∈ R
d, |h(θ)| ≤ Ch

√
1 + L(θ),

provided the moment assumption supn ‖Yn‖ p
p−1

< +∞, for some p ∈ (1,∞], is satisfied (take φ(y) :=

|y| ∨ 1). The martingale is vanishing in this example. Finally the step assumption (2.14) is ruled by
the averaging rate of the sequence (Yn)n≥0.

4.2 Functional of a stationary α-mixing process

Here we provide a short background on α-mixing processes and their functionals. Our motivation here
is to relax as much as possible our assumption on (Yn)n≥0 in order to apply stochastic approximation
methods to exogenous possibly non Markovian stationary data.

We aim now at applying our convergence theorem to input sequences (Yn)n≥0 which are (causal)
functionals of an α-mixing process. Consider a stationary R

q-valued process X = (Xk)k∈Z, its natural
filtration Fn = FX

n := σ(Xk, k ≤ n) and Gn = GX
n := σ(Xk, k ≥ n). The α-mixing coefficients are

defined as follows

αn = sup {|P(U ∩ V )− P(U)P(V )| , U ∈ Fk, V ∈ Gk+n, k ≥ 0} . (4.26)

Let f be a measurable mapping from (Rq)Z to R. Let (Yk)k∈Z be a causal functional of X, i.e.

∀n ∈ Z, Yn := f(. . . ,Xn−1,Xn).

Then (Yn)n≥0 is a stationary process with marginal distribution ν = L(Y0).
The proposition below show that if (Xn)n∈Z is α-mixing “fast enough” then H(θ∗, ·) “almost” lies

in V
n− 1

2 ,2
(up to logarithmic factor) as soon as E|H(θ∗, Y0)|2+δ < +∞ for a δ > 0 (so is true for H(θ, ·)

since we do not know θ∗ a priori).

Proposition 4.1. Assume g ∈ L2+δ(ν), δ > 0, and that one of the following assumptions holds

(a) For all n ∈ Z, Yn := f(. . . ,Xn−1,Xn) where X is a stationary α-mixing process satisfying

∑

k≥1

α
δ

2(2+δ)

k√
k

< +∞ (4.27)

and assume the following regularity assumption on f

∀ 0 ≤ k′ ≤ k, ‖E [g(Yk)− g(f((0, . . . , 0,Xk′ , . . . ,Xk)) | F0]‖2 ≤ Cak−k′ (4.28)

for a real constant C > 0 and a nonnegative real sequence (ak)k≥0 satisfying

∑

k≥1

ak√
k
< +∞. (4.29)

(b) Yn = Xn, n ≥ 0, and X is a stationary α-mixing process satisfying the condition

∑

k≥1

α
δ

2+δ

k < +∞. (4.30)

Then g ∈ V
ε
(η)
n ,2

, with ε(η)n = (log n)
3
2
+η n− 1

2 , for every η > 0.

(4.31)
In particular g lies in Vn−β ,2 for every β ∈ (0, 12 ).
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Remarks. Condition (4.30) is satisfied when the underlying process X is geometrically α-mixing.
Slightly refined results could be obtained by calling upon Philip and Stout’s Law of Iterated Logarithm
but the resulting claims would be significantly more technical to state for little practical benefit.

An applicationof this result (based on real data) is briefly developed in Section 5.5. The proof of
Proposition4.1 relies on the Gàl-Koksma Theorem (see [16] and [1] for a probabilistic version). We
state it here in a stationary framework.

Theorem 4.1. (Gàl-Koksma’s Theorem) Let (Ω,F ,P) be a probability space and let (Zn)n≥1 be a
sequence of random variables belonging to Lp, p ≥ 1, satisfying

E |Z1 + Z2 + · · ·+ ZN |p = O(Ψ(N))

where Ψ(N)
N , N ≥ 1, is a nondecreasing sequence. Then for every η > 0,

Z1(ω) + Z2(ω) + · · · + ZN (ω) = o
(
(Ψ(N)(log(N))p+1+η)

1
p

)
P(dω)-a.s.

Remark. The conditions on X and Z come from a result established in [10]: by setting P0(Zk) :=
E [Zk | F0]− E [Zk | F−1], if

∑

k∈Z
‖P0(Zk)‖2 < +∞ then

∑

k∈Z
|Cov(Z0, Zk)| < +∞. (4.32)

Moreover using [35], condition (4.32) is satisfied as soon as

∞∑

k=1

1√
k
‖E [Zk | F0]‖2 < +∞. (4.33)

Proof of Proposition 4.1. Let Zn = g(Yn) −
∫
Rq g(y)ν(dy), n ∈ Z. Without loss of generality we

may assume
∫
Rq g(y)ν(dy) = 0.

(a) We will rely on the above Gal-Koksma Theorem (Theorem 4.1). First, we evaluate E |Z0 + · · ·+ Zn−1|2.
Setting SZ

k =
∑k

j=1 E [ZjZ0], k ∈ N, elementary computations lead to

E |Z0 + · · · + Zn−1|2 = nEZ2
0 + 2

n−1∑

k=1

k∑

j=1

E [ZjZ0] = nEZ2
0 + 2

n−1∑

k=1

SZ
k = n

(
EZ2

0 +
2

n

n−1∑

k=1

SZ
k

)
.

To establish that SZ
n converges, we will establish (4.33).We set, for 0 ≤ k′ ≤ k, Fk′,k = σ(Xℓ, k

′ ≤
ℓ ≤ k). Then Zk = Zk − E[Zk | Fk′,k] + E[Zk | Fk′,k]. We derive from the definition of conditional
expectation that

∥∥E
[
Zk − E[Zk | Fk′,k] | F0

]∥∥
2
≤
∥∥Zk − E[Zk | Fk′,k]

∥∥
2
≤ ‖Zk − g ◦ f(. . . , 0, . . . , 0,Xk′ , . . . ,Xk)‖2

so that

‖E [Zk | F0]‖2 ≤
∥∥E
[
Zk − E[Zk | Fk′,k] | F0

]∥∥
2
+
∥∥E
[
E[Zk | Fk′,k] | F0

]∥∥
2

≤ ‖E [g ◦ f(. . . ,X0, . . . ,Xk′ , . . . ,Xk)− g ◦ f(, . . . , 0,Xk′ , . . . ,Xk) | F0]‖2
+
∥∥E
[
E[Zk | Fk′,k] | F0

]∥∥
2

≤ Cak−k′ + α
1
r

k′ ‖g ◦ f(0, . . . , 0,Xk′ , . . . ,Xk)‖p
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owing to Assumption (4.28) on g ◦ f and the classical covariance inequality for α-mixing process (see
[12], Theorem 3(1), p.9) with 1

r + 1
p = 1

2 , r, p > 2. As g ∈ L2+δ(ν), δ > 0, we may set p = 2 + δ,

r = 2(2+δ)
δ and k′ = k/2. Then we obtain

‖E [Zk | F0]‖2 ≤ Cak/2 + α
δ

2(2+δ)

k/2

∥∥g ◦ f(0, . . . , 0,Xk/2, . . . ,Xk)
∥∥
2+δ

.

As a consequence, by using (4.27) and (4.29), we have

∞∑

k=1

1√
k
‖E (Zk | F0)‖2 < +∞,

which implies (owing to (4.32)) that SZ
k converges. Now, by Cesaro’s Lemma we have

E |Z0 + · · ·+ Zn−1|2 = O(n) or equivalently

∥∥∥∥
1

n

(
Z0 + · · · + Zn−1)

∥∥∥∥
2

= O
(
n− 1

2

)
.

Thus, one concludes by by Gal-Koksma’s Theorem since, for every η > 0,

Z0 + · · ·+ Zn−1

n
= o

(
(log n)

3
2
+η

√
n

)
P-a.s.

(b) If we assume that Yn = Xn, n ≥ 0, we directly use the covariance inequality for α-mixing process

|Cov (Zj, Z0)| ≤ 8α
1
r

j ‖Z0‖p ‖Z0‖q ,

where 1
r +

1
p + 1

q = 1. By symmetry, we take p = q > 2 and we get

∣∣E
(
ZjZ0

)∣∣ ≤ 8α
1− 2

p

j ‖Z0‖2p .

As g ∈ L2+δ, δ > 0, we may set p = 2+ δ and we obtain α
1− 2

2+δ

j = α
δ

2+δ

j . The condition (4.27) can be
replaced by the less stringent Ibragimov’s condition (4.30) to complete the proof. �

4.3 Homogeneous Markov chain

Assume that the innovation process (Yn)n≥0 is an R
q-valued homogeneous Markov chain which tran-

sition is (P (y, dz))y∈Rq and starting distribution µ = L(Y0). For convenience we will assume that the

chain lives on its canonical space ((Rq)N,Bor(Rq)⊗N).

4.3.1 Application of the convergence theorem

We consider the classical Markov stochastic approximation procedure procedure

θn+1 = θn − γn+1K(θn, Yn+1), n ≥ 0, (4.34)

where K : R
d × R

q → R
d is a Borel function satisfying (4.35) below and θ0 : (Ω,A,P) → R

d is
independent of (Yn)n≥0. Note that (Yn)n≥0 remains is still a Markov chain with respect to Fn =
σ(θ0, Y0, . . . , Yn), n ≥ 0.

Set H(θ, y) := P
(
K(θ, .)

)
(y) and ∆Mn+1 := K(θn, Yn+1)− E [K(θn, Yn+1) | Fn]. Then the proce-

dure has the canonical form (1.2) with respect to the filtration (Fn)n≥0.
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Remark. If we consider that the Markov chain starts from Y1, then Fn = σ(θ0, Y1, . . . , Yn) and
E
[
K(θ0, Y1)|F0

]
= E [K(θ, Y1)]|θ=θ0

= µP (K(θ, .))|θ=θ0 since θ0 and Y1 are independent.

Let p ∈ [1,∞) and set r = 2 ∨ p
p−1 ∈ [2,+∞]. We make the following growth assumption on the

function K
∀θ ∈ R

d, ∀y ∈ R
q, |K(θ, y)| ≤ CK φ̃(y)

√
1 + L(θ) (4.35)

where L : Rd → R+ satisfies (2.9) and supn≥0

∥∥φ̃(Yn)
∥∥
r
< +∞.

Then H satisfies (2.12) with φ(y) = Pφ̃(y) = Eyφ̃(Y1) ≤
∥∥φ̃
∥∥
Lr(P (y,dz))

< +∞ and ∆Mn+1 satisfies

(2.13) with φ(y) =
∥∥φ̃
∥∥
Lr(P (y,dz))

so that, finally, we may choose φ(y) =
∥∥φ̃
∥∥
Lr(P (y,dz))

, having in mind

that
∥∥φ(Yn)

∥∥
r
=
∥∥φ̃(Yn+1)

∥∥
r
. Now, the proposition below straightforwardly follows from Theorem 2.1.

Proposition 4.2. Let p ∈ [1,∞) and θ∗ ∈ R
d. If K satisfies (4.35) and H satisfies the strict pathwise

Lyapunov assumption (2.15), if (γn)n≥1 satisfies (2.14) for a sequence (εn)n≥1 satisfying (2.7) and
H(θ∗, ·)∈ Vεn,p, then the recursive procedure with Markov innovations defined by (4.34) converges, i.e.

θn
a.s.−→

n→+∞
θ∗.

4.3.2 Ergodic framework description

We will say that the Markov chain (Yn)n≥0 (starting from Y0
L∼ µ) is ν-ergodic (resp. ν-stable) under

Pµ if for every bounded Borel (resp. continuous) function f : Rq → R,

Pµ-a.s.
1

n

n−1∑

k=0

f(Yk) −→
n→∞

∫

Rq

fdν. (4.36)

As soon as the transition (P (y, dz))y∈Rq of (Yn)n≥0 is Feller, the above ν-stability property implies
that ν is an invariant distribution of the chain, i.e. νP = ν. In case of ν-ergodicity the same conclusion
holds unconditionally. As a consequence the whole sequence (Yn)n≥0 is stationary under Pν .

Let us focus on the case µ = ν. If (4.36) holds (with µ = ν), it is classical background that the
whole chain is ergodic under Pν (on the canonical space) for the shift operator Θ, i.e. by Birkhoff’s
theorem, for every functional F : ((Rq)N,Bor(Rq)⊗N) → R, F ∈ Lp(Pν),

1

n

n−1∑

k=0

F ◦Θk −→
n→∞

Eν(F ) Pν-a.s. and in Lp(Pν),

so that by considering F ((yn)n≥0) = f(y0), f ∈ Lp(ν), we finally get that

V0+,p(Pν) = Lp(ν).

Note that if the set of invariant distributions for P (convex and) weakly compact and if ν is extremal
in it (so will be e.g. the case if ν is unique!) then the chain is ergodic under Pν so that the above
equality still holds. Furthermore, we know by a straightforward application of Gàl-Koksma Theorem
that for any g ∈ L2(ν) for which the related Poisson Equation g − ν(g) = ϕg − Pϕg has a solution
ϕg ∈ L2(ν), then

Eν |g(Y0) + · · ·+ g(Yn−1)− nν(g)|2 = Eν|ϕg(Y0)− Pϕg(Yn−1) +
∑

1≤k≤n−2

ϕg(Yk)− Pϕg(Yk−1)|2

≤ 6ν(ϕ2
g) + 3(n − 2)ν

(
(ϕg − Pϕg)

2
)
= O(n)

so that
⋂

β∈(0, 1
2
)

Vn−β ,2(Pν) ⊃ L2(ν).
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Now we will make a connection between the classes Vεn,p(Pν) and Vεn,p′(Py) which will provide exam-
ples of non-stationary (Markovian) innovations that can be “plugged” in stochastic Approximation
procedures in the spirit of Theorem 2.1.

Proposition 4.3. Let p ∈ [1,+∞) and let p′ ∈ (0, p]. If (Yn)n≥0 is Pν-ergodic and P (y, dz) =
g(y, z)ν(dz), y ∈ R

q where g : (Rq)2 → R+ satisfies ν(dz)-a.e., g(·, z) > 0. Then ν is the unique
invariant distribution of Pand for every sequence (εn)n≥0 satisfying (2.7),

∀y ∈ R
q, g(y, ·) ∈ L

p

p−p′ (ν) =⇒ Vεn,p′(Py) ⊃ Vεn,p(Pν).

Proof. It follows form the assumption that any invariant distribution ν ′ is equivalent to ν which
implies classically uniqueness.

⊲ The a.s. rate. Let f ∈ Lp(ν), y ∈ R
q and Af :=

{
ω :

1

n

n−1∑

k=0

f(Yk(ω))−
∫

Rq

fdν = O(εn)

}
. Since

lim infn nεn > 0, if Θ denotes the shift operator on the canonical space of the chain (Yn)n≥0, Af clearly
satisfies Af = Θ−1(Af ) i.e. 1Af

= 1Af
◦Θ. Therefore

Py(Af ) = Ey(1Af
) = Ey(1Af

◦Θ) = Ey(PY1(Af )).

Assume now f ∈ Vεn,p(Pν). By assumption Pν(Af ) = 1. Let y ∈ R
q. Then

Pν(Af ) =

∫

Rq

ν(dz)Pz(Af ) = 1 so that ν(dz)-a.s. Pz(Af ) = 1.

Now P (y, dz)≪ν(dz) implies
∫
RqP (y, dz)Pz(Af ) = 1 i.e. Ey [PY1(Af )] = 1 or equivalently Py(Af ) = 1.

⊲ The Lp′-rate. Let p′ ∈ (0, p], let f ∈ Vεn,p(Pν) ⊂ Lp(ν) and ϕn,p′(y) :=
∥∥∥ 1
n

∑n−1
k=0 f(Yk(ω))−

∫
Rq fdν

∥∥∥
Lp′(Py)

.

∥∥∥ 1
n

n−1∑

k=0

f(Yk(ω))−
∫

Rq

fdν
∥∥∥
Lp(ν)

= O(εn) so that

∫

Rq

φp
n(y)ν(dy) = O(εpn). (4.37)

Assume temporarily that p′ ≥ 1. Consequently, Minkowski inequality implies

ϕn,p′(y) ≤
∣∣f(y)−

∫
Rq fdν

∣∣
n

+

(
1− 1

n

)∥∥∥∥∥
1

n− 1

n−1∑

k=1

f(Yk)−
∫

Rq

fdν

∥∥∥∥∥
Lp′ (Py)

=

∣∣f(y)−
∫
Rq fdν

∣∣
n

+

(
1− 1

n

)
Ey


E



∣∣∣∣∣

1

n− 1

n−1∑

k=1

f(Yk)−
∫

Rq

fdν

∣∣∣∣∣

p′

| F1








1
p′

=

∣∣f(y)−
∫
Rq fdν

∣∣
n

+

(
1− 1

n

)∥∥ϕn−1,p′(Y1)
∥∥
Lp′ (Py)

.

where we used the Markov property in the last equality. Since P (y, dz) = g(y, z)ν(dz), we derive from
Hölder’s Inequality (applied to r = p

p′ and s = p
p−p′ )

Eyϕn−1(Y1)
p′ =

∫

Rq

ϕn−1(z)
p′P (y, dz) =

∫

Rq

ϕn−1(z)
p′g(y, z)ν(dz)

≤ ‖g(y, ·)‖
L

p

p−p′ (ν)

(∫

Rq

ϕn−1(y)
pν(dy)

) p′

p

≤ ‖g(y, ·)‖
L

p

p−p′ (ν)
O(εp

′

n ) owing to (4.37).
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Finally ϕn(y) ≤
c

n
+

(
1− 1

n

)
‖g(y, ·)‖ p

p−p′
O(εn) = O(εn) i.e. f ∈ Vεn,p′(Py).

The case p′ ∈ (0, 1) follows by the usual adjustments (pseudo-Minkowski inequality, etc). �

Comments. By contrast with the approach of [6], it is not mandatory to solve the Poisson equation
related to the pseudo-transition

Πθn(Yn, dz) = P (Yn+1 ∈ dz | Fn)

of the algorithm. Indeed, they assume there exists a function vθ := v(θ, ·) solution to

Id−Πθvθ = H(θ, ·)− h(θ) (4.38)

(Assumption (H4) in [6] p. 220). The target θ∗ is then a zero of the mean function h (not canonically
defined at this stage in [6]). In our setting, Πθ(y, dz) = P (y, dz) since the dynamics of (Yn) − n ≥ 0
does not depend upon θ, so that Condition (4.38) reads

v(θ, y)−
∫

Rq

v(θ, z)P (y, dz) = H(θ, y)− h(θ)

where the mean function is naturally defined by

h(θ) =

∫

Rq

H(θ, y)ν(dy)

(ν is the unique invariant probability measure for P ). Then the family of Poisson equations (indexed
by the parameter θ) reads

v(θ, y)− Pv(θ, y) = H(θ, y)− h(θ).

A formal solution is given by v(θ, y) =
∑

k≥0

P k (H(θ, ·)− h(θ)) (y), but the point is precisely to establish

its existence and its properties by using the mixing properties of the semi-group P (see [6]).

5 Applications and numerical examples

This section is devoted to several examples (mainly inspired by in Finance) of application of conver-
gence theorems in the different frameworks developed in Section 3 and 4.

5.1 Application to implicit correlation search by quasi-stochastic approximation

Consider a 2-dimensional Black-Scholes model i.e. Xt
0 = ert (riskless asset) and

∀t ≥ 0, Xi
t = xi0e

(r−σ2
i
2
)t+σiW

i
t , xi0 > 0, i = 1, 2,

for the two risky assets where
〈
W 1,W 2

〉
t
= ρt, ρ ∈ [−1, 1]. Consider a best-of call option characterized

by its payoff (
max

(
X1

T ,X
2
T

)
−K

)
+
.

We will use a stochastic recursive procedure to solve the inverse problem in ρ

PBoC(x
1
0, x

2
0,K, σ1, σ2, r, ρ, T ) = Pmarket

0
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where Pmarket
0 is the quoted premium of the option (mark-to-market) with

PBoC(x
1
0, x

2
0,K, σ1, σ2, r, ρ, T ) := e−rT

E

[(
max

(
X1

T ,X
2
T

)
−K

)
+

]

= e−rT
E

[(
max

(
x10e

µ1T+σ1

√
TZ1

, x20e
µ2T+σ2

√
T
(
ρZ1+

√
1−ρ2Z2

))
−K

)

+

]

where µi = r − σ2
i

2 , i = 1, 2, Z = (Z1, Z2)
d
= N (0, I2). We assume from now on that this equation (in

ρ) has at least one solution, say ρ∗. The most convenient way to prevent edge effects due to the fact
that ρ ∈ [−1, 1] is to use a trigonometric parametrization of the correlation by setting ρ = cos θ, θ ∈ R.
This introduces an over-parametrization since θ and 2π − θ yield the same solution inside [0, 2π], but
this is not at all a significant problem for practical implementation (a careful examination shows that
in fact one equilibrium is repulsive and one is attractive). From now on, for convenience, we will just
mention the dependence of the premium function in the variable θ, namely

θ 7−→ P (θ) := PBoC(x
1
0, x

2
0,K, σ1, σ2, r, cos(θ), T ).

The function P is a 2π-periodic continuous function. Extracting the implicit correlation from the
market amounts to solving

P (θ) = Pmarket
0 (with ρ = cos θ).

We need the following additional assumption

Pmarket
0 ∈ (min

θ
P,max

θ
P )

i.e. that Pmarket
0 is not an extremal value of P . It is natural to set for every θ ∈ R and every

z = (z1, z2) ∈ R
2

H(θ, z) = e−rT
(
max

(
x10e

µ1T+σ1

√
Tz1 , x20e

µ2T+σ2

√
T (z1 cos θ+z2 sin θ)

)
−K

)
+
− Pmarket

0

and to define the recursive procedure

θn+1 = θn − γn+1H(θn, Zn+1), n ≥ 0, where Zn+1
L∼ N (0, I2),

and the gain parameter sequence satisfies (2.14). For every z ∈ R
2, θ 7−→ H(θ, z) is continuous

and 2π-periodic which implies that the mean function h(θ) := EH(θ, Z1) = P (θ) − Pmarket
0 and

θ 7−→ E
[
H2(θ, Z1)

]
are both continuous and 2π-periodic as well (hence bounded).

The main difficulty to apply Theorem 2.1 is to find out the appropriate Lyapunov function. The
quoted value Pmarket

0 is not an extremum of the function P , hence
∫ 2π
0 h±(θ)dθ > 0 where h± :=

max(±h, 0). We consider θ∗0 any (fixed) solution to the equation h(θ) = 0 and two real numbers β±
such that

0 < β+ <

∫ 2π
0 h+(θ)dθ∫ 2π
0 h−(θ)dθ

< β−

and we set

g(θ) :=

{
1{h>0}(θ) + β+1{h<0}(θ) if θ ≥ θ∗0
1{h>0}(θ) + β−1{h<0}(θ) if θ < θ∗0.

The function
θ 7−→ g(θ)h(θ) = h+ − β±h−
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is continuous and “positively” 2π-periodic on [θ∗0,∞) and “negatively” 2π-periodic on (−∞, θ∗0]. More-
over, gh(θ) = 0 iff h(θ) = 0 so that gh(θ∗0) = gh(θ∗0−) = 0 which ensures on the way the continuity of

gh on R. Furthermore
∫ 2π
0 gh(θ)dθ > 0 and

∫ 0
−2π gh(θ)dθ < 0 so that, on the one hand,

lim
θ→±∞

∫ θ

0
gh(u)du = +∞

and, on the other hand, there exists a real constant C > 0 such that the function

L(θ) =

∫ θ

0
gh(u)du + C

is nonnegative. Its derivative is given by L′ = gh so that L′h = gh2 ≥ 0 and {L′h = 0} = {h = 0}.
It remains to prove that L′ is Lipschitz continuous. One checks by applying the usual differentiation
theorem for functions defined by an integral that, if σ1 6= σ2 or x1 6= x2, then P is differentiable on
the whole real line, otherwise it is differentiable only on R \ 2πZ, and in both cases

P ′(θ) = σ2
√
T E

(
1{X2

T>max(X1
T ,K)}X

2
T (cos(θ)Z

2 − sin(θ)Z1)
)
.

Furthermore, with obvious notations, as soon as P ′(θ) exists,

∣∣P ′(θ)
∣∣ ≤ E

∣∣X2
T (cos(θ)Z

2 − sin(θ)Z1)
∣∣ .

The right handside of the inequality defined a 2π-periodic continuous function, hence bounded on the
real line. Consequently |P ′(θ)| is bounded. It follows that the 2π-periodic functions h and h± are
Lipschitz continuous which implies in turn that L′ = gh is Lipschitz as well.

Moreover, one can show that the equation P (θ) = Pmarket
0 market has finitely many solutions on

every interval of length 2π. One may apply Theorem 2.1 to derive that θn will converge toward a
solution θ∗ of the equation P (θ) = Pmarket

0 .

Numerical illustration. We set the model parameters to the following values

x10 = x20 = 100, r = 0.10, σ1 = σ2 = 0.30, ρ = −0.50

and the payoff parameters
T = 1, K = 100.

The implicit correlation search recursive procedure is implemented with a sequence of some quasi-
random normal numbers, namely

(ζ1n, ζ
2
n) =

(√
−2 log (ξ1n) sin

(
2πξ2n

)
,
√

−2 log (ξ1n) cos
(
2πξ2n

))
,

where ξn = (ξ1n, ξ
2
n), n ≥ 1, is simply a regular 2-dimensional Halton sequence (see [33] for a definition).

The Black-Scholes reference price 30.75 is used as a market price so that the target of the stochastic
algorithm is θ∗ ∈ arccos(−0.5). The parameters of the stochastic approximation procedure are

θ0 = 0, n = 105, γn =
8

n
, n ≥ 1.

The choice of θ0 is “blind” on purpose (see Figure 1).
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Figure 1: B-S Best-of-Call option. T = 1, r = 0.10, σ1 = σ2 = 0.30, x10 = x20 = 100, K = 100. Left:
convergence of θn toward a θ∗ (up to n = 10000). Right: convergence of ρn := cos(θn) toward -0.5.

5.2 Recursive omputation of the VaR and the CVaR

Another example of application is the recursive computation of financial risk measure which are
the best known and the most common: the Value-at-Risk (VaR) and the Conditional Value-at-Risk
(CVaR). This risk measures evaluate the extreme losses of a portfolio potentially faced by traders. The
recursive computation of the VaR and the CVaR was introduced in [5], based on the formulation as an
optimization problem (see [38]) and on an unconstrained importance sampling procedure developed
in [29]. These variance reduction aspects are not investigated here.

5.2.1 Definitions and formulation

Let Y : (Ω, A,P) → R be a random variable representative of a loss (Y ≥ 0 is a loss equal to Y ).

Definition 5.1. The Value at Risk (at confidence level α ∈ (0, 1), α ≈ 1) of a given portfolio is the
(lowest) α-quantile of the distribution Y i.e.

V aRα(Y ) := inf {θ |P(Y ≤ θ) ≥ α} .
As soon as the distribution function of Y has no atom, the value at risk satisfies P (Y ≤ V aRα(Y )) =

α and if the distribution function FY of Y is also increasing (strictly) then, it is the unique solution.
As this risk measure is not consistent (see [14]), another consistent risk measure is provided by the
Conditional value at Risk when Y ∈ L1(P) with a continuous distribution (no atom).

Definition 5.2. Let Y ∈ L1(P) with an atomless distribution. The Conditional value at Risk (at level
α) is the conditional expectation of the portfolio loss Y beyond V aRα(Y ), i.e.

CV aRα(Y ) := E [Y |Y ≥ V aRα(Y )] .

The following formulation of the V aRα(Y ) and CV aRα(Y ) as solutions to an optimization problem
is due to Rockafellar and Uryasev in [38].

Proposition 5.1. (Rockafellar and Uryasev) Let Y ∈ L1(P) with an atomless distribution. The
function V : θ 7→ θ + 1

1−αE (Y − θ)+ is convex, and

CV aRα(Y ) = min
θ

(
θ +

1

1− α
E (Y − θ)+

)
with V aRα(Y ) = inf argmin

θ

(
θ +

1

1− α
E(Y − θ)+

)
.
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5.2.2 Stochastic gradient for the computation of both V aRα(Y ) and CV aRα(Y )

⊲ Computation of the V aRα(Y ). What precedes suggests to implement a stochastic gradient descent
derived from the above convex objective function V (θ) = θ+ 1

1−αE(Y − θ)+. Assume that Y ∈ L1(P)
with a continuous increasing distribution function FY (for the sake of simplicity, see [5] for a slightly
more general framework). Let ν = L(Y ). We check that

lim
θ→+∞

V (θ)

θ
= 1 and lim

θ→+∞
V (−θ)

θ
=

α

1− α
hence lim

θ→±∞
V (θ) = +∞.

so that {V aRα(Y )} = argminR V . We check that V ′(θ) = E[H(θ, Y )] where

H(θ, y) := 1− 1

1− α
1{y≥θ}.

Note that H is uniformly bounded by 1 ∨ α
1−α . This leads to devise the stochastic gradient descent

θn+1 = θn − γn+1H(θn, Yn), n ≥ 0, θ0 ∈ L1(P).

whose unique target is θ∗ = V aRα(Y ). It is clear that, for every y ∈ R, θ 7→ H(θ, y) is nondecreasing
so that L(θ) = 1

2(θ − θ∗)2 is a good candidate as a Lyapunov function. In fact it is even a strict
pathwise Lyapunov function in the sense of (2.15) by setting for every δ > 0, Ψδ(θ) = δ1|θ−θ∗|>δ and
χδ(y) = 1|y−θ∗|≤δ.

As soon as (Yn)≥0 is ν-averaging, there exists a sequence (εn)n≥1 such that, for every θ ∈ R,
1{y≥θ} ∈ Vεn,2 since the empirical distribution measure a.s. (and subsequently in L2) converges uni-
formly toward FY . Finally, as soon as the step sequence (γn)n≥1 is admissible for (εn)n≥1, Theorem
2.1 implies that

θn
a.s.−→

n→∞
θ∗ = V aRα(Y ).

In practice γn = c/n, c > 0, is always admissible given the rate of convergence of the empirical
measure in usual applications. Of course, when the Yn are i.i.d., standard martingale arguments “à la
Robbins-Monro” make things straightforward under less stringent assumptions on the step sequence.

⊲ Computation of the CV aRα(Y ). The idea to compute the CV aRα(Y ) is to devise a companion
procedure of the above stochastic gradient by setting, ζ0 = 0 and for every n ≥ 0,

ζn+1 = ζn − 1

n+ 1
(ζn − v(θn, Yn)) with v(θ, y) := θ +

(y − θ)+
1− α

.

One checks that for every n ≥ 0,

ζn =
1

n

n−1∑

k=0

v(θk, Yk) =
1

n

n−1∑

k=0

v(θ∗, Yk) +
1

n

n−1∑

k=0

v(θk, Yk)− v(θ∗, Yk)

Using that v is Lipschitz continuous in θ uniformly in y, we derive that the second term in the right
hand side of the above equality goes to 0 a.s. as θn → 0 a.s.

As concerns the first term, still in right hand side, first note that v(θ∗, y) has a linear growth in y so
it will a.s. go to E v(θ∗, Y ) = V (θ∗) = CV aRα(Y ) as soon as, e.g., supn≥1

1
n

∑n−1
k=0 |Yk|1+η < +∞ a.s.

for an η > 0 by combining standard uniform integrability arguments (with respect to the empirical
measure) and the ν-stability of (Yn)n≥0. In practice one must keep in mind that an adaptive importance
sampling procedure like that detailed in [5] should be added. For a QMC implementation of the
procedure, see [15].
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5.3 Long term investment evaluation (and inhomogeneous Markov innovations)

In this example we deal with averaging inhomogeneous Markov innovations, namely the Euler scheme
with decreasing step of a Brownian diffusion. To describe the functional class Vεn,p, we rely on an
approach developed in [20] and [27] to compute the invariant measure of a diffusion.

5.3.1 Computation of the invariant distribution of a diffusion

We consider a stochastic recursive algorithm for the computation of the invariant distribution ν in-
troduced in [20] of a Brownian diffusion process

dYt = b(Yt)dt+ σ(Yt)dWt (5.39)

where b : R
q → R

q and σ : R
q → Mq,ℓ(R) (matrices with q rows and ℓ columns) are Lipschitz

continuous, and W is a ℓ-dimensional Brownian motion. We denote by A its infinitesimal generator
and by (Pt)t≥0 its transition semi-group.

First, we introduce the Euler discretization of (5.39) with a step γn vanishing to 0, i.e.

∀n ∈ N, Ȳn+1 = Ȳn + γ̄n+1b(Ȳn) +
√
γ̄n+1σ(Ȳn)Un+1, (5.40)

where Ȳ0 ∈ L0
Rq (Ω,F ,P) and (Un)n≥1 is R

ℓ-valued normalized white noise defined on a probability
space (Ω,F ,P), independent of Ȳ0. The step sequence γ̄ := (γ̄n)n≥1 satisfies the conditions

∀n ≥ 1, γ̄n ≥ 0, lim
n→∞

γ̄n = 0 and Γ̄n :=

n∑

k=1

γ̄k −→
n→∞

+∞. (5.41)

For every n ≥ 1 and every ω ∈ Ω, set

νn(ω, dy) :=
1

n

n−1∑

k=0

δȲk(ω)
. (5.42)

We will use νn(ω, f) which can be compute recursively to approximate ν(f).

Definition 5.3. (Strong condition of stability) A diffusion with generator A satisfies a strong stability
condition of type (V, α) if there exists a (so-called Lyapunov) function V ∈ C2(Rq, [1,+∞[) such that
lim|y|→+∞ V (y) = +∞ and ∃α > 0, ∃ β ≥ 0 such that AV ≤ −αV + β.

Remark. If the (V, α)-strong stability condition holds then (5.39) admits a strong solution starting
from any y ∈ R

d and admits at least one invariant distribution ν (i.e. νPt = ν, t ≥ 0).

Definition 5.4. (a) A couple (γ̄, η) is an averaging step-weight system if the sequences (γ̄n)n≥1 and
(ηn)n≥1 are nonnegative, general terms of a non-converging series and such that

lim
n

γ̄n = 0,
∑

n≥1

1

Hn

(
∆
ηn
γ̄n

)

+

< +∞ and
∑

n≥1

(
ηn

Hn
√
γ̄n

)2

< +∞,

where Hn =
∑n

k=1 ηk.
(b) In particular, if ηn ≡ 1, then (γ̄, 1) is an averaging step-weight system if

lim
n

γ̄n = 0,
∑

n≥1

1

n

(
1

γ̄n
− 1

γ̄n+1

)
< +∞ and

∑

n≥1

1

n2γ̄n
< +∞.
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The terminology “averaging” refers here to the fact that if A is (V, α)-stable (and the invariant
distribution ν is unique for the sake of simplicity) then, as soon as (γ̄, η) is averaging (see e.g. [20],
[27] or [28]), then

sup
n≥0

EV (Ȳn) < +∞ and P(dω)-a.s. νηn(ω, dy) :=
1

Hn

n−1∑

k=0

ηkδȲk(ω)
(Rd)
=⇒ ν.

Example. If γ̄n = γ̄0
nr , 0 < r < 1, and ηn ≡ 1, then (γ̄, 1) is averaging.

We assume that the diffusion (Yt)t≥0 satisfies a strong condition of stability of type (V, α) with
V sub-quadratic and that the invariant measure ν is unique. Besides the coefficients b and σ satisfy
|b|2+Tr(σσt) = O(V ). Then the Euler scheme with decreasing step (Ȳn)n≥0 defined by (5.40) satisfies
a strong condition of stability of type (W,n0) where W is a function depending upon V and the
moments of U1, namely

∀n ≥ n0, E
[
W (Ȳn+1) |σ

(
Ȳk, 0 ≤ k ≤ n

)]
≤ (1− α γ̄n+1)W (Ȳn) + β.

⊲ If U1 is sub-normal (typically if U1 is normal), and Tr(σσ∗) ≤ CσV
1−ζ , we may choose W =

exp(λV ζ) with λ small enough (see [27] Proposition III.2 p. 36).

⊲ If U1 has a moment of order 2(p + 1), p ≥ 2, then W = V p+1 (idem).

Assume that the function f : Rq → R admits a regular enough solution φ to the Poisson equation

Aφ = −(f − ν(f)), (5.43)

i.e. belonging to the set

Ep,W :=

{
φ ∈ Cp(Rq,R), ∀j ∈ {0, . . . , p}, ∀y ∈ R

q,
∣∣Djφ(y)

∣∣2 = o

(
W (y)

V j(y)

)}

and satisfying Dpφ Lipschitz. For such functions φ, let us to define the functions Dq, 3 ≤ q ≤ p, by

∀y ∈ R
q, Dq(y) =

q∑

j≥q/2

Cq−j
j

j!
Djφ(y) ·

(
(b(y))⊗(q−j) ,E

[
(σ(y)U1)

⊗(2j−q)
])

.

They will appear in the development of the error of order p, p ≥ 3.

Theorem 5.1. Let p ≥ 2 such that U1 ∈ L2(p+1) and φ ∈ Ep,W solution to Poisson equation (5.43)
such that Dpφ is Lipschitz. Define q∗ by

q∗ = min
q∈{3,...,p}

{Dq 6= 0} ∧ (p+ 1).

(Note that if U1
L∼ N (0, Iq) then q∗ = 4). Let Γ̄

(β)
n =

∑n
k=1 γ̄

β
k , β ∈ R. Assume that the couples (γ̄, 1)

and (γ̄, 1
γ̄ ) are averaging and that (γ̄n)n≥1 is non-increasing. If q∗ ≤ p and

Γ̄
(q∗/2−1)
n√
Γ̄
(−1)
n

−→
n→+∞

ξ ∈]0,+∞],
((

Γ̄(q∗/2−1)
n γ̄n

)−1)
n≥1

is non-increasing,

∑

n≥1

1

Γ̄
(q∗/2−1)
n

∣∣∣∣∆
1

γ̄n

∣∣∣∣ < +∞ and
∑

n≥1

1

γ̄n

(
Γ̄
(q∗/2−1)
n

)2 < +∞,

then

f ∈ Vεn,2 with εn =
Γ̄
(q∗/2−1)
n

n
−→

n→+∞
0.
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Corollary 5.1. If γ̄n = γ̄0
nr , γ̄0 > 0, the above theorem holds true when 0 < r ≤ 1

q∗−1 and εn =

n−r(q∗/2−1). In particular, for a Gaussian Euler scheme, εn = n−r.

Sketch of proof of Theorem 5.1. Proposition V.4 in [27] gives

∥∥∥ n

Γ̄
(q∗/2−1)
n

( 1
n

n−1∑

k=0

f(Ȳk)− ν(f)
)∥∥∥

2
= ‖Mn + Sn‖2 + o(1)

where Mn =
1

Γ̄
(q∗/2−1)
n

n∑

k=1

√
1

γ̄k

〈
∇φ(Ȳk−1) | σ(Ȳk−1)Uk

〉
and Sn =

p∑

q=q∗

1

Γ̄
(q∗/2−1)
n

n∑

k=1

γ̄
q
2
−1

k Dq(Ȳk−1).

Using that φ ∈ Ep,W , i.e. that for every q, |Dq|2 = o(W ), and that supn EW (Ȳn) < +∞ (according
to the stability condition of the Euler scheme), we get (see the remark after Proposition V.1 p.62 in
[27]),

‖Mn‖2 ≤

√
Γ̄
(−1)
n

Γ̄
(q∗/2−1)
n

sup
0≤k≤n−1

∥∥σ∗∇φ(Ȳk)
∥∥
2
< +∞

since

√
Γ̄
(−1)
n /Γ̄

(q∗/2−1)
n −→

n→+∞
ξ−1 ∈]0,+∞[ and ‖ sup

n
Sn‖2 < +∞. �

5.3.2 Application to the minimization of a potential

The aim is to minimize a convex potential V : Rq → R having a minimum (e.g. because lim|θ|→+∞ V (θ) =
+∞) assumed to be unique. We also assume that V has a representation as the expectation with re-
spect to the invariant distribution ν of an ergodic diffusion, say Y defined above. Typically V appears
as the long run limit (under appropriate assumptions) of a functional through Birkhoff’s Theorem:

V (θ) = lim
t→+∞

1

T

∫ T

0
v(θ, Yt+s) ds = Eν

( 1
T

∫ T

0
v(θ, Ys ds

)
=

∫

Rq

v(θ, y)ν(dy).

We make the following assumptions

(i) Integrability: ∀y ∈ R
q, θ 7→ v(θ, y) is convex.

(ii) Pathwise convexity: ∀θ ∈ R
d, v(θ, ·) ∈ L1(ν).

(iii) Differentiability: ∀θ ∈ R
d, ∇θv(θ, y) exists.

(iv) Uniform integrability: ∀θ∈ R
d,
(
|v(θ,y)−v(θ′,y)|

|θ−θ′|

)
θ′∈[θ−ηθ,θ+ηθ]\{θ}

, ηθ>0, is uniformly integrable.

Then (using uniqueness of θ∗),

θ∗ = argminθ∈Rd

∫

Rq

v(θ, y)ν(dy) iff

∫

Rq

∇θv(θ
∗, y)ν(dy) = 0,

At this stage the idea is to devise a stochastic gradient (gradient based recursive zero search) using

the Gaussian Euler scheme (Ȳn)n≥0 with decreasing step γ̄n = γ̄0n
− 1

3 , γ̄0 > 0, of Y as an ν-averaging
innovation process with rate εn = Γ̄n/n → 0:

∀n ≥ 0, θn+1 = θn − γn+1∇θv(θn, Ȳn), θ0∈ R
q.
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Let p∈ [1,∞) such that ∇θv satisfies the growth assumption (2.12) with L(θ) = |θ − θ∗|2, ∇θv(θ
∗, ·)∈

Vεn,p and (γn)n≥1 is admissible for εn given by Corollary 5.1, then Theorem 2.1 implies that θn →
θ∗ a.s.

Toy numerical example. We consider a long-term investment project (see the example in [30])
which yields payoff at a rate that depends on the installed capacity level and on the value of an under-
lying state process modeled with an ergodic diffusion. The process Y represents an economic indicator
such as the asset demand or its discounted price. Our aim is to determine the capacity expansion
strategy that maximizes the long-term average payoff resulting from the project operation. So it is
an ergodic control problem in a microeconomic framework. In [30] is shown that this dynamical opti-
mization problem is equivalent (see above) to a static optimization problem involving the stationary
distribution ν of Y and the (concave) running payoff function C, namely, still following [30],

∀ θ∈ R+, ∀ y∈ R+, C(θ, y) = yαθβ − c θ where α, β ∈ (0, 1) and c ∈ (0,∞).

The term yαθβ can be identified to the so-called Cobb-Douglas production function, while the term c θ

measures the cost of capital use. Our task is to minimize

∫

Rq

(−1)
(
yαθβ − c θ

)
ν(dy) (so that of course

θ∗ =
(βEY α

1
c

) 1
1−β !). Since ∇θ C(θ, y) is singular at θ = 0, we will introduce the increasing convex with

linear growth change of variable θ =
(
θ̃+ (θ̃2 +1)1/2

)ρ(θ̃)
, ρ(θ̃) = 1

1−β1θ̃<0 +1θ̃≥0, from R onto (0,∞)
and we consider

∇θv(θ̃, y) = −∇θC
((

θ̃ + (θ̃2 + 1)1/2
)ρ(θ̃)

, y
)
, θ̃∈ R, y∈ R+.

Still following [30], the dynamics of the underlying state process Y is modeled by the one-dimensional
CIR diffusion (whose diffusion coefficient is unfortunately not Lipschitz), namely

dYt = κ (ϑ− Yt) dt+ σ
√

|Yt|dWt, Y0 > 0, (5.44)

where κ, ϑ, σ > 0 are constants satisfying 2κϑ > σ2 so that (Yt)t≥0 is (0,∞)-valued.
The resulting stochastic gradient procedure with step (γ̃n)n≥1 reads

∀n ≥ 0, θ̃n+1 = θ̃n − γn+1∇θv(θ̃n, Ȳn), θ̃0∈ R,

where (γn)n≥1 is admissible with respect to εn = Γ̄n/n and (Ȳn)n≥0 the Euler scheme with step γ̄n =

γ̄0n
−1/3 (L(θ̃) = |θ̃ − θ̃∗|2 is still a pathwise Lyapunov function). One checks that ∇θv satisfies (2.12)

with φ(y) ≡ cα,βy
α, cα,β > 0 and p = 2 since supn E Ȳ 2

n < +∞ and α∈ (0, 1).

The invariant distribution of Y is a Gamma law which density is given by

ν(dy) =
1

Γ
(
2κϑ
σ2

)y
2κϑ
σ2 −1 exp

(
2κ

σ2

[
ϑ log

(
2κ

σ2
− y

)])
1{y>0},

where Γ is the gamma function. Thus we can compute the previous integral, namely
∫

R+

yαν(dy) =
Γ
(
2κϑ
σ2 + α

)

Γ
(
2κϑ
σ2

)
(
σ2

2κ

)α

< +∞,

so we have in fact a closed form for θ∗ given by θ∗ =

(
βΓ
(
2κϑ
σ2 + α

)

cΓ
(
2κϑ
σ2

)
(
σ2

2κ

)α
) 1

1−β

. Figure 2 illustrates

the convergence of the algorithm (the parameters are specified in the caption).
If one considers a basket of assets modeled by a Wishart process (see [8] and [17]), a similar

long-term ergodic control process can be devised. Closed forms are no longer available for the static
optimization problem. However, our numerical approach can be extended straightforwardly (provided
one has at hand an efficient method of simulation for Wishart process, like that proposed in [17]).
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Figure 2: Convergence towards the optimal capacity level of the investment project: κ = 1, ϑ = 1,
σ = 1.5, α = 0.8, β = 0.7, c = 0.5, n = 105, γ̃n = 5

n .

5.4 The ergodic two-armed bandit

An application of the multiplicative setting is the so-called two-armed bandit algorithm introduced in
mathematical psychology, learning automata (see [34, 32]) and more recently asset allocation ([23]).
Criteria on a.s. convergence under pure i.i.d. assumptions were obtained in [23, 21] and under ergodic
assumptions in [40]. A penalized version of this algorithm is also studied in [22].

This algorithm is defined as follows: at each step n ≥ 0, one plays arm A (resp. arm B) at random
with probability θn (resp. 1 − θn), where θ0 = θ ∈ (0, 1) and θn is updated according the following
“rewarding” rule: for every n ≥ 0,

θn+1 = θn + γn+1

(
(1− θn)1{Un+1≤θn}∩An+1

− θn1{Un+1>θn}∩Bn+1

)
(5.45)

where (Un)n≥1 is an i.i.d. sequence of uniform random variables, independent of (An)n≥1 and (Bn)n≥1

which are two sequences of (possibly dependent) events evaluating the performances of the arms A
and B respectively (An is the event “A’s performance is satisfactory ay time n” idem for Bn and B).

This stochastic procedure can be rewritten in a canonical form as follows

θn+1 = θn + γn+1

(
1An+1 − 1Bn+1

)
h(θn) + γn+1∆Mn+1, θ0 = θ ∈ (0, 1) (5.46)

where h(θ) = θ(1− θ), Mn :=
∑n

k=1mk, M0 := 0, with

mk := 1Ak
(1− θk−1)

(
1{Un+1≤θn} − θk−1

)
+ 1Bk

θk−1

(
(1− θk−1)− 1{Un+1>θn}

)
.

We make the assumption that A outperforms B in average i.e. that ν(A) > ν(B) where

1

n

n∑

k=1

1An −→
n→∞

ν(A) and
1

n

n∑

k=1

1Bn −→
n→∞

ν(B)

and that these convergences hold at rate εn satisfying (2.7). Then applying Theorem 2.2 with Yk :=
1Ak+1

− 1Bk+1
, k ≥ 0, and χ(y) = y

ν(A)−ν(B) , we get a first convergence result: as soon as (γn)n≥1 is

admissible in the sense of (2.14) for the sequence (εn)n≥1,

θn
a.s.−→

n→∞
θ∗ ∈ {0, 1} .

29



where 1 is the target and 0 is a trap. Further investigations on θ∗ are carried in [40] in this ergodic
framework to analyze the fallibility of the algorithm which extend former results established in [23, 21]
in the purely i.i.d. setting.

5.5 Optimal split of orders across liquidity pools

This is an example of application in Finance to be implemented exclusively on real data. It is an
optimal allocation problem which solved by a stochastic Lagrangian approach originally developed in
[26]. Here, only numerical results with real market data are presented.

5.5.1 Model description

The principle of a Dark pool is to propose a price with no guarantee of executed quantity at the
occasion of an OTC transaction. Usually this price is lower than the one offered on the regular
market. So one can model the impact of the existence of N dark pools (N ≥ 2) on a given transaction
as follows: let V > 0 be the random volume to be executed, let θi ∈ (0, 1) be the discount factor
proposed by the dark pool i. Let ri denote the percentage of V sent to the dark pool i for execution.
Let Di ≥ 0 be the quantity of securities that can be delivered (or made available) by the dark pool i
at price θiS.

The remainder of the order is to be executed on the regular market, at price S. Then the cost C
of the whole executed order is given by

C = S
N∑

i=1

θimin (riV,Di) + S
(
V −

N∑

i=1

min (riV,Di)
)
= S

(
V −

N∑

i=1

ρimin
(
riV,Di

))

where ρi = 1 − θi ∈ (0, 1), i = 1, . . . , N . Minimizing the mean execution cost, given the price S,
amounts to solving the following maximization problem

max
{ N∑

i=1

ρiE
(
Smin

(
riV,Di

))
, r ∈ PN

}
(5.47)

where PN :=
{
r = (ri)1≤i≤N ∈ R

N
+ | ∑N

i=1 ri = 1
}
. It is then convenient to include the price S into

both random variables V and Di by considering Ṽ := V S and D̃i := DiS instead of V and Di.
Let IN = {1, . . . , N}. We set for all r = (r1, . . . , rN ) ∈ PN , Φ(r1, . . . , rN ) :=

∑N
i=1 ϕi(ri), where

∀i ∈ IN , ϕi(u) := ρiE (min (uV,Di)) , u ∈ [0, 1] .

We assume that for all i ∈ IN ,

V > 0 P-a.s., P(Di > 0) > 0 and the distribution function of Di

V is continuous on R+, (5.48)

then ϕi, i ∈ IN , are everywhere differentiable on the unit interval [0, 1] with

ϕ′
i(u) = ρi E

(
1{uV≤Di}V

)
, u ∈ (0, 1] , (5.49)

and one extends ϕi, i ∈ IN , on the whole real line into a concave nondecreasing function with
lim±∞ ϕi = ±∞. So we can formally extend Φ on the whole affine hyperplane spanned by PN i.e.

HN :=
{
r = (r1, . . . , rN ) ∈ R

N |∑N
i=1 ri = 1

}
.
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5.5.2 Design of the recursive procedure

We aim at solving the following maximization problem maxr∈PN
Φ(r). The Lagrangian associated to

the sole affine constraint suggests that any r∗ ∈ argmaxPN
Φ iff ϕ′

i(r
∗
i ) is constant when i runs over

IN or equivalently if ϕ′
i(r

∗
i ) =

1
N

∑N
j=1 ϕ

′
j(r

∗
j ), i ∈ IN .

We set Y n := (V n,Dn
1 , . . . ,D

n
N )n≥1. Then using the representation of the derivatives ϕ′

i yields

r∗ ∈ argmax
PN

Φ ⇐⇒ ∀i ∈ {1, . . . , N} , E

(
V
(
ρi1{r∗i V <Di} − 1

N

N∑

j=1

ρj1{r∗j V <Dj}
))

= 0.

Consequently, this leads to the following recursive zero search procedure

rn+1
i = rni + γn+1Hi(r

n, Y n+1), r0 ∈ PN , n ≥ 0, i ∈ IN , (5.50)

where for every i ∈ IN , r ∈ PN , every V > 0 and every D1, . . . ,DN ≥ 0,

Hi(r, Y ) = V
(
ρi1{riV <Di} −

1

N

N∑

j=1

ρj1{rjV <Dj}
)

where (Y n)n≥1 is a sequence of random vectors with nonnegative components such that, for every

n ≥ 1, (V n,Dn
i , i = 1, . . . , N)

d
= (V,Di, i = 1, . . . , N).

The underlying idea of the algorithm is to reward the dark pools which outperform the mean of
the N dark pools by increasing the allocated volume sent at the next step (and conversely). For sake
of simplicity that argmaxP

N
Φ = {r∗} ⊂ int(P

N
). Our “light” ν-averaging assumption is to assume

that there exists an exponent η ∈ (0, 1] such that for every u ∈ R+ and every i∈ IN

1

n

n∑

k=1

V k1
{u<Dk

i

V k }
− E(V 1{u<Di

V
}) = O(n−η) a.s. and in L2(P) (5.51)

(which hold under geometric α-mixing assumptions on (Dn, V n)n≥1). Under additional technical
assumptions on the support of L(Y n) (see [26]), we can apply Theorem 2.1: if the sequence (γn)n≥1

satisfies (2.14), we get that the algorithm defined by (5.50) a.s. converges towards r∗ = argmaxP
N
Φ.

5.5.3 Numerical Tests

We consider the shortage setting, i.e. EV >
∑N

i=1 EDi because it is the most interesting case and
the most common in the market. Now, we introduce an index to measure the performances of our
recursive allocation procedure.

⊲ Relative cost reduction (w.r.t. the regular market): it is defined as the ratios between
the cost reduction of the execution using dark pools and the cost resulting from an execution on the
regular market, i.e., for every n ≥ 1,

CRalgo

V n
=

∑N
i=1 ρimin (rni V

n,Dn
i )

V n
.

We have considered for V the traded volumes of a very liquid security – namely the asset BNP –
during an 11 day period. Then we selected the N most correlated assets (in terms of traded volumes)
with the original asset. These assets are denoted Si, i = 1, . . . , N and we considered their traded
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volumes during the same 11 day period. Finally, the available volumes of each dark pool i have been
modeled as follows using the mixing function

∀ 1 ≤ i ≤ N, Di := βi

(
(1− αi)V + αiSi

EV

ESi

)

where αi, i = 1, . . . , N are the recombining coefficients, βi, i = 1, . . . , N some scaling factors and EV
and ESi stand for the empirical mean of the data sets of V and Si. The simulations presented here
have been made with four dark pools (N = 4). Since the data used here cover 11 days, it is clear that,
unlike the simulated data, these pseudo-real data are not stationary: in particular they are subject to
daily changes of trend and volatility (at least). To highlight the resulting changes in the response of
the algorithms, we have specified the days by drawing vertical doted lines. The dark pool pseudo-data
parameters are set to β = (0.1, 0.2, 0.3, 0.2)t , α = (0.4, 0.6, 0.8, 0.2)t and the dark pool trading (rebate)
parameters are set to ρ = (0.0, 0.02, 0.04, 0.06)t .

We benchmarked – see Figure 3 – the algorithm on the whole data set (11 days) as though it
were stationary. In particular, the running means of the performances are computed from the very
beginning for the first 1500 data, and then by a moving average computed on a window of 1500 data.
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Figure 3: Case N = 4,
∑N

i=1 βi < 1, 0.2 < αi ≤ 0.8 and r0i = 1/N , 1 ≤ i ≤ N .
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[11] R. Douc, G. Fort, É. Moulines, and P. Priouret. Forgetting the initial distribution for hidden Markov
models. Stochastic Process. Appl., 119(4):1235–1256, 2009.

[12] P. Doukhan. Mixing, volume 85 of Lecture Notes in Statistics. Springer-Verlag, New York, 1994. Properties
and examples.

[13] M. Duflo. Algorithmes stochastiques, volume 23 of Mathématiques & Applications (Berlin) [Mathematics
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