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Abstract

The aim of the paper is to establish a convergence theorem for multi-dimensional stochastic
approximation when the “innovations” satisfy some “light” averaging properties in the presence of
a pathwise Lyapunov function. These averaging assumptions allow us to unify apparently remote
frameworks where the innovations are simulated (possibly deterministic like in Quasi-Monte Carlo
simulation) or exogenous (like market data) with ergodic properties. We propose several fields of
applications and illustrate our results on five examples mainly motivated by Finance.

Keywords Stochastic Approximation, mixing processes, Gàl-Koksma theorem, stationary processes,
quasi-Monte Carlo, sequence with low discrepancy, two-armed bandit algorithm, calibration, optimal
asset allocation, VaR-CVaR, ergodic control.
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1 Introduction

This paper presents convergence results for stochastic approximation of Robbins-Monro type (see [30]
for the original paper), namely

θn+1 = θn − γn+1H(θn, Yn), (1.1)

when the “innovation” sequence (Yn)n≥0 satisfies some “elementary” averaging assumptions. In fact,
we will consider a slightly more general setting which includes an extra noisy term

θn+1 = θn − γn+1 (H(θn, Yn) + ∆Mn+1) , (1.2)

when (∆Mn)n≥1 is a sequence of martingale increments. Our aim is to unify several frameworks: the
first one is the case of generated (possibly non random) innovations to solve problems coming from
Numerical Probability, typically low discrepancy sequences. The second one deal with the case of
exogenous data satisfying some properties, light ergodic but sharing a priori no Markov property like
in the procedures extensively investigated in [3] and more recently in [7].

To establish the a.s. convergence of the sequence (θn)n≥0 toward its “target” θ∗ (to be specified later
on), the idea is to make the assumption that the innovation sequence (Yn)n≥0 satisfies an averaging
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property in a “linear” setting: typically that, for a wide enough class V of integrable functions (with
respect to a probability measure ν),

∀f ∈ V, 1

n

n−1∑

k=0

f(Yk) −→
n→∞

∫

Rq

fdν (1.3)

at a common rate of convergence to be specified further on. If V ⊃ Cb(Rq,Rq), this implies

1

n

n−1∑

k=0

δYk

(Rq)
=⇒
n→∞

ν

and the sequence (Yn)n≥0 is often called “stable” in the literature, at least when it is a Markov chain. If
V = L1(ν), the sequence (Yn)n≥0 may be called in short “ergodic” although no true ergodic framework
comes in the game stricto sensu. The target of our recursive procedure (1.2) is then, as expected, a
zero, if any, of the (asymptotic) mean function of the algorithm defined as

h(θ) :=

∫

Rq

H(θ, y)ν(dy).

The key assumption is the existence of pathwise Lyapunov function with respect to the innovation i.e.
a function L satisfying

〈∇L(θ) |H(θ, y)−H(θ∗, y)〉 ≥ 0

for every θ and y. This assumption may look very stringent. However such a setting embodies
standard framework of Stochastic Approximation with Markov representation of the form (1.1) when
the (Yn)n≥0 is i.i.d. since its canonical form reads

θn+1 = θn − γn+1

(
h(θn) + ∆M̃n+1

)
,

where ∆M̃n+1 = E
[
H(θn, Yn) | FY

n−1

]
− h(θn) +∆Mn+1. Then H(θ, ·) = h(θ) and the notion of path-

wise Lyapunov function reduces to the standard one. The above canonical form has been extensively
investigated (and extended) in many textbooks on Stochastic Approximation (see [3], [9], [13], [14]).

Our main theorem (Theorem 2.1) let us retrieve almost entirely the classical results about a.s.
(and Lp)-boundedness and convergence of this procedure under usual Lyapunov assumption. Many
extensions have been developed when (Yn)n≥0 or even (θn, Yn)n≥0 have a Markovian dynamics (see
the seminal textbook [3] and more recent contributions like [7] and several reference therein). The
main constraint induced by such an approach is that we need to make assumptions on the solution of
the Poisson equation related to this chain.

Our aim is more modest from a theoretical point of view. Nevertheless, our main concern is to take
into account innovations with very light “ergodic” or even simply “averaging” properties and sharing
no kind of Markov property, in order to include as different types of innovation as real real market
data or deterministic Quasi-Monte Carlo sequences (also known as uniformly distributed sequences
see [26]). We provide various examples which illustrate that the price to be paid (mainly the pathwise
Lyapunov function) is not so high for practical applications. In the treated examples, we use the
convergence part of Theorem 2.1. However by slightly relaxing the pathwise Lyapunov equation, we
can also derive from Theorem 2.1 a boundedness result which could be the starting point of a pathwise
reasoning in the spirit of the ODE method.

As a first field of applications, we are interested in quasi-random numbers. The original idea
of replacing by uniformly distributed sequences (with low discrepancy) i.i.d. innovations in recursive
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stochastic approximation procedures goes back to the early 1990’s in [19], leading to “Quasi-Stochastic
Approximation” (referring to QMC for Quasi-Monte Carlo). The framework in [19] was purely one-
dimensional and many numerical tests have proved the efficiency of QSA via multi-dimensional setting.
The aim is to establish a convergence theorem in this higher dimensional setting under natural reg-
ularity assumptions (i.e. based on Lipschitz regularity rather than finite variation in the Hardy &
Krause sense, often encountered in the QMC world). As concerns the low discrepancy sequences, our
framework is probably close to the most general one to get pointwise a.s. convergence of stochastic
approximation.

As a second setting, we consider the case when (Yn)n≥0 is a functional of α-mixing process satisfying
a priori no Markov assumption. These processes are stationary and dependent, so more realistic to
model inputs made of real data. To describe the class of functions V we need to prove the convergence
of the series of covariance coefficients of the innovations. To this end we use some results in [28]
and the covariance inequality for α-mixing process (see[8]). Next with the probabilistic version of
the theorem of Gàl-Koksma (see [11] and [1]) we prove that this class is large enough (L2(ν) ⊂ V).
Finally we examine the case of homogeneous Markov chain with invariant distribution ν. Some results
on Stochastic Approximation in this setting have been proved in [3], but they need to establish the
convergence of the algorithm to assume the existence of a solution to Poisson equation with some
regularity properties. To describe V we add an ergodic assumption on the chain which allows us to
prove that this class does not depend on the initial value of the chain.

Finally we present several examples of applications illustrated with numerical experiment. First
we consider a simple case of calibration: the search of an implicit parameter in a financial model to fit
its value to the market. We implement the algorithm with an i.i.d. sequence and a quasi-random one
to compare their rate of convergence. The second example is devoted to the recursive computation of
risk measures commonly considered in energy portfolio management, namely the Value-at-Risk and
the Conditional-Value-at-Risk. We show that the recursive procedure introduced in [2] to compute
these quantities can be successfully implemented in a QSA framework. In the third example, we solve
numerically a long term investment “toy” problem leading to an ergodic control problem (see [24]). In
that problem, the innovation turns out to be the outputs of the Euler scheme with decreasing step of
a diffusion as introduced in [15, 22]. These three examples describe stochastic numerical procedures
based on simulated data. The fourth example is the so-called two-armed bandit introduced in learning
automata and mathematical psychology in the 1950’s (see [25]). Its a.s. behaviour in the i.i.d. setting
has been extensively investigated in [18] and [16]. These results have been partially extended in [32]
to a more general ergodic framework. We show that the starting point of this extension appears as
a consequence of our main result (in the multiplicative case). The last example describes a model
of asset allocation fully developed in [21] involving exogenous true market data, a priori sharing no
Markov property but on which an averaging assumption seems natural (at least within a medium laps
of time).

The paper is organized as follows : in Section 2 are stated and proved the two main results:
Theorem 2.1 and its counterpart Theorem 2.2, for multiplicative noise. Section 3 is devoted to quasi-
Stochastic Approximation, i.e. the case where the innovation process is an uniformly distributed de-
terministic sequence over [0, 1]q . Section 4 is devoted to applications to random innovations, namely
additive noise, mixing process (functionals of α-mixing process), ergodic homogeneous Markov chain.
Section 5 presents five examples of applications including numerical illustrations, mostly in connec-
tion with Finance: implicit correlation search, recursive computation of VaR and CVaR, long term
investment evaluation, two-armed bandit algorithm and optimal allocation problem (more developed
in [21]).
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Notations 〈· | ·〉 denote the Euclidean inner product and |·| its related norm. The almost sure

convergence will be denoted
a.s.−→ and

(Rq)
=⇒ will denote the weak convergence in Rq.

2 Algorithm design and main theoretical result

In this paper, we consider the following general framework for recursive stochastic algorithms of the
following form

θn+1 = θn − γn+1 (H(θn, Yn) + ∆Mn+1) , n ≥ 0, (2.4)

where θ0 is an Rd-valued random variable, (Yn)n≥0 is a Rq-valued sequence of random variables
and ∆Mn+1 is a martingale increment, all defined on a same probability space (Ω,F ,P). Moreover
θ0 ∈ L1(P) and θ0 is independent of (Yn)n≥0. The step sequence (γn)n≥1 is a non-increasing and H is
a Borel function from Rd × Rq to Rd. We will denote Fn = σ(θ0, Y0, Y1, . . . , Yn), n ≥ 0, the natural
filtration of the innovation process (Yn)n≥0. Note that no Markov assumption is made a priori on the
sequence (Yn)n≥0.

In the following, we adopt a kind of compromise by assuming that (Yn)n≥0 is a process satisfying

some averaging properties and where the function H(θ∗, )̇ belongs to a class of functions (which will
be specified further on) for which some rate of convergence (a.s. and in Lp) holds in (1.3). Moreover
we need to reinforce the Lyapunov condition on the pseudo-mean function H which limits, at least
theoretically, the range of application of the method.

However, we will see in the examples that it provides some rather general (and now to our knowl-
edge) results about quasi-Stochastic Approximation which justifies the implementation of stochastic
approximation procedures with sequences with low discrepancy. This widely spread practice, espe-
cially in Financial Engineering, seemed to rely so far only in some heuristic rules derived from the
original stochastic approximation framework.

2.1 Framework and assumptions

Let (Yn)n≥0 be an Rq-valued random variables sequence. We will say that the sequence (Yn)n≥0

satisfies a ν-stability assumption if

P(dω)-a.s.
1

n

n−1∑

k=0

δYk(ω)
(Rq)
=⇒
n→∞

ν (2.5)

where
(Rq)
=⇒ stands for the weak convergence of probability measures on (Rq,Bor(Rq)).

We will see that the stochastic approximation procedure defined by (2.4) is a recursive zero search
of the (asymptotic) mean function

h(θ) :=

∫

Rq

H(θ, y)ν(dy). (2.6)

Let p ∈ [1,∞) and let (εn)n≥0 be a sequence of non-negative numbers such that εn −→
n→∞

0. We denote

by Vεn,p the class of functions which convergence rate in (1.3) in both a.s. and in Lp(P) sense is ε−1
n ,

namely

Vεn,p =

{
f :∈ Lp(ν) | 1

n

n∑

k=1

f(Yk)−
∫

fdν
P-a.s. & Lp(P)

= O(εn)

}
. (2.7)
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2.2 Main result

Now we are in a position to state a first convergence theorem, which is a Robbins-Siegmund like
Lemma.

Theorem 2.1. (a) Boundedness: Let h : Rd → Rd satisfying (2.6), H : Rd ×Rq → Rd a Borel func-
tion and let (Yn)n≥0 be a sequence satisfying (2.5). Assume there exists a continuously differentiable
function L : Rd → R+ satisfying

∇L is Lipschitz continuous and |∇L|2 ≤ C (1 + L) . (2.8)

and that the pseudo-mean function H satisfies the pathwise Lyapunov assumption

∀θ ∈ Rd\{θ∗}, ∀y ∈ Rq, 〈∇L(θ) | H(θ, y)−H(θ∗, y)〉 ≥ 0. (2.9)

Let p ∈ [1,∞). Assume that
H(θ∗, ·) ∈ Vεn,p. (2.10)

Moreover, assume that H satisfies the following (quasi-)linear growth assumption

∀θ ∈ R
d,∀y ∈ R

q, |H(θ, y)| ≤ CHφ(y)(1 + L(θ))
1
2 (2.11)

and that the martingale increments sequence (∆Mn+1)n≥0 satisfies

∀n ≥ 0, E

(
|∆Mn+1|2∨

p
p−1 | Fn

)
≤ CMφ(Yn)

2∨ p
p−1 (1 + L(θn))

1∨ p
2(p−1) if p > 1

∀n ≥ 0, esssupE (|∆Mn+1| | Fn) ≤ CMφ(Yn)(1 + L(θn))
1
2 if p = 1

(2.12)

where supn≥0 ‖φ(Yn)‖2∨ p
(p−1)

< +∞.

Let γ = (γn)n≥1 be a non-negative non-increasing sequence of gain parameters satisfying

∑

n≥1

γn = +∞, nεnγn −→
n→∞

0, and
∑

n≥1

nεnmax
(
γ2n, |∆γn+1|

)
< +∞. (2.13)

Then, the recursive procedure defined by (2.4) satisfies (L(θn))n≥0 is L1-bounded , L(θn) −→
n→∞

L∞ <

+∞ a.s., θn − θn−1 −→
n→∞

0 a.s. and

∑

n≥1

〈∇L(θn) | H(θn, Yn)−H(θ∗, Yn)〉 < +∞.

(b) A.s. convergence: Furthermore, if {θ∗} is a connected component of {L = L(θ∗)} and the pseudo-
mean function H satisfies the strong pathwise Lyapunov assumption

∀δ > 0, ∀θ ∈ Rd\{θ∗}, ∀y ∈ Rq, 〈∇L(θ) | H(θ, y)−H(θ∗, y)〉 ≥ χ
δ
(y)Ψδ(θ) (2.14)

where ν(χ
δ
) > 0, Ψδ is l.s.c. and positive on Rd\{θ∗} and

⋂
δ>0{Ψδ = 0} = {θ∗}, then

θn
a.s.−→

n→∞
θ∗.

Remark. The conditions on the sequence of gain parameters γ = (γn)n≥1 are satisfied for example
if we set

γn =
c

na
, a > 1− β, c > 0. (2.15)
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Proof. We set for notational convenience ∆θn = θn − θn−1.
First step: We introduce the function

Λ(θ) :=
√

1 + L(θ)

as a Lyapunov function instead of L(θ) like in the classical case. It follows from the fundamental
formula of calculus that there exists ξn+1 ∈ (θn, θn+1) such that

Λ(θn+1) = Λ(θn) + 〈∇Λ(θn) |∆θn+1〉+ 〈∇Λ(ξn+1)−∇Λ(θn) |∆θn+1〉
≤ Λ(θn) + 〈∇Λ(θn) |∆θn+1〉+ 〈∇Λ(θn+1)−∇Λ(θn) |∆θn+1〉 .

Lemma 2.1. The new Lyapunov function Λ satisfies the two following properties

(i) ∇Λ is bounded (so that Λ is Lipschitz).

(ii) ∀θ, θ′ ∈ Rd, |∇Λ(θ′)−∇Λ(θ)| ≤ CL
|θ′−θ|
Λ(θ) .

Proof of Lemma 2.1.

(i) ∇Λ = ∇L

2
√
1+L

is bounded by 2.8, consequently Λ is Lipschitz.

(ii) For θ, θ′ ∈ Rd,

∣∣∇Λ(θ)−∇Λ(θ′)
∣∣ ≤ |∇L(θ)−∇L(θ′)|

2
√

1 + L(θ)
+

|∇L(θ′)|
2

∣∣∣∣∣

√
1 + L(θ′)−

√
1 + L(θ)√

1 + L(θ)
√

1 + L(θ′)

∣∣∣∣∣

≤
[∇L]Lip

2
√

1 + L(θ)

∣∣θ − θ′
∣∣+ C

2
√

1 + L(θ)
[Λ]Lip

∣∣θ − θ′
∣∣

≤ 1

2

(
[∇L]Lip + C[Λ]Lip

) |θ − θ′|
Λ(θ)

= CL
|θ − θ′|
Λ(θ)

. �

Thus

Λ(θn+1) ≤ Λ(θn)− γn+1 〈∇Λ(θn) |H(θn, Yn)〉 − γn+1 〈∇Λ(θn) |∆Mn+1〉+ CL
|∆θn+1|2√
1 + L(θn)

= Λ(θn)− γn+1 〈∇Λ(θn) |H(θn, Yn)−H(θ∗, Yn)〉 − γn+1 〈∇Λ(θn) |H(θ∗, Yn)〉

−γn+1 〈∇Λ(θn) |∆Mn+1〉+ CLγ
2
n+1

|H(θn, Yn) + ∆Mn+1|2√
1 + L(θn)

.

We have for every n ≥ 0,

|γn+1 〈∇Λ(θn) |H(θ∗, Yn)〉| ≤ CΛγn+1φ(Yn) ∈ L1(P)

since ∇Λ is bounded. Besides E [〈∇Λ(θn) |∆Mn+1〉 | Fn] = 0, n ≥ 0, since ∆Mn is a true martingale
increment and ∇Λ is bounded. Furthermore, owing to (2.11) and (2.12)

E

[
|H(θn, Yn) + ∆Mn+1|2√

1 + L(θn)
| Fn

]
≤ Cφ2(Yn)Λ(θn)
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where conditional expectation is defined in the sense of positive random variables. Consequently we
get

E [Λ(θn+1) | Fn] ≤ Λ(θn)
(
1 + C ′

Lγ
2
n+1φ(Yn)

2
)
− γn+1 〈∇Λ(θn) |H(θn, Yn)−H(θ∗, Yn)〉

−γn+1 〈∇Λ(θn) |H(θ∗, Yn)〉 . (2.16)

We set Vn :=
An

Bn
, where

An := Λ(θn) +

n−1∑

k=0

γk+1 〈∇Λ(θk) |H(θk, Yk)−H(θ∗, Yk)〉 , Bn :=

n∏

k=1

(
1 + C ′

Lγ
2
kφ(Yk−1)

2
)
.

Using the mean-reverting assumption (2.14) implies that (An)n≥0 is a non-negative process and
(Bn)n≥0 is Fn−1-adapted. Elementary computations show that first

E [An+1 | Fn] ≤ An
Bn+1

Bn
− γn+1 〈∇Λ(θn) |H(θ∗, Yn)〉

which finally yields
∀n ≥ 0, E [Vn+1 | Fn] ≤ Vn −∆Wn+1, (2.17)

where Wn :=
∑n−1

k=0 γ̃k+1 〈∇Λ(θk) |H(θ∗, Yk)〉 with γ̃n := γn
Bn

, n ≥ 0.

Second step: Now our aim is to prove that the sequence (Wn)n≥1 is L1-bounded and a.s. converges.
To this end we set S∗

n :=
∑n−1

k=0 H(θ∗, Yk), then it follows

Wn =
n−1∑

k=0

γ̃k+1

〈
∇Λ(θk) |∆S∗

k+1

〉
= γ̃n 〈∇Λ(θn−1) |S∗

n〉 −
n−1∑

k=1

〈S∗
k | γ̃k+1∇Λ(θk)− γ̃k∇Λ(θk−1)〉 .

First, since ∇Λ is bounded, note that

γ̃n |∇Λ(θn−1)| |S∗
n| ≤ ‖∇Λ‖∞ nεnγ̃n

|S∗
n|

nεn
≤ ‖∇Λ‖∞ nεnγn

|S∗
n|

nεn

which a.s. goes to 0 as n goes to infinity since nεnγn −→
n→∞

0 by (2.13) and

(
S∗
n

nεn

)

n≥1

remains a.s.

bounded. Moreover

E [γ̃n |∇Λ(θn−1)| |S∗
n|] ≤ nεnγn ‖∇Λ‖∞

∥∥∥∥
S∗
n

nεn

∥∥∥∥
1

which converges also in L1 because nεnγn −→
n→∞

0 and H(θ∗, ·) ∈ Vεn,p. On the other hand,

n−1∑

k=1

〈S∗
k | γ̃k+1∇Λ(θk)− γ̃k∇Λ(θk−1)〉 =

n−1∑

k=1

〈S∗
k |∇Λ(θk)〉∆γ̃k+1 +

n−1∑

k=1

γ̃k 〈S∗
k | ∇Λ(θk)−∇Λ(θk−1)〉 .

As ∇Λ =
∇L√
1 + L

is bounded by construction, we have

n∑

k=1

|∆γ̃k+1 〈S∗
k |∇Λ(θk)〉| ≤

n∑

k=1

|∆γ̃k+1| |S∗
k | ‖∇Λ‖∞ ≤ ‖∇Λ‖∞

n∑

k=1

kεk |∆γ̃k+1|
∣∣∣∣
S∗
k

kεk

∣∣∣∣ .
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Now, using that a
1+a

≤ √
a, a > 0,

|∆γ̃k+1| ≤ |∆γk+1|+ γk
C ′
Lγ

2
k+1φ(Yk)

2

Bk+1
≤ |∆γk+1|+ γk

C ′
Lγ

2
k+1φ(Yk)

2

1 + C ′
Lγ

2
k+1φ(Yk)2

≤ |∆γk+1|+C ′
Lγkγk+1φ(Yk).

Hence

n∑

k=1

|∆γ̃k+1 〈S∗
k |∇Λ(θk)〉| ≤ ‖∇Λ‖∞

(
n∑

k=1

kεk |∆γk+1|
∣∣∣∣
S∗
k

kεk

∣∣∣∣+ C ′
L

n∑

k=1

kεkγkγk+1φ(Yk)

∣∣∣∣
S∗
k

kεk

∣∣∣∣

)
.

By Hölder’s Inequality

E

(
φ(Yk)

∣∣∣∣
S∗
k

kεk

∣∣∣∣
)

≤ ‖φ(Yk)‖ p
p−1

∥∥∥∥
S∗
k

kεk

∥∥∥∥
p

.

As

(
S∗
k

kεk

)

n≥0

is bounded, nεnγn −→
n→∞

0,
∑

k≥1

kεk |∆γk+1| < +∞,
∑

k≥1

kεkγ
2
k+1 < +∞ and sup

k≥0
‖φ(Yk)‖ p

p−1
<

+∞, then the series
∑n

k=1∆γ̃k 〈S∗
k |∇Λ(θk)〉 is absolutely converging in L1(P).

We study now the series
n∑

k=1

γ̃k 〈S∗
k |∇Λ(θk)−∇Λ(θk−1)〉. We have

|∇Λ(θk)−∇Λ(θk−1)| ≤ C ′
L

|∆θk|√
1 + L(θk−1)

≤ C ′
Lγk

|H(θk−1, Yk−1)|+ |∆Mk|√
1 + L(θk−1)

.

Then we are interested in the L1-convergence of the series

n∑

k=1

γ2k |S∗
k|

|H(θk−1, Yk−1)|√
1 + L(θk−1)

and

n∑

k=1

γ2k |S∗
k |

|∆Mk|√
1 + L(θk−1)

.

For the first sum, as
|H(θk−1, Yk−1)|√

1 + L(θk−1)
≤ CHφ(Yk−1), we then come to

∑n
k=1CHγ2kE [|S∗

k| |φ(Yk−1)|] and
by Hölder’s inequality we obtain

E [|S∗
k | |φ(Yk−1)|] ≤ ‖S∗

k‖p ‖φ(Yk−1)‖ p
p−1

< +∞

because ‖S∗
k‖p = O (kεk) by (2.7) and sup

n≥1
‖φ(Yn)‖ p

p−1
< +∞. Furthermore, as

∑

k≥1

kεkγ
2
k < +∞ by

(2.13), then the series
n∑

k=1

γ2k |S∗
k |

|H(θk−1, Yk−1)|√
1 + L(θk−1)

converges in L1.

For the second sum, we have by Hölder’s inequality

E

[
|S∗

k |
|∆Mk)|√
1 + L(θk−1)

]
≤ ‖S∗

k‖p

∥∥∥∥∥
|∆Mk|√

1 + L(θk−1)

∥∥∥∥∥
p

p−1

≤ CM ‖S∗
k‖p ‖φ(Yk−1)‖ p

p−1
< +∞

owing to the same arguments as for the previous series. This yields that
n∑

k=1

γ2k |S∗
k |

|∆Mk|√
1 + L(θk−1)

converges in L1 too. Finally we then obtain that Wn
a.s.−→

n→∞
W∞ and supn≥1 ‖Wn‖1 < +∞. Thus we

have that
(Vn +Wn)

− ≤ W−
n ≤ |Wn| ∈ L1(P) since sup

n≥1
‖Wn‖1 < +∞.
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As V0 = Λ(θ0) ≤ C(1+ |θ0|) ∈ L1, it follows by induction from (2.17) that, for every n ≥ 0, EVn < ∞.
Hence Sn := Vn +Wn, n ≥ 0, is a true supermartingale with an L1-bounded negative part. We then
deduce that

Sn
a.s.−→

n→∞
S∞ ∈ L1.

Now Wn
a.s.−→

n→∞
W∞ implies Vn

a.s.−→
n→∞

V∞ < +∞ a.s.

Third step: Now we show that the product Bn converges a.s. to derive that An converges a.s..
In fact

n∑

n≥1

γ2nφ
2(Yn−1) < +∞ a.s.,

since sup
n≥1

E
[
φ2(Yn)

]
< +∞, which in turn implies that Bn

a.s.−→
n→∞

B∞ < +∞. As a consequence

An
a.s.−→

n→∞
A∞ < +∞. Therefore using the mean reverting property (2.14) of H with respect to ∇Λ, we

classically derive that

∑

n≥1

γn 〈∇Λ(θn−1) |H(θn−1, Yn−1)−H(θ∗, Yn−1)〉 < +∞ a.s. (2.18)

Consequently
Λ(θn)

a.s.−→
n→∞

Λ∞ < +∞ a.s.

As lim
|θ|→+∞

L(θ) = +∞, lim
|θ|→+∞

Λ(θ) = +∞, then the sequence (θn)n≥0 is a.s.-bounded and

L(θn)
a.s.−→ L∞ < +∞ a.s.

Now let us show that ∆θn −→
n→∞

0. In fact |∆θn+1|2 ≤ Cγ2n+1

(
|H(θn, Yn)|2 + |∆Mn+1|2

)
, so

E

[
|∆θn+1|2 | Fn

]
≤ Cγ2n+1(1 +EL(θn)). Now (Λ(θn))n≥0 is bounded so that

∑

n≥0

E

[
|∆θn+1|2 | Fn

]
< +∞. a.s.

which classically implies that
∑

n≥0 |∆θn+1|2 < +∞ a.s.

Fourth step: To prove the convergence of θn toward θ∗, we use Assumptions (2.14) and (4.32) to
deduce that ∑

n≥1

γnχδ
(Yn−1)Ψδ(θn−1) < +∞ a.s. (2.19)

Now,
n∑

k=0

γk+1χδ
(Yk) =

n∑

k=0

γk+1∆Sχ
k = γn+1S

χ
n −

n−1∑

k=1

∆γk+2S
χ
k

where Sχ
n =

∑n
k=0 χδ

(Yk) and we set Sχ
0 = 0 and ∆Sχ

0 = 0.

By Assumption (2.5),
Sχ
n

n
→ ν(χ

δ
) > 0 as n → ∞. Let n0 be the smallest integer such that

∀n ≥ n0,
Sχ
n

n
≥ ǫ0 =

ν(χ
δ
)

2
> 0.

9



Then, the usual discrete integration by part yields

∀n ≥ n0,
n∑

k=n0

γk+1χδ
(Yk) = nγn+1

Sχ
n

n
− Cn0 +

n−1∑

k=n0

k(−∆γk+2)
Sχ
k

k
a.s.,

where Cn0 = γn0+1S
χ
n0−1. Therefore, using that the sequence (−∆γn)n≥1 is non-negative,

n∑

k=n0

γk+1χδ
(Yk) ≥ nγn+1ǫ0 − Cn0 +

n−1∑

k=n0

k(−∆γk+2)ǫ0 = ǫ0


nγn+1 +

n−1∑

k=n0

k(−∆γk+2)


− Cn0

= ǫ0


γn+1 + n0γn0+1 +

n−1∑

k=n0+1

γk+1


− Cn0

by a reverse discrete integration by parts. Finally

n∑

k=n0

γk+1χδ
(Yk) ≥ ǫ0


γn+1 +

n−1∑

k=n0+1

γk+1


− Cn0 → ∞ as n → ∞

since
∑

n≥1

γn = +∞. We have then shown that

∑

k≥0

γk+1χδ
(Yk) = +∞ a.s.

Combining this fact with (2.19) classically implies that

lim inf
n

Ψ̃δ(θn) = 0.

Let Θ∞ be the set of limiting points of the sequence (θn)n≥0. Θ∞ is a compact connected set since
(θn)n≥0 is bounded and ∆θn −→

n→∞
0. So Θ∞ ∩ {Ψδ = 0} is a family of non-empty compact sets

which decreases as δ ց 0 since it is bounded because Θ∞ is closed since {Ψδ = 0} is because Ψδ ≤ 0
and l.s.c.. As a consequence,

⋂
δ>0 (Θ∞ ∩ {Ψδ = 0}) 6= ∅. The other assumption on Ψδ implies⋂

δ>0 (Θ∞ ∩ {Ψδ = 0}) ⊂ ⋂
δ>0{Ψδ = 0} = {θ∗}, so that in fact it is reduced to θ∗. Hence θ∗ is a

limiting point of (θn)n≥0 which implies that L(θn) converges towards L(θ∗). By the assumption on
the Lyapunov function L, {θ∗} is a connected component of {L = L(θ∗)} and as Θ∞ is connected,
Θ∞ = {θ∗}. Therefore

θn
a.s.−→ θ∗ as n → ∞. �

Remark i.i.d. innovation (Yn)n≥0 with distribution ν. We can apply Theorem 2.1 by setting

H(θ, y) = h(θ) =

∫

Rq

K(θ, y)ν(dy) and ∆Mn+1 = K(θn, Yn+1)− E [K(θn, Yn+1) | Fn]

and by assuming that for all θ ∈ Rd, E [K(θ, Y1)] < ∞. If we set p = 2, Assumption (2.12) (with
φ ≡ 1) implies classically that h satisfies (2.11) owing to Schwarz Inequality. Furthermore it follows

from the L2-law of large numbers (LLN) (at rate n− 1
2 ) and the law of the iterated logarithm (LLI)

at rate O

(√
log logn

n

)
that if one sets εn =

√
log logn

n
, then Vεn,2 = L2(ν). As a consequence the

condition (2.13) on the step sequence (γn)n≥1 is clearly more restrictive than the step assumption in
the regular Robbins-Monro Theorem (namely

∑
n≥1 γn = +∞ and

∑
n≥1 γ

2
n < +∞), however any

step of the form γn = c
nα , c > 0, 3

4 < α ≤ 1 satisfies (2.13).
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2.3 The case of multiplicative noise

If we assume that the function H is of the following form

∀θ ∈ R
d, ∀y ∈ R

q, H(θ, y) = χ(y)h(θ) +H(θ∗, y), (2.20)

where χ is a Borel function such that ν(χ) = 1 and χ ∈ Vεn,p, h is Lipschitz bounded with h(θ∗) = 0,
then we replace the growth assumption (2.11) on H by one on the mean function h, i.e.

∀θ ∈ R
d,∀y ∈ R

q, |h(θ)| ≤ Chφ(y)
√

1 + L(θ) (2.21)

and the “local” mean-reverting assumption (2.14) is the classical

∀θ ∈ R
d \ {θ∗}, 〈∇L | h〉 (θ) > 0. (2.22)

Theorem 2.2. The recursive procedure (2.4) with the function H defined by (2.20) and the previous
assumptions on χ and (2.21)-(2.22) on h satisfies

θn
a.s.−→

n→∞
θ∗.

Proof. This setting cannot be reduced to the general setting. We use the same notations as in the
proof of Theorem 2.1. With the new form of the function H, we obtain

Λ(θn+1) ≤ Λ(θn)− γn+1 〈∇Λ(θn) |χ(Yn)h(θn)〉 − γn+1 〈∇Λ(θn) |H(θ∗, Yn)〉

−γn+1 〈∇Λ(θn) |∆Mn+1〉+ CLγ
2
n+1

|H(θn, Yn) + ∆Mn+1|2√
1 + L(θn)

.

By the same arguments as before we get

E [Λ(θn+1) | Fn] ≤ Λ(θn)
(
1 +C ′

Lγ
2
n+1φ(Yn)

2
)
−γn+1 〈∇Λ(θn) |χ(Yn)h(θn)〉−γn+1 〈∇Λ(θn) |H(θ∗, Yn)〉 .

We set Vn :=
An

Bn
, where An := Λ(θn)+

∑n−1
k=0 γk+1 〈∇Λ | h〉 (θk) and Bn :=

∏n
k=1

(
1 + C ′

Lγ
2
kφ(Yk−1)

2
)
.

Using the mean-reverting assumption (2.22) implies that (An)n≥0 is a non-negative process whereas
(Bn)n≥0 is still Fn−1-adapted. Elementary computations show that

E [An+1 | Fn] ≤ An
Bn+1

Bn
− γn+1 〈∇Λ(θn) |H(θ∗, Yn)〉 − γn+1χ̃(Yn) 〈∇Λ | h〉 (θn)

where χ̃(Yn) := χ(Yn)− ν(χ), n ≥ 0. Finally we have

∀n ≥ 0, E [Vn+1 | Fn] ≤ Vn −∆Wn+1 −∆Zn+1, (2.23)

where Wn :=
∑n−1

k=0 γ̃k+1 〈∇Λ(θk) |H(θ∗, Yk)〉 and Zn :=
∑n−1

k=0 γ̃k+1χ̃(Yk) 〈∇Λ |h〉 (θk) with γ̃n :=
γn
Bn

, n ≥ 0.

Second step: Following the lines of the proof of Theorem 2.1 we show that the sequence (Wn)n≥1 is
L1-bounded and a.s. converges. Now our aim is to prove the same results for the sequence (Zn)n≥1.

To this end we set Sχ̃
n :=

∑n−1
k=0 χ̃(Yk), then it follows

Zn =
n−1∑

k=0

γ̃k+1∆Sχ̃
k+1 〈∇Λ |h〉 (θk) = γ̃nS

χ̃
n 〈∇Λ |h〉 (θn−1)−

n−1∑

k=1

Sχ̃
k (γ̃k+1 〈∇Λ |h〉 (θk)− γ̃k 〈∇Λ | h〉 (θk−1)) .

11



By the same methods as for the sequence (Wn)n≥1 (i.e. using assumptions on H, Λ and (γn)n≥1), we
obtain that

Zn
a.s.−→

n→∞
Z∞ and sup

n≥1
‖Zn‖1 < +∞.

Thus we have that

(Vn +Wn + Zn)
− ≤ (Wn + Zn)

− ≤ |Wn + Zn| ∈ L1(P) since sup
n≥1

‖Wn + Zn‖1 < +∞.

As V0 = Λ(θ0) ≤ C(1+ |θ0|) ∈ L1, it follows by induction from (2.17) that, for every n ≥ 0, EVn < ∞.
Hence Sn := Vn +Wn + Zn, n ≥ 0, is a true supermartingale with a L1-bounded negative part. We
then deduce that

Sn
a.s.−→

n→∞
S∞ ∈ L1.

Now Wn
a.s.−→

n→∞
W∞ and Zn

a.s.−→ Z∞ imply that Vn
a.s.−→

n→∞
V∞ < +∞ a.s.

Third step : Like in the proof of Theorem 2.1, we have that Bn
a.s.−→

n→∞
B∞ < +∞ which implies that

An
a.s.−→

n→∞
A∞ < +∞. Therefore using the pseudo-mean reverting property (2.22) of h with respect to

∇Λ, we classically derive that

∑

n≥0

γn+1ν(χ) 〈∇Λ |h〉 (θn) < +∞ a.s. (2.24)

The end of the proof follows the lines of the one of Theorem 2.1. �

3 Application to quasi-stochastic approximation

This section is devoted to quasi-random innovations introduced in [19] and we generalize their result
to multi-dimensional setting when the function H is not bounded. We first recall some definitions and
properties of such sequences and apply Theorem 2.1 when H has bounded variation (in the sense of
Hardy & Krause see [26]) thanks to Koksma-Hlawka inequality and when H is Lipschitz with Proinov
Theorem (see [29]).

3.1 Definitions and characterizations

Definition 3.1. A [0, 1]q-valued sequence (ξn)n≥1 is uniformly distributed (u.d.) on [0, 1]q if

1

n

n∑

k=1

δξk
(Rq)
=⇒ U([0, 1]q) as n → ∞.

The proposition below provides a characterization of uniform distribution.

Proposition 3.1. Let (ξn)n≥1 be a [0, 1]q-valued sequence. Then (ξn)n≥1 is uniformly distributed on
[0, 1]q if and only if

D∗
n(ξ) := sup

x∈[0,1]q

∣∣∣∣∣
1

n

n∑

k=1

1J0,xK(ξk)−
q∏

i=1

xi

∣∣∣∣∣ −→ 0 as n → ∞,

where D∗
n(ξ) is called the discrepancy at the origin or star discrepancy.
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3.2 Application of the convergence theorem

We set here Yn = ξn+1, Fn = {∅,Ω}, n ≥ 0, and ∆Mn+1 ≡ 0. We need the strong Lyapunov condition
on H and notice that the function φ becomes useless because we place in the case p = 1. To apply
the convergence theorem, we need to check the assumption of the class of functions Vεn,1. We then
use two main results which give us two cases of applications which depend on the regularity of the
quasi-mean function H.

⊲ The finite variation case Assume that u 7→ H(θ∗, u) has finite variation (in the measure sense
or in the Hardy and Krause sense). The Koksma-Hlawka Inequality provides an error bound for the
empirical mean 1

n

∑n
k=1H(θ∗, ξk) as estimator of E [H(θ∗, U1)].

Proposition 3.2. (Koksma-Hlawka Inequality) Let ξ = (ξ1, . . . , ξn) be an n-tuple of [0, 1]q-valued
vectors and let f be a function with finite variation. Then

∣∣∣∣∣
1

n

n∑

k=1

f(ξk)−
∫

[0,1]q
f(u)λq(du)

∣∣∣∣∣ ≤ V (f)D∗
n(ξ).

Consequently, the class of functions for the ergodicity assumption becomes

V = {f : [0, 1]q → R s.t. V (f) < +∞} ⊂ Vεn,1 with εn =
(log n)q

n

and assume that

∀θ ∈ R
d, H(θ, ·) ∈ V and ℓn := max

1≤k≤n
k (D∗

k(ξ)) = O((log n)q).

The assumptions on the sequence of gain parameters then become

∑

n≥1

γn = +∞, γn(log n)
q → 0,

∑

k≥1

max(|∆γn+1| , γ2n)(log n)q < +∞.

Remark. The choice of γn := c
nρ ,

1
2 < ρ ≤ 1 satisfies the assumptions (like in i.i.d. setting).

⊲ The Lipschitz case If q ≥ 2 it is difficult to check that f ∈ V and these functions become
“rare” as q increases. If we assume the more natural regularity assumption u 7→ H(θ∗, u) is Lipschitz
continuous, the following theorem due to Proinov (see [29]) provides another error bound depending
on the continuity modulus of the function.

Theorem 3.1. (Proinov) Assume Rq is equipped with the ℓ∞-norm (|x|∞ := max1≤i≤q |xi|, x =
(x1, . . . , xq) ∈ Rq). Let (ξ1, . . . , ξn) ∈ ([0, 1]q)⊗n. For every continuous function f : [0, 1]q → R,

∣∣∣∣∣
1

n

n∑

k=1

f (ξk)−
∫

[0,1]q
f(u)λq(du)

∣∣∣∣∣ ≤ Cqwf

(
D∗

n (ξ1, . . . , ξn)
1
q

)

where
wf (δ) := sup

x,y∈[0,1]q,|x−y|∞≤δ

|f(x)− f(y)| , δ ∈ (0, 1),

is the uniform continuity modulus of f (with respect to the ℓ∞-norm) and Cq ∈ (0,∞) is a universal
constant only depending on q. If q = 1, Cq = 1 and if q ≥ 2, Cq ∈ [1, 4].
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Then we have H(θ∗, ·) ∈ Vεn,1 with εn = logn

n
1
q
. In this case, (γn)n≥1 be a non-increasing sequence of

gain parameters satisfying

∑

n≥1

γn = +∞, γn(log n)n
1− 1

q → 0, and
∑

k≥1

max(|∆γn+1| , γ2n)(log n)n1− 1
q < +∞.

Remark. The choice of γn := c
n
is always acceptable (γn = cn−ρ, 1− 1

q
< ρ ≤ 1).

4 Applications to different types of random innovations

This section is devoted to some first applications of the above theorem. By applications, we mean
here printing out some classes of random innovation processes (Yn)n≥0 for which the averaging rate
assumption (2.7) is naturally satisfied by “large” class Vεn,p.

First we present a simple framework of stochastic approximation where the noise is additive which
is studied in [5] with some mixing properties, but here we only need (2.5). We showed in [21] how easily
our result applies to real life stochastic optimization problem (as far as convergence is concerned).

Afterwards we focus on mixing innovations: we consider that the sequence (Yn)n≥0 is a functional
of a stationary α-mixing process (satisfying condition on the summability of the mixing coefficients).

The last application is the case of an homogeneous Markov chain which can be seen as a possible
more elementary counterpart of some (convergence) result obtained e.g. [3]. Some (quasi-optimal) a.s.
rate of convergence can be obtained if H is smooth enough in θ, but to establish a regular CLT it is
most likely that we cannot avoid to deal with the Poisson equation.

4.1 Recursive procedure with additive noise

We consider here the case where the function H is the sum of the mean function h and a noise, namely

∀θ ∈ R
d, ∀y ∈ R

q, H(θ, y) = h(θ) + y, and ∆Mn+1 ≡ 0.

In this framework, the Lyapunov assumption (2.14) becomes classical involving only the mean function
h, namely

∀θ ∈ R
d \ {θ∗} 〈∇L(θ) | h(θ)〉 > 0.

Likewise, the growth control assumption (2.11) amounts to

∀θ ∈ R
d, |h(θ)| ≤ Ch

√
1 + L(θ),

provided the moment assumption supn ‖Yn‖ p
p−1

< +∞, for some p ∈ (1,∞], is satisfied (take φ(y) :=

|y| ∨ 1). The martingale is vanishing in this example. Finally the step assumption (2.13) is ruled by
the averaging rate of the sequence (Yn)n≥0.

4.2 Functional of a stationary α-mixing process

Here we provide a short background on α-mixing processes and their functionals. Our motivation here
is to relax as much as possible our assumption on (Yn)n≥0 in order to apply stochastic approximation
methods to exogenous data (e.g. from financial markets).

We aim now at applying our convergence theorem to input sequences (Yn)n≥0 which are (causal)
functionals of an α-mixing process. Consider a stationary Rq-valued process X = (Xk)k∈Z with the
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associated filtration Fn = FX
n := σ(Xk; k ≤ n) and Gn = GX

n := σ(Xk; k ≥ n). The α-mixing
coefficients are defined as follows

αn = sup {|P(U ∩ V )− P(U)P(V )| | U ∈ Fk, V ∈ Gk+n, k ≥ 0} . (4.25)

Let f be a measurable mapping from (Rq)Z to Rq. Let (Yk)k∈Z be a causal functional of the process
X, i.e.

∀n ∈ Z, Yn := f(· · · ,Xn−1,Xn).

Then (Yn)n≥0 is a stationary process with marginal distribution ν = L(Y0). For notational convenience,
we also set ∀n ∈ Z, Zn := H(θ∗, Yn).

Proposition 4.1. Assume that H(θ∗, ·) ∈ L2+δ(ν), δ > 0 and one of the following assumption

1. for all n ∈ Z, Yn := f(· · · ,Xn−1,Xn) and X is a stationary α-mixing process satisfying the
following condition

∞∑

k=1

√
α

δ
2+δ

k

k
< +∞. (4.26)

2. Yn = Xn for all n ≥ 0 and X is a stationary α-mixing process satisfying the condition

∑

k≥0

α
δ

2+δ

k < +∞. (4.27)

Then

H(θ∗, ·) ∈ Vεn,2 with εn = n−β for every β ∈
[
0,

1

2

)
. (4.28)

Remark. Condition (4.27) is clearly satisfied as soon as the underlying process X is geometrically
α-mixing.

The proof of Proposition 4.1 relies on the Gàl-Koksma Theorem (see [11]) stated and proved in a
probabilistic setting in [1].

Theorem 4.1. (Gàl-Koksma’s Theorem) Let (Ω,F ,P) be a probability space and let (Zn)n≥1 be a
sequence of random variables belonging to Lp, p ≥ 1, satisfying

E |ZM+1 + ZM+2 + · · ·+ ZM+N |p = O(Ψ(N))

uniformly in M where Ψ(N)
N

, N ≥ 1, is a non-decreasing sequence. Then for every ǫ > 0,

Z1(ω) + Z2(ω) + · · · + ZN (ω) = o
(
(Ψ(N)(log(N))p+1+ǫ)

1
p

)
P(dω)-a.s.

Remark. The conditions on X and Z come from a result established by Dedecker, Merlevède and
Volný in [6] : by setting P0(Zk) := E [Zk | F0]− E [Zk | F−1], if

∑

k∈Z
‖P0(Zk)‖2 < +∞ then

∑

k∈Z
|Cov(Z0, Zk)| < +∞. (4.29)

Moreover Peligrad and Utev show in [28] that condition (4.29) is satisfied as soon as

∞∑

k=1

1√
k
‖E [Z0 | Gk]‖2 < +∞. (4.30)
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Proof of Proposition 4.1. 1. By the ergodic theorem, we have

1

n

n−1∑

k=0

H(θ∗, Yk) −→
n→∞

∫

Rq

H(θ∗, y)ν(dy) = 0. (4.31)

We simply wish to obtain an estimation of the a.s. convergence rate in (4.31). To this end, we
rely on Gal-Koksma’s Theorem (see Theorem 4.1). We are going to evaluate Eν |Z0 + · · · + Zn−1|2.
Elementary computations lead to

Eν |Z0 + · · ·+ Zn−1|2 = nEνZ
2
0 + 2

n−1∑

k=1

k∑

j=1

Eν [ZjZ0] = nEνZ
2
0 + 2

n−1∑

k=1

SZ
k = n

(
EνZ

2
0 +

2

n

n−1∑

k=1

SZ
k

)

where SZ
k =

∑k
j=1Eν [ZjZ0].

To establish that SZ
n converges, we must establish that (4.30) holds. Set B2(Gk) := {W ∈ Gk : ‖W‖2 ≤ 1}.

Then

‖E (Z0 | Gn)‖2 = sup
W∈B2(Gk)

E (WZ0) ≤ 8α
1
r

k ‖H(θ∗, Y0)‖p

owing to the classical covariance inequality for α-mixing process (see [8]) with 1
r
+ 1

p
= 1

2 , r, p > 2. As

H(θ∗, ·) ∈ L2+δ(ν), δ > 0, we may set p = 2 + δ, and r = 2(2+δ)
δ

. As a consequence

∞∑

k=1

1√
k
‖E (Z0 | Gk)‖2 < +∞,

which implies (through (4.29)) that SZ
k converges.

Now, by Cesaro’s Lemma we have

Eν |Z0 + · · ·+ Zn−1|2 = O(n).

Thus, by Gal-Koksma’s Theorem, for all ǫ > 0,

Z0 + · · ·+ Zn−1 = o
(√

n (lnn)
3
2
+ǫ
)

Pν-a.s.,

and as a result,

nβ

(
1

n

n−1∑

k=0

H(θ∗, Yk)−
∫

H(θ∗, y)ν(dy)

)
a.s.−→

n→∞
0, for every β ∈

[
0,

1

2

)
.

So we obtain

H(θ∗, ·) ∈ Vεn,2, with εn = n−β for a β ∈
[
0,

1

2

)
. (4.32)

2. If we assume that Yn = Xn for all n ≥ 0, then we can directly use the covariance inequality for
α-mixing process

|Eν [H(θ∗, Yj)H(θ∗, Y0)]| = |Covν (H(θ∗, Yj),H(θ∗, Y0))| ≤ 8α
1
r

j ‖H(θ∗, Y0)‖p ‖H(θ∗, Y0)‖q ,
where 1

r
+ 1

p
+ 1

q
= 1. By symmetry, we take p = q > 2 and we get

|Eν [H(θ∗, Yj)H(θ∗, Y0)]| ≤ 8α
1− 2

p

j ‖H(θ∗, Y0)‖2p .

As H(θ∗, ·) ∈ L2+δ, δ > 0, we set p = 2 + δ and we obtain α
1− 2

2+δ

j = α
δ

2+δ

j . Then the condition (4.26)
can be replace by the less stringent (4.27) called Ibragimov’s condition. The rest of the proof is the
same as in 1. �
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4.3 Homogeneous Markov chain

Assume that the innovation process (Yn)n≥0 is an Rq-valued homogeneous Markov chain which tran-
sition is (P (y, dx))y∈Rd . Let FY

n = σ(Y0, . . . , Yn), n ≥ 0, the natural filtration of the chain.

4.3.1 Application of the convergence theorem

The associated recursive procedure reads

θn+1 = θn − γn+1K(θn, Yn+1), n ≥ 0,

whereK(θ, y) := E [K(θ, Y1) | Y0 = y] and ∆Mn+1 := K(θn, Yn+1)−E [K(θn, Yn+1) | Fn] = K(θn, Yn+1)−
H(θn, Yn).

The growth assumption is required here on the function K, namely

∀θ ∈ R
d, ∀y ∈ R

q, |K(θ, y)| ≤ CK φ̃(y)
√

1 + L(θ)

with supn≥0

∥∥∥φ̃(Yn)
∥∥∥

p
p−1

< +∞ and the Lyapunov assumption (2.14) is on H.

Remark. In this setting, the function φ of the convergence theorem is then
∣∣∣φ̃
∣∣∣∨
∣∣∣Pφ̃

∣∣∣ or
∣∣∣φ̃
∣∣∣∨P

∣∣∣φ̃
∣∣∣

or
∣∣∣φ̃
∣∣∣+ P

∣∣∣φ̃
∣∣∣ and we only need the above assumption on φ̃.

4.3.2 Ergodic framework description

We will say it is ν-ergodic if for every bounded Borel function f : Rq → R,

Pµ-a.s.
1

n

n−1∑

k=0

f(Yk) −→
n→∞

∫

Rq

fdν. (4.33)

Remark. As soon as the transition (P (y, dx))y∈Rq of (Yn)n is Feller, ν is an invariant distribution
of the chain, i.e. νP = ν.

If this property holds, ν is necessarily invariant for P . As a consequence the whole sequence
(Yn)n≥0 is stationary under Pν . Furthermore if (4.33) holds, the chain is ergodic under Pν for the shift
operator Θ, i.e., for every functional F : (RN,Bor(RN)) → R, f ∈ Lr(ν),

1

n

n∑

k=1

F ◦Θk −→
n→∞

Eν(F ) Pν-a.s. and in Lr(ν).

Typically, if ν is an extremal invariant distribution for P then the chain is ergodic under Pν so it is
of course the case if ν is unique. Birkhoff’s theorem shows that

V0+,p(Pν) = Lp(ν).

Proposition 4.2. If (Yn)n≥0 is Pν-ergodic and ν(dy) ∼ P (x, dy) for every x ∈ Rq, then for every
sequence (εn)n≥0 such that εn −→

n→+∞
0,

∀y ∈ R
q, Vεn,p(Py) = Vεn,p(Pν).

See [20] for the proof of this Proposition.
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Comments. By contrast with the approach of [3], we do not need to solve the Poisson equation
related to the pseudo-transition

Πθn(x, dy) = P (Yn+1 ∈ dy | Fn)

of the algorithm. Indeed, they assume there exists a function vθ := v(θ, ·) solution to

Id−Πθvθ = H(θ, ·)− h(θ) (4.34)

(Assumption (H4) in [3] page 220). The target θ∗ is then a zero of the mean function h (not canonically
defined at this stage in [3]). In our setting, Πθ(x, dy) = P (x, dy) since the dynamics of Yn does not
depend upon θ, so that Condition (4.34) reads

v(θ, x)−
∫

v(θ, y)P (x, dy) = H(θ, x)− h(θ),

where the mean function is naturally defined in our setting by

h(θ) =

∫
H(θ, x)ν(dx),

ν is the unique invariant probability measure for P . Then the family of Poisson’s equations (indexed
by the parameter θ) reads

v(θ, x)− Pv(θ, x) = H(θ, x)− h(θ).

A formal solution is given by

v(θ, x) =
∑

k≥0

P k (H(θ, ·)− h(θ)) (x).

5 Numerical examples

This section is devoted to several examples (notably in Finance) of application of convergence theorems
in the different framework developed Section 3 and 4. They are divided in two parts: the first one
concerns the generated innovations and the second one the applications on real data. Primarily
we present an implicit parameter search, i.e. a procedure to look for the value that reaches some
threshold of the mean function with i.i.d. and uniformly distributed sequences. Then we develop
some stochastic gradient procedures with a companion procedure to compute risk measures (see [2])
and minimization of potential associated to a diffusion by using some result on the computation of
the invariant distribution (see [15] and [22]). Next we consider an example introduced in learning
automata, the so-called two-armed bandit, which recursive procedure was studied in [18] and [32].
Finally we examine a problem of optimal allocation (see [21]) which is implemented on real data.

5.1 Application to implicit correlation search

Consider a 2-dimensional Black-Scholes model i.e. Xt
0 = ert (riskless asset) and

Xi
t = xi0e

(r−σ2
i
2
)t+σiW

i
t , xi0 > 0, i = 1, 2,

for the two risky assets where
〈
W 1,W 2

〉
t
= ρt, ρ ∈ [−1, 1]. Consider a best-of call option characterized

by its payoff (
max

(
X1

T ,X
2
T

)
−K

)
+
.
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We will use a stochastic recursive procedure to solve the inverse problem in ρ

PBoC(x
1
0, x

2
0,K, σ1, σ2, r, ρ, T ) = Pmarket

0

where Pmarket
0 is the quoted premium of the option (mark-to-market) with

PBoC(x
1
0, x

2
0,K, σ1, σ2, r, ρ, T ) := e−rT

E

[(
max

(
X1

T ,X
2
T

)
−K

)
+

]

= e−rT
E

[(
max

(
x10e

µ1T+σ1

√
TZ1

, x20e
µ2T+σ2

√
TZ2
)
−K

)
+

]

where µi = r − σ2
i

2 , i = 1, 2, Z = (Z1, Z2)
d
= N (0, I2). We assume from now on that this equation (in

ρ) has at least one solution, say ρ∗. The most convenient way to prevent edge effects due to the fact
that ρ ∈ [−1, 1] is to use a trigonometric parametrization of the correlation by setting ρ = cos θ, θ ∈ R.
This introduces an over-parametrization (inside [0, 2π]) since θ and π− θ yield the same solution, but
this is not at all a significant problem for practical implementation (a careful examination shows that
in fact one equilibrium is repulsive and one is attractive). From now on, for convenience, we will just
mention the dependence of the premium function in the variable θ,, namely

θ 7−→ P (θ) := PBoC(x
1
0, x

2
0,K, σ1, σ2, r, cos(θ), T ).

The function P is a 2π-periodic continuous function. Extracting the implicit correlation from the
market amounts to solving

P (θ) = Pmarket
0 (with ρ = cos θ).

We need the following additional assumption

Pmarket
0 ∈ (min

θ
P,max

θ
P )

i.e. that Pmarket
0 is not an extremal value of P . It is natural to set for every θ ∈ R and every

z = (z1, z2) ∈ R2

H(θ, z) = e−rT
(
max

(
x10e

µ1T+σ1

√
Tz1 , x20e

µ2T+σ2

√
T (z1 cos θ+z2 sin θ)

)
−K

)
+
− Pmarket

0

and to define the recursive procedure

θn+1 = θn − γn+1H(θn, Zn+1) where (Zn)n≥1
L∼ N (0, I2)

and the gain parameter sequence satisfies (2.13). For every z ∈ R2, θ 7−→ H(θ, z) is continuous
and 2π-periodic which implies that the mean function h(θ) := EH(θ, Z1) = P (θ) − Pmarket

0 and
θ 7−→ E

[
H2(θ, Z1)

]
are both continuous and 2π-periodic as well (hence bounded).

The main difficulty to apply Theorem 2.1 is to find out the appropriate Lyapunov function. The
quoted value Pmarket

0 is not an extremum of the function P , hence
∫ 2π
0 h±(θ)dθ > 0 where h± :=

max(±h, 0). We consider θ0 any (fixed) solution to the equation h(θ) = 0 and two real numbers β±
such that

0 < β+ <

∫ 2π
0 h+(θ)dθ∫ 2π
0 h−(θ)dθ

< β−

and we set

g(θ) :=

{
1{h>0}(θ) + β+1{h<0}(θ) if θ ≥ θ0
1{h>0}(θ) + β−1{h<0}(θ) if θ < θ0.
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The function
θ 7−→ g(θ)h(θ) = h+ − β±h−

is continuous and 2π-periodic on (θ0,∞) and 2π-periodic (sic) on (−∞, θ0). Furthermore gh(θ) = 0
iff h(θ) = 0 so that gh(θ0) = gh(θ0−) = 0 which ensures on the way the continuity of gh on the whole
real line. Furthermore ∫ 2π

0
gh(θ)dθ > 0 et

∫ 0

−2π
gh(θ)dθ < 0

so that, on the one hand,

lim
θ→±∞

∫ θ

0
gh(u)du = +∞

and, on the other hand, there exists a real constant C > 0 such that the function

L(θ) =

∫ θ

0
gh(u)du + C

is nonnegative. Its derivative is given by L′ = gh so that L′h = gh2 ≥ 0 and {L′h = 0} = {h = 0}. It
remains to prove that L′ is Lipschitz continuous. Calling upon the usual arguments, one shows that
the function

∂P

∂θ
(θ) = σ2

√
TE

(
1{X2

T>max(X1
T ,K)}X

2
T (cos(θ)Z

2 − sin(θ)Z1)
)

is a continuous 2π-periodic function, hence bounded. Consequently h and h± are Lipschitz continuous
which implies in turn that L′ = gh is Lipschitz as well.

Moreover, one can show that the equation P (θ) = Pmarket
0 market has finitely many solutions on

every interval of length 2π. One may apply Theorem 2.1 to derive that θn will converge toward a
solution θ∗ of the equation P (θ) = Pmarket

0 .

Numerical experiment. We set the model parameters to the following values

x10 = x20 = 100, r = 0.10, σ1 = σ2 = 0.30, ρ = −0.50

and the payoff parameters
T = 1, K = 100.

The implicit correlation search recursive procedure is implemented with a sequence of some quasi-
random normal numbers, namely

(ζ1n, ζ
2
n) =

(√
−2 log (ξ1n) sin

(
2πξ2n

)
,
√

−2 log (ξ1n) cos
(
2πξ2n

))
,

where ξn = (ξ1n, ξ
2
n), n ≥ 1, is simply a regular 2-dimensional Halton sequence.

The reference Black-Scholes price 30.75 is used as a market price so that the target of the stochastic
algorithm is θ∗ ∈ arccos(−0.5). The stochastic approximation procedure parameters are

θ0 = 0, n = 105.

The choice of θ0 is blind on purpose. Finally we set γn = 8
n
. No re-scaling of the procedure has been

made in the below example.

20



0 10 20 30 40 50 60 70 80 90 100
−3

−2

−1

0

1

2

3

4

5

Nb of Simulations                              ×102

 θ values

 

 

MC
QMC

0 10 20 30 40 50 60 70 80 90 100

−0.5

−0.4

−0.3

−0.2

−0.1

0

Nb of Simulations                              ×102

 Correlation ρ=cos(θ)

 

 
ρ=−0.5
MC
QMC

Figure 1: B-S Best-of-Call option. T = 1, r = 0.10, σ1 = σ2 = 0.30, x10 = x20 = 100, K = 100. Left:
convergence of θn toward a θ∗. (up to n = 10000). Right: convergence of ρn := cos(θn) toward -0.5

5.2 Computation of the VaR-CVaR

Another example of application is the recursive computation of financial risk measure which are
the best known and the most common: the Value-at-Risk (VaR) and the Conditional Value-at-Risk
(CVaR). This risk measures evaluate the extreme losses of a portfolio potentially faced by traders.
The recursive computation of the VaR and the CVaR was introduced in [2] based on the formulation
as an optimization problem (see [31]) with unconstrained importance sampling developed in [23]. We
only present in this section the companion recursive procedure to compute these risk measures without
any variance reduction techniques.

5.2.1 Definitions and formulation

Let Y : (Ω, A,P) → R be a random variable representative of a loss (i.e. Y ≥ 0 stands for a loss equal
to Y ).

Definition 5.1. The Value at Risk (at level α ∈ (0, 1)) of a given portfolio is the (lowest) α-quantile
of the distribution Y i.e.

V aRα(Y ) := inf {θ |P(Y ≤ θ) ≥ α} .
As soon as the distribution function of Y has no atom, the value at risk satisfies P (Y ≤ V aRα(Y )) =

α and if the distribution function FY of Y is also increasing (strictly) then, it is the unique solution.
As this risk measure is not consistent (see [10]), another consistent risk measure is provided by the
Conditional value at Risk when Y ∈ L1(P) with a continuous distribution (no atom).

Definition 5.2. Let Y ∈ L1(P) with an atomless distribution. The Conditional value at Risk (at level
α) is the conditional expectation of the portfolio losses Y above the V aRα(Y ), i.e.

CV aRα(Y ) := E [Y |Y ≥ V aRα(Y )] .

The following formulation of the V aRα(Y ) and CV aRα(Y ) as solutions to an optimization problem
is due to Rockafellar and Uryasev in [31].

Proposition 5.1. (Rockafellar and Uryasev) Let Y ∈ L1(P) with an atomless distribution. The
function L : θ 7→ θ + 1

1−α
E (Y − θ)+ is convex, and

CV aRα(Y ) = min
θ

(
θ +

1

1− α
E (Y − θ)+

)
with V aRα(Y ) = inf argmin

θ

(
θ +

1

1− α
E(Y − θ)+

)
.
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5.2.2 Stochastic gradient for the computation of the V aRα(Y )

This suggests to implement a stochastic gradient descent derived from the above Lyapunov function
L(θ) = θ + 1

1−α
E(Y − θ)+. Assume that Y ∈ L1(P) and that the distribution of Y has a bounded

density function fY . Then, we set

H(θ, y) := 1− 1

1− α
1{y≥θ}

so that L′(θ) = E[H(θ, Y )] and devise the stochastic gradient descent

θn+1 = θn − γn+1H(θn, Yn+1), n ≥ 0, θ0 ∈ L1(P).

The function L to be minimized satisfies

lim
θ→+∞

L(θ)

θ
= 1 and lim

θ→+∞
L(−θ)

θ
=

α

1− α
hence lim

θ→±∞
L(θ) = +∞.

Now, the derivative L′(θ) = 1− 1
1−α

P(Y > θ) satisfies a Lipschitz property, namely

∣∣L′(θ′)− L′(θ)
∣∣ ≤ 1

1− α
P(θ ∧ θ′ ≤ Y ≤ θ ∨ θ′) ≤ ‖fY ‖∞

1− α

∣∣θ′ − θ
∣∣ .

Finally it is clear that

|H(θ, y)| ≤ 1 ∨ α

1− α
.

So one may apply Theorem 2.1 to conclude that

θn
a.s.−→

n→∞
θ∗ = V aRα(Y ).

5.2.3 Computation of the CV aRα(Y )

The idea to compute the CV aRα(Y ) is to devise a companion procedure of the above stochastic
gradient by setting

ζn+1 = ζn − 1

n+ 1
(ζn −K(θn, Yn+1)) , n ≥ 0, ζ0 = 0

where

K(θ, y) := θ +
(y − θ)+
1− α

.

By rewriting this procedure, one shows that, for every n ≥ 0, (n + 1)ζn+1 = nζn + K(θn, Yn+1).
Martingale argument and Kronecker Lemma imply that

ζn
a.s.−→

n→∞
CV aRα(Y ).

VaR and CVaR are linked to rare events when α → 1, in practice one must add an eventually adaptive
importance sampling procedure which is detailed in [2].

5.3 Long term investment evaluation

This example present the case of Markov innovations. To describe the class of functions Vεn,p, we
use some results on computation of invariant measure of a diffusion developed in [15] and [22] which
lead to assumptions on the coefficients of the diffusion and on the regularity of the solution of Poisson
equation.
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5.3.1 Computation of the invariant distribution of a diffusion

We consider a stochastic recursive algorithm for the computation of the invariant distribution ν in-
troduced in [15] of a Brownian diffusion process

dYt = b(Yt)dt+ σ(Yt)dWt (5.35)

where b : Rq → Rq is a continuous vector field, σ is continuous on Rq with values in the set Mq,d of
matrices with q rows and d columns, and W is a d-dimensional Brownian motion. We denote by A
the infinitesimal generator associated to this diffusion.

First, we compute the Euler discretization of (5.35) with a step γn vanishing to 0, i.e.

∀n ∈ N, Ȳn+1 = Ȳn + γn+1b(Ȳn) +
√
γn+1σ(Ȳn)Un+1, (5.36)

where Ȳ0 ∈ L0
Rq (Ω,F ,P) and (Un)n≥1 is Rd-valued normalized white noise defined on a probability

space (Ω,A,P), independent of Ȳ0. The step sequence γ := (γn)n≥1 satisfies the conditions

∀n ≥ 1, γn ≥ 0, lim
n→∞

γn = 0, and lim
n→∞

Γn = lim
n→∞

n∑

k=1

γk = +∞. (5.37)

Let δy denote the Dirac mass at y. For every n ≥ 1 and every ω ∈ Ω, set

νn(ω, dy) :=
1

n

n−1∑

k=0

δȲk(ω)
(5.38)

and use νn(ω, f) to approximate ν(f) which can be compute recursively.

Definition 5.3. (Strong condition of stability) A diffusion with generator A satisfies a strong condition
of stability if it exists a function V ∈ C2(Rq, [1,+∞[) such that

1. lim|y|→+∞ V (y) = +∞,

2. ∃α > 0, β > 0 s.t. AV ≤ −αV + β.

Remark. We will denote that the generator A satisfies a strong condition of stability of type (V, α).

We assume that b and σ are continuous and the diffusion (Yt)t≥0 satisfies a strong condition of
stability of type (V, α) with V sub-quadratic et that it exists a unique invariant measure ν. Besides
the coefficients b and σ satisfy |b|2 + Tr(σσt) = O(V ). Then the Euler scheme (Ȳn)n≥0 defined by
(5.36) satisfies a strong condition of stability of type (W,n0) where W is a function depending on V
and on the moments of U1.

Assume that the function f defined on Rq admits a solution φ to the the Poisson equation

Aφ = −(f − ν(f)), (5.39)

sufficiently regular, i.e. belonging to the set

Ep,W :=

{
φ ∈ Cp(Rq,R), ∀j ∈ {0, . . . , p}, ∀y ∈ R

q,
∣∣Djφ(y)

∣∣2 = o

(
W (y)

V j(y)

)}

and satisfying Dpφ Lipschitz.
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Proposition 5.2. Let p ≥ 2 such that U1 ∈ L2(p+1) and φ ∈ Ep,W solution to Poisson equation
(5.39) with compact support such that Dpφ is Lipschitz. If (vn)n≥1 is a positive real sequence such
that ( vn

nγn
)n≥1 decreases to 0 and that

∑

n≥1

vn
n

∣∣∣∣∆
1

γn

∣∣∣∣ < +∞,
∑

n≥1

(vn
n

)2 1

γn
< +∞, and lim

n

vn
n

n∑

k=1

γ
p−1
2

k = 0,

then f ∈ V
v−1
n ,2.

Remark. This proposition is based on the Proposition V.4 in [22].

5.3.2 Application to the minimization of a potential

We consider the following sequence of gain parameters

∀n ≥ 1, γn := cn− 1
3 , with c > 0,

then (see [15])

a.s.
1

n

n−1∑

k=0

δȲk

(Rq)
=⇒ ν and n

1
3

(
1

n

n−1∑

k=0

f(Ȳk)− ν(f)

)
L−→ N (m,Σ2

c),

where Σc ∈ Gℓ(d,R) ∩ S+(d,R). Assume that

1. ∀y ∈ Rq, θ 7→ K(θ, y) is convex,

2. ∀θ ∈ Rd, K(θ, ·) ∈ L1(ν),

3. ∀θ ∈ Rd, ∇θK(θ, y) exists ν(dy)-a.s.,

4. ∀θ, θ′ ∈ Rd, |K(θ, y)−K(θ′, y)| ≤ gθ(y).

Then

min
θ∈Rd

∫

Rq

K(θ, y)ν(dy) ⇐⇒
∫

Rq

∇θK(θ, y)ν(dy) = 0,

consequently we devise the following recursive zero search procedure, also called stochastic gradient,

∀n ≥ 0, θn+1 = θn − γ̃n+1∇θK(θn, Ȳn),

and we can apply Theorem 2.1 to prove its convergence towards the target θ∗.

Numerical example. We consider a long-term investment project (see the example in [24]) which
yields payoff at a rate that depends on the installed capacity level an on the value of an underlying state
process modeled with an ergodic diffusion. The state process Y can represent an economic indicator
such the asset demand or its discounted price. The aim is to determine the capacity expansion strategy
that maximizes the long-term average payoff resulting from the project operation. So it is an ergodic
control problem applying in a microeconomic framework. In [24] the authors show that this dynamical
optimization problem is asymptotically equivalent to a static optimization problem only involving the
stationary distribution ν of Y and the running payoff function K. We refer to [24] for further details.

We consider the following running payoff function

∀θ ∈ R+,∀y ∈ R, K(θ, y) = yαθβ − cθ,
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where α, β ∈ (0, 1) and c ∈ (0,∞). The term yαθβ can be identified with the so-called Cobb-Douglas
production function, while the term cθ provides a measure for the cost of capital use. The mean
function of the associated recursive procedure then reads

∀θ ∈ R, k(θ) := βsign(θ) |θ|β
∫

R

yαν(dy)− cθ,

where we have extended the function on the whole-real line and we have chosen this form to avoid the
explosion at zero. Consequently the associated stochastic gradient procedure to maximize the payoff
is given by

∀n ≥ 0, θn+1 = θn + γ̃n+1

(
βsign(θn) |θn|β Ȳ α

n − cθn

)
.

The choice and the extension of the functions k introduces two more equilibrium points: 0 and −θ∗.
The literature on traps in Stochastic Approximation does not apply straightforwardly in our setting,
but 0 is a repulsive point (because the derivative is infinite at this point) and one checks on simulations
that it is never a target for the procedure. On the other hand −θ∗ is a possible target but induces no
difficulty.

In [24] the dynamic of the underlying state process is modeled by the one-dimensional CIR diffusion,
namely

dYt = κ (ϑ− Yt) dt+ σ
√

YtdWt (5.40)

where κ, ϑ, σ > 0 are constants satisfying 2κϑ > σ2. The invariant distribution of Y is a Gamma law
which density is given by

ν(dy) =
1

Γ
(
2κϑ
σ2

)y
2κϑ
σ2 −1 exp

(
2κ

σ2

[
ϑ ln

(
2κ

σ2
− y

)])
1{y≥0},

where Γ is the gamma function. Thus we can compute the previous integral, namely

∫

R

yαν(dy) =
Γ
(
2κϑ
σ2 + α

)

Γ
(
2κϑ
σ2

)
(
σ2

2κ

)α

,

so we have a closed form for θ∗ given by

θ∗ =

(
βΓ
(
2κϑ
σ2 + α

)

cΓ
(
2κϑ
σ2

)
(
σ2

2κ

)α
) 1

1−β

.
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Figure 2: Convergence towards the optimal capacity level of the investment project : κ = 1, ϑ = 1,
σ = 1.5, α = 0.8, β = 0.7, c = 0.5, n = 105.
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If one considers a basket of assets modeled by a Wishart process (see [4] and [12]), a similar
long-term ergodic control process can be devised. Closed forms are no longer available for the static
optimization problem. However, our numerical approach can be extended straightforwardly (provided
one has at hand an efficient method of simulation for Wishart process, see [12]).

5.4 The ergodic two-armed bandit

An application of the case of multiplicative function is the so-called two-armed bandit algorithm
introduced in mathematical psychology and learning automata (see [27] and [25]). The criteria on a.s.
convergence under i.i.d. assumptions was obtained in [18] and under ergodic assumptions in [32]. A
penalized version of this algorithm is also studied in [17]. This algorithm is defined as follows: at each
step n ≥ 0, one plays arm A (resp. arm B) with probability θn (resp. 1 − θn), where θn is updated
according the following rule, for all n ≥ 0,

{
θn+1 = θn + γn+1

(
(1− θn)1{Un+1≤θn}∩An+1

− θn1{Un+1>θn}∩Bn+1

)

θ0 = θ ∈ (0, 1)
(5.41)

where (Un)n≥1 is a sequence of uniform random variables, (An)n≥1 and (Bn)n≥1 are two sequences of
events evaluating the performances of the arms A and B.

This stochastic procedure can be rewrite as follows

{
θn+1 = θn + γn+1

(
1An+1 − 1Bn+1

)
θn(1− θn) + γn+1∆Mn+1

θ0 = θ ∈ (0, 1)
(5.42)

where Mn :=
∑n

k=1 ǫk, M0 := 0, with

ǫk := 1Ak
(1− θk−1)

(
1{Un+1≤θn} − θk−1

)
+ 1Bk

θk−1

(
(1− θk−1)− 1{Un+1>θn}

)
.

Then applying Theorem 2.2 with h(θ) = θ(1− θ), Yk := 1Ak+1
− 1Bk+1

, k ≥ 0, and χ(y) = y
ν(A)−ν(B)

where ν(A) > ν(B), we show that
θn

a.s.−→
n→∞

θ∗ ∈ {0, 1} .

In fact 0 is a trap and 1 is target. Further investigations on θ∗ are carried in [32] in the ergodic
framework (see also [18] in the purely i.i.d. setting).

5.5 Optimal split of orders across liquidity pools

This example is an application to real data in Finance. It is an optimal allocation problem which
leads to a stochastic gradient by using Lagrangian approach developed in [21]. We present numerical
results with (pseudo-)real data but simulations with α-mixing innovations are also presented in the
reference paper.

5.5.1 Modeling description

The principle of a Dark pool is to propose a price with no guarantee of executed quantity at the
occasion of an OTC transaction. Usually this price is lower than the one offered on the regular
market. So one can model the impact of the existence of N dark pools (N ≥ 2) on a given transaction
as follows: let V > 0 be the random volume to be executed, let θi ∈ (0, 1) be the discount factor
proposed by the dark pool i. Let ri denote the percentage of V sent to the dark pool i for execution.
Let Di ≥ 0 be the quantity of securities that can be delivered (or made available) by the dark pool i
at price θiS.
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The rest of the order is to be executed on the regular market, at price S. Then the cost C of the
whole executed order is given by

C = S

N∑

i=1

θimin (riV,Di) + S

(
V −

N∑

i=1

min (riV,Di)

)
= S

(
V −

N∑

i=1

ρi min (riV,Di)

)

where ρi = 1 − θi ∈ (0, 1), i = 1, . . . , N . Minimizing the mean execution cost, given the price S,
amounts to solving the following maximization problem

max

{
N∑

i=1

ρiE (Smin (riV,Di)) , r ∈ PN

}
(5.43)

where PN :=
{
r = (ri)1≤i≤N ∈ RN

+ |∑N
i=1 ri = 1

}
. It is then convenient to include the price S into

both random variables V and Di by considering Ṽ := V S and D̃i := DiS instead of V and Di.
Let IN = {1, . . . , N}. We set for all r = (r1, . . . , rN ) ∈ PN , Φ(r1, . . . , rN ) :=

∑N
i=1 ϕi(ri), where

∀i ∈ IN , ϕi(u) := ρiE (min (uV,Di)) , u ∈ [0, 1] .

We assume that for all i ∈ IN ,

V > 0 P− a.s., P(Di > 0) > 0 and the distribution function of Di

V
is continuous on R+, (5.44)

then ϕi, i ∈ IN , are everywhere differentiable on the unit interval [0, 1] with

ϕ′
i(u) = ρE

(
1{uV≤Di}V

)
, u ∈ (0, 1] , (5.45)

and one extends ϕi, i ∈ IN , on the whole real line into a concave non-decreasing function with
lim±∞ ϕi = ±∞. So we can formally extend Φ on the whole affine hyperplan spanned by PN i.e.

HN :=
{
r = (r1, . . . , rN ) ∈ RN |∑N

i=1 ri = 1
}
.

5.5.2 Description of the recursive procedure

We aim at solving the following maximization problem maxr∈PN
Φ(r). The Lagrangian associated to

the sole affine constraint suggests that any r∗ ∈ argmaxPN
Φ iff ϕ′

i(r
∗
i ) is constant when i runs over

IN or equivalently if ϕ′
i(r

∗
i ) =

1
N

∑N
j=1 ϕ

′
j(r

∗
j ), i ∈ IN .

We set Y n := (V n,Dn
1 , . . . ,D

n
N )

n≥1. Then using the representation of the derivatives ϕ′
i yields

r∗ ∈ argmax
PN

Φ ⇐⇒ ∀i ∈ {1, . . . , N} , E


V


ρi1{r∗i V <Di} − 1

N

N∑

j=1

ρj1{r∗j V <Dj}




 = 0.

Consequently, this leads to the following recursive zero search procedure

rn+1
i = rni + γn+1Hi(r

n, Y n+1), r0 ∈ PN , i ∈ IN , (5.46)

where for i ∈ IN , every r ∈ PN , every V > 0 and every D1, . . . ,DN ≥ 0,

Hi(r, Y ) = V


ρi1{riV <Di} −

1

N

N∑

j=1

ρj1{rjV <Dj}



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where (Y n)n≥1 is a sequence of random vectors with non negative components such that, for every

n ≥ 1, (V n,Dn
i , i = 1, . . . , N)

d
= (V,Di, i = 1, . . . , N).

The underlying idea of the algorithm is to reward the dark pools which outperform the mean of
the N dark pools by increasing the allocated volume sent at the next step (and conversely). For sake
of simplicity that argmaxP

N
Φ = {r∗} ⊂ int(P

N
). Our “averaging” assumption is to assume that

there exists an exponent αi∈ (0, 1] such that for every u∈ R+,

1

n

n∑

k=1

V k1
{u<Dk

i

V k }
− E(V 1{u<Di

V
}) = O(n−αi) a.s. and in L2(P). (5.47)

Under additional assumption on the support of L(Y n) (see [21]), we can apply Theorem 2.1. Then
if the sequence (γn)n≥1 satisfies (2.13), we get that the algorithm defined by (5.46) a.s. converges
towards r∗ = argmaxP

N
Φ.

5.5.3 Numerical Tests

We consider the shortage setting, i.e. EV >
∑N

i=1EDi because it is the most interesting case and
the most common in the market. Now, we introduce an index to measure the performances of our
recursive allocation procedure.

⊲ Relative cost reduction (w.r.t. the regular market): it is defined as the ratios between
the cost reduction of the execution using dark pools and the cost resulting from an execution on the
regular market, i.e., for every n ≥ 1,

CRalgo

V n
=

∑N
i=1 ρimin (rni V

n,Dn
i )

V n
.

We have considered for V the traded volumes of a very liquid security – namely the asset BNP –
during an 11 day period. Then we selected the N most correlated assets (in terms of traded volumes)
with the original asset. These assets are denoted Si, i = 1, . . . , N and we considered their traded
volumes during the same 11 day period. Finally, the available volumes of each dark pool i have been
modeled as follows using the mixing function

∀ 1 ≤ i ≤ N, Di := βi

(
(1− αi)V + αiSi

EV

ESi

)

where αi, i = 1, . . . , N are the recombining coefficients, βi, i = 1, . . . , N some scaling factors and
EV and ESi stand for the empirical mean of the data sets of V and Si. The simulations presented
here have been made with four dark pools (N = 4). Since the data used here covers 11 days and it is
clear that unlike the simulated data, these pseudo-real data are not stationary: in particular they are
subject to daily changes of trend and volatility (at least). To highlight this resulting changes in the
response of the algorithms, we have specified the days by drawing vertical doted lines. The dark pool
pseudo-data parameters are set to β =

(
0.1 0.2 0.3 0.2

)t
, α =

(
0.4 0.6 0.8 0.2

)t
and the dark

pool trading (rebate) parameters are set to ρ =
(
0.01 0.02 0.04 0.06

)t
.

We benchmarked the algorithm on the whole data set (11 days) as though it were stationary. In
particular, the running means of the performances are computed from the very beginning for the first
1500 data, and by a moving average on a window of 1500 data.
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Figure 3: Case N = 4,
∑N

i=1 βi < 1, 0.2 < αi ≤ 0.8 and r0i = 1/N , 1 ≤ i ≤ N .
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