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Abstract

The aim of the paper is to establish a convergence theorem for multi-dimensional stochastic
approximation in a setting with innovations satisfying some averaging properties and to study
some applications. The averaging assumptions allow us to unify the framework where the
innovations are generated (to solve problems from Numerical Probability) and the one with
exogenous innovations (market data, output of “device” e.g. an Euler scheme) with stationary
or ergodic properties. We propose several fields of applications with random innovations or
quasi-random numbers. In particular we provide in both setting a rule to tune the step of the
algorithm. At last we illustrate our results on five examples notably in Finance.

Keywords Stochastic Approximation, mixing processes, Gàl-Koksma theorem, stationary pro-
cesses, quasi-Monte Carlo, sequence with low discrepancy, two-armed bandit algorithm, calibration,
optimal asset allocation, VaR-CVaR, ergodic control.
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1 Introduction

This paper presents convergence results for stochastic approximation of Robbins-Monro type (see
[28] for the original paper), namely

θn+1 = θn − γn+1H(θn, Yn),

when the innovations (Yn)n≥0 satisfy some “elementary” averaging assumptions. In fact we will
consider a slightly more general setting (see Section 2). The aim is to unify several frameworks:
the first one is the case of generated possibly non random innovations (to solve problems from
Numerical Probability) and the second one concerns exogenous data satisfying some stationary or
ergodic properties.
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To establish the a.s. convergence of the sequence (θn)n≥0 toward its “target” θ∗ (to be specified
later on), the idea is to assume some similar averaging type property on the sequence of innovations
(Yn)n≥0 typically that, for a wide enough class V of integrable functions with respect to a probability
measure ν,

∀f ∈ V, 1

n

n∑

k=1

f(Yk) −→
n→∞

∫

Rq

fdν (1.1)

(at a common rate of convergence to be specified further on). If V ⊃ Cb(Rq,Rq), this implies

1

n

n∑

k=1

δYk

(Rq)
=⇒
n→∞

ν

and the sequence (Yn)n≥0 is often called “stable” in the literature at least when it is Markov. If
V = L1(ν), the sequence (Yn)n≥0 is called “ergodic”. The target is then, as expected, a zero, if any,
of the (asymptotic) mean function of the algorithm that can be defined as

h(θ) :=

∫

Rq

H(θ, y)ν(dy).

This general framework allows us to consider several types of innovation process: not only
random sequences of different types but also quasi-random numbers. Firstly we retrieve the classical
framework of stochastic approximation (i.e. standard Robbins-Monro) when the sequence is i.i.d.
with law ν and we obtain a rate of convergence in (1.1) thanks to the law of iterated logarithm.
More generally we uncover the following framework of “inverse” problem

θn+1 = θn − γn+1 (h(θn) + ∆Mn+1) ,

when (∆Mn)n≥0 is a suitably controlled sequence of martingale increments which is widely devel-
oped in the literature of Stochastic Approximation (see [3], [8], [12], [13]). To prove the convergence
we must to reinforce the Lyapunov assumption except in the case of additive or multiplicative noise.
Secondly we consider for (Yn)n≥0 some functional of α-mixing process without any Markov assump-
tions. These processes are stationary and dependent, so more realistic to model inputs made of
real data. To describe the class of functions V we need to prove the convergence of the series of
covariance coefficients of the innovations. To this end we use some results in [26] and the covari-
ance inequality for α-mixing process (see[7]). Next with the probabilistic version of the theorem of
Gàl-Koksma (see [10] and [1]) we prove that the class of functions is large enough (L2(ν) ⊂ V).

Afterwards we examine the case of homogeneous Markov chain with invariant measure ν. Some
results on Stochastic Approximation in this setting have been proved in [3], but they need to
establish the convergence of the algorithm to assume the existence of a solution to Poisson equation
with some regularity properties. To describe V we add an ergodic assumption on the chain which
allows us to prove that this class does not depend on the initial value of the chain.

Then we are interested in quasi-random numbers. The idea to substitute uniformly distributed
sequences (with low discrepancy) to i.i.d. innovations in recursive stochastic approximation goes
back to the early 1990’s in [18], leading to “quasi-Stochastic Approximation” (refering to QMC
for quasi-Monte Carlo). The framework in [18] was purely one-dimensional and many numerical
tests have proved the efficiency of QSA for multi-dimensional innovations. The aim is to establish
a convergence theorem in this higher dimensional setting under natural regularity assumptions
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(i.e. based on Lipschitz regularity rather than finite variation in the Hardy & Krause sense often
encountered in the QMC world).

Finally we present several examples of applications illustrated with numerical experiment. First
we consider a simple case of calibration: the search of an implicit parameter in a financial model
to fit its value to the market. We implement the algorithm with an i.i.d. sequence and a quasi-
random one to compare their rate of convergence. The second example is devoted to the recursive
computation of risk measures commonly considered in portfolio management, namely the Value-
at-Risk and the Conditional-Value-at-Risk. We show that the recursive procedure introduced in
[2] to compute these quantities can be successfully implemented in a QSA framework. In the third
example we regard the case of a diffusion. To clarify the class V, we use some results about the
recursive computation of the invariant measure of a diffusion studied in [14] and [20]. We need some
additional assumptions on the coefficients and the existence of a unique invariant measure. We also
require the existence of a solution to Poisson equation (associated to the infinitesimal generator)
with regularity hypothesis. Then we apply it to the minimization of a potential with a numerical
experiment in investment project (see [22]). These three examples describe stochastic numerical
procedures based on simulated data. The fourth example is the so-called two-armed bandit intro-
duced in learning automata and mathematical psychology in the 1950’s (see [23]). Its a.s. briefly
behaviour in the i.i.d. setting has been extensively investigated in [17] and [15]. These results have
been partially extended in [30] to a more general ergodic framework. We show that some of them
appear as consequences of our main result (in the multiplicative case). The last example describes
a model of asset allocation developed in [19] and based on exogenous true data set a priori sharing
no Markov property but on which a mixing assumption seems natural (at least with a medium laps
of time).

This paper is organised as follows : in Section 2 we describe our framework and our assump-
tions which lead to the statement and the proof of two convergence theorems. Theorem 2.1 is
the main result of this paper and the second one is a particular case where the noise is multi-
plicative. Section 3 is devoted to applications to random innovations, namely i.i.d., additive noise,
mixing process (functional of α-mixing process with assumptions on the mixing coefficients) and
homogeneous Markov chain with some ergodic assumptions. Section 4 present the quasi-Stochastic
Approximation, i.e. the case where the innovations are uniformly distributed on [0, 1]q and have low
discrepancy. We generalize in this way a previous result obtained in [18]. Section 5 give numerical
results for applications in Finance notably with implicit correlation search, recursive computation of
VaR and CVaR, minimization of a potential associated to a diffusion, two-armed bandit algorithm
and optimal allocation problem (more developed in [19]).

Notations 〈· | ·〉 denote the Euclidean inner product and |·| its related norm. The almost sure

convergence will be denoted
a.s.−→ and

(Rq)
=⇒ will denote the weak convergence in Rq.
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2 Algorithm design and main theoretical result

In this paper, we consider the following general framework for recursive stochastic algorithms of
the following form

θn+1 = θn − γn+1H(θn, Yn)− γn+1∆Mn+1, n ≥ 0, (2.2)

where θ0 is an Rd-valued random variable, (Yn)n≥0 is a Rq-valued sequence of random variables
and ∆Mn+1 is a martingale increment, all defined on a same probability space (Ω,F ,P). Moreover
θ0 ∈ L1(P) and θ0 ⊥⊥ (Yn)n. The step sequence (γn)n≥1 is a non-increasing and H is a Borel func-
tion from Rd×Rq to Rd. We will denote Fn = σ(θ0, Y0, Y1, . . . , Yn), n ≥ 0, the natural filtration of
the innovation process (Yn)n≥0. Note that no Markov assumption is made a priori on the sequence
(Yn)n≥0.

In the following we will adopt a kind of compromise by assuming that (Yn)n≥0 is a process
satisfying some averaging properties and where the function H of the algorithm (2.2) belongs to a
class of functions (which will be specified further on) for which some rate of convergence (a.s. and
in Lp) holds in (1.1). Moreover we need to reinforce the Lyapunov condition on the pseudo-mean
function H which limits, at least theoretically, the range of application of the method.

However, we will see in the examples that it provides some rather general (and now to our
knowledge) results about quasi-Stochastic Approximation which justifies the implementation of
stochastic approximation procedures with sequences with low discrepancy. This widely spread
practice, especially in Financial Engineering, seemed to rely so far only in some heuristic rules
derived from the original stochastic approximation framework.

2.1 Framework and assumptions

Let (Yn)n≥0 be an Rq-valued random variables sequence. We will say that the sequence (Yn)n≥0

satisfies a ν-stability assumption if

P(dω)-a.s.
1

n

n−1∑

k=0

δYk(ω)
(Rq)
=⇒
n→∞

ν (2.3)

where
(Rq)
=⇒ stands for the weak convergence of probability measures on (Rq,Bor(Rq)).

We will see that the stochastic approximation procedure defined by (2.2) is a recursive zero
search of the (asymptotic) mean function

h(θ) :=

∫

Rq

H(θ, y)ν(dy). (2.4)

Let p ∈ [1,∞) and let (εn)n≥0 be a sequence of non-negative numbers such that εn −→
n→∞

0. We

denote by Vεn,p the class of functions which convergence rate in (1.1) in both a.s. and in Lp(P)
sense is ε−1

n , namely

Vεn,p =

{
f :∈ Lp(ν) | 1

n

n∑

k=1

f(Yk)−
∫

fdν
P-a.s. & Lp(P)

= O(εn)

}
. (2.5)
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2.2 Main result

Now we are in a position to state a first convergence theorem, which is a Robbins-Siegmund like
Lemma.

Theorem 2.1. Let h : Rd → Rd satisfying (2.4), H : Rd × Rq → Rd a Borel function and let
(Yn)n≥0 be a sequence satisfying (2.3). Assume there exists a continuously differentiable function
L : Rd → R+ satisfying

∇L is Lipschitz continuous and |∇L|2 ≤ C (1 + L) (2.6)

such that {θ∗} is a connex component of {L = L(θ∗)} and that the pseudo-mean function H satisfies
the local mean-reverting assumption

∀δ > 0, ∀θ ∈ Rd\{θ∗}, ∀y ∈ Rq, 〈∇L(θ) | H(θ, y)−H(θ∗, y)〉 ≥ χ
δ
(y)Ψδ(θ) (2.7)

where ν(χ
δ
) > 0, Ψδ is l.s.c.and positive on Rd\{θ∗} and

⋂
δ>0{Ψδ = 0} = {θ∗}. Let p ∈ [1,∞).

Assume that
∀θ ∈ R

d, H(θ∗, ·) ∈ Vεn,p. (2.8)

Moreover, assume that H satisfies the following (quasi-)linear growth assumption

∀θ ∈ R
d,∀y ∈ R

q, |H(θ, y)| ≤ CHφ(y)(1 + L(θ))
1
2 (2.9)

and that the martingale increments sequence (∆Mn+1)n≥0 satisfies

∀n ≥ 0, E

(
|∆Mn+1|2∨

p
p−1 | Fn

)
≤ CMφ(Yn)

2∨ p
p−1 (1 + L(θn))

1∨ p
2(p−1) if p > 1

∀n ≥ 0, esssupE (|∆Mn+1| | Fn) ≤ CMφ(Yn)(1 + L(θn))
1
2 if p = 1

(2.10)

where supn≥1 ‖φ(Yn)‖2∨ p
(p−1)

< +∞.

Let γ = (γn)n≥1 be a non-negative non-increasing sequence of gain parameters satisfying

∑

n≥1

γn = +∞, nεnγn −→
n→∞

0, and
∑

n≥1

nεnmax
(
γ2n, |∆γn+1|

)
< +∞. (2.11)

Then, the recursive procedure defined by (2.2) satisfies (L(θn))n≥0 is L
1-bounded , L(θn) −→

n→∞
L∞ <

+∞ a.s., θn − θn−1 −→
n→∞

0 a.s.,

∑

n≥1

〈∇L(θn) | H(θn, Yn)−H(θ∗, Yn)〉 < +∞

and
θn

a.s.−→
n→∞

θ∗.

Remark. The conditions on the sequence of gain parameters γ = (γn)n≥1 are satisfied for example
if we set

γn =
c

na
, a > 1− β, c > 0. (2.12)
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Proof. We set for notational convenience ∆θn = θn − θn−1.
First step: We introduce the function

Λ(θ) :=
√

1 + L(θ)

as a Lyapunov function instead of L(θ) like in the classical case.
It follows from the fundamental formula of calculus that there exists ξn+1 ∈ (θn, θn+1) such that

Λ(θn+1) = Λ(θn) + 〈∇Λ(θn) |∆θn+1〉+ 〈∇Λ(ξn+1)−∇Λ(θn) |∆θn+1〉
≤ Λ(θn) + 〈∇Λ(θn) |∆θn+1〉+ 〈∇Λ(θn+1)−∇Λ(θn) |∆θn+1〉 .

Lemma 2.1. The new Lyapunov function Λ satisfies the two following porperties

(i) ∇Λ is bounded (so that Λ is Lipschitz).

(ii) ∀θ, θ′ ∈ Rd, |∇Λ(θ′)−∇Λ(θ)| ≤ CL
|θ′−θ|
Λ(θ) .

Proof of Lemma 2.1.

(i) ∇Λ = ∇L
2
√
1+L

is bounded by 2.6, consequently Λ is Lipschitz.

(ii) For θ, θ′ ∈ Rd,

∣∣∇Λ(θ)−∇Λ(θ′)
∣∣ ≤ |∇L(θ)−∇L(θ′)|

2
√

1 + L(θ)
+

|∇L(θ′)|
2

∣∣∣∣∣

√
1 + L(θ′)−

√
1 + L(θ)√

1 + L(θ)
√

1 + L(θ′)

∣∣∣∣∣

≤
[∇L]Lip

2
√

1 + L(θ)

∣∣θ − θ′
∣∣+ C

2
√

1 + L(θ)
[Λ]Lip

∣∣θ − θ′
∣∣

≤ 1

2

(
[∇L]Lip +C[Λ]Lip

) |θ − θ′|
Λ(θ)

= CL
|θ − θ′|
Λ(θ)

. �

Thus

Λ(θn+1) ≤ Λ(θn)− γn+1 〈∇Λ(θn) |H(θn, Yn)〉 − γn+1 〈∇Λ(θn) |∆Mn+1〉+ CL
|∆θn+1|2√
1 + L(θn)

= Λ(θn)− γn+1 〈∇Λ(θn) |H(θn, Yn)−H(θ∗, Yn)〉 − γn+1 〈∇Λ(θn) |H(θ∗, Yn)〉

−γn+1 〈∇Λ(θn) |∆Mn+1〉+ CLγ
2
n+1

|H(θn, Yn) + ∆Mn+1|2√
1 + L(θn)

.

We have for every n ≥ 0,

|γn+1 〈∇Λ(θn) |H(θ∗, Yn)〉| ≤ CΛγn+1φ(Yn) ∈ L1(P)

since∇Λ is bounded. Besides E [〈∇Λ(θn) |∆Mn+1〉 | Fn] = 0, n ≥ 0, since ∆Mn is a true martingale
increment and ∇Λ is bounded. Furthermore, owing to (2.9) and (2.10)

E

[
|H(θn, Yn) + ∆Mn+1|2√

1 + L(θn)
| Fn

]
≤ Cφ2(Yn)Λ(θn)
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where conditional expectation is defined in the sense of positive random variables.
Consequently we get

E [Λ(θn+1) | Fn] ≤ Λ(θn)
(
1 + C ′

Lγ
2
n+1φ(Yn)

2
)
− γn+1 〈∇Λ(θn) |H(θn, Yn)−H(θ∗, Yn)〉

−γn+1 〈∇Λ(θn) |H(θ∗, Yn)〉 .
(2.13)

We set Vn :=
An

Bn
, where

An := Λ(θn) +

n−1∑

k=0

γk+1 〈∇Λ(θk) |H(θk, Yk)−H(θ∗, Yk)〉

Bn :=

n∏

k=1

(
1 + C ′

Lγ
2
kφ(Yk−1)

2
)
.

Using the mean-reverting assumption (2.7) implies that (An)n≥0 is a non-negative process and
(Bn)n≥0 is Fn−1-adapted. Elementary computations show that first

E [An+1 | Fn] ≤ An
Bn+1

Bn
− γn+1 〈∇Λ(θn) |H(θ∗, Yn)〉

which finally yields
∀n ≥ 0, E [Vn+1 | Fn] ≤ Vn −∆Wn+1, (2.14)

where Wn :=
∑n−1

k=0 γ̃k+1 〈∇Λ(θk) |H(θ∗, Yk)〉 with γ̃n := γn
Bn

, n ≥ 0.

Second step: Now our aim is to prove that the sequence (Wn)n≥1 is L
1-bounded and a.s. converges.

To this end we set S∗
n :=

∑n−1
k=0 H(θ∗, Yk), then it follows

Wn =
n−1∑

k=0

γ̃k+1

〈
∇Λ(θk) |∆S∗

k+1

〉
= γ̃n 〈∇Λ(θn−1) |S∗

n〉 −
n−1∑

k=1

〈S∗
k | γ̃k+1∇Λ(θk)− γ̃k∇Λ(θk−1)〉 .

First, since ∇Λ is bounded, note that

γ̃n |∇Λ(θn−1)| |S∗
n| ≤ ‖∇Λ‖∞ nεnγ̃n

|S∗
n|

nεn
≤ ‖∇Λ‖∞ nεnγn

|S∗
n|

nεn

which a.s. goes to 0 as n goes to infinity since nεnγn −→
n→∞

0 by (2.11) and

(
S∗
n

nεn

)

n≥1

remains a.s.

bounded. Moreover

E [γ̃n |∇Λ(θn−1)| |S∗
n|] ≤ nεnγn ‖∇Λ‖∞

∥∥∥∥
S∗
n

nεn

∥∥∥∥
1

which converges also in L1 because nεnγn −→
n→∞

0 and H(θ∗, ·) ∈ Vεn,p. On the other hand,

n−1∑

k=1

〈S∗
k | γ̃k+1∇Λ(θk)− γ̃k∇Λ(θk−1)〉 =

n−1∑

k=1

〈S∗
k |∇Λ(θk)〉∆γ̃k+1+

n−1∑

k=1

γ̃k 〈S∗
k |∇Λ(θk)−∇Λ(θk−1)〉 .
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As ∇Λ =
∇L√
1 + L

is bounded by construction, we have

n∑

k=1

|∆γ̃k+1 〈S∗
k |∇Λ(θk)〉| ≤

n∑

k=1

|∆γ̃k+1| |S∗
k| ‖∇Λ‖∞

≤ ‖∇Λ‖∞
n∑

k=1

kεk |∆γ̃k+1|
∣∣∣∣
S∗
k

kεk

∣∣∣∣ .

Now, using that a
1+a

≤ √
a, a > 0,

|∆γ̃k+1| ≤ |∆γk+1|+γk
C ′
Lγ

2
k+1φ(Yk)

2

Bk+1
≤ |∆γk+1|+γk

C ′
Lγ

2
k+1φ(Yk)

2

1 + C ′
Lγ

2
k+1φ(Yk)2

≤ |∆γk+1|+C ′
Lγkγk+1φ(Yk).

Hence

n∑

k=1

|∆γ̃k+1 〈S∗
k |∇Λ(θk)〉| ≤ ‖∇Λ‖∞

(
n∑

k=1

kεk |∆γk+1|
∣∣∣∣
S∗
k

kεk

∣∣∣∣+ C ′
L

n∑

k=1

kεkγkγk+1φ(Yk)

∣∣∣∣
S∗
k

kεk

∣∣∣∣

)
.

By Hölder’s Inequality

E

(
φ(Yk)

∣∣∣∣
S∗
k

kεk

∣∣∣∣
)

≤ ‖φ(Yk)‖ p
p−1

∥∥∥∥
S∗
k

kεk

∥∥∥∥
p

= ‖φ(Yk)‖ p
p−1

∥∥∥∥
S∗
k

kεk

∥∥∥∥
p

.

As

(
S∗
k

kεk

)

n≥0

is bounded, nεnγn −→
n→∞

0,
∑

k≥1

kεk |∆γk+1| < +∞,
∑

k≥1

kεkγ
2
k+1 < +∞ and sup

k≥0
‖φ(Yk)‖ p

p−1
<

+∞, then the series
∑n

k=1∆γ̃k 〈S∗
k |∇Λ(θk)〉 is absolutely converging in L1(P).

We study now the series

n∑

k=1

γ̃k 〈S∗
k |∇Λ(θk)−∇Λ(θk−1)〉.

We have

|∇Λ(θk)−∇Λ(θk−1)| ≤ C ′
L

|∆θk|√
1 + L(θk−1)

≤ C ′
Lγk

|H(θk−1, Yk−1)|+ |∆Mk|√
1 + L(θk−1)

.

Then we are interested in the L1-convergence of the series

n∑

k=1

γ2k |S∗
k|

|H(θk−1, Yk−1)|√
1 + L(θk−1)

and

n∑

k=1

γ2k |S∗
k |

|∆Mk|√
1 + L(θk−1)

.

For the first sum, as
|H(θk−1, Yk−1)|√

1 + L(θk−1)
≤ CHφ(Yk−1), we then come to

n∑

k=1

CHγ2kE [|S∗
k | |φ(Yk−1)|]
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and by Hölder’s inequality we obtain

E [|S∗
k | |φ(Yk−1)|] ≤ ‖S∗

k‖p ‖φ(Yk−1)‖ p
p−1

< +∞

because ‖S∗
k‖p = O (kεk) by (2.5) and sup

n≥1
‖φ(Yn)‖ p

p−1
< +∞. Furthermore, as

∑

k≥1

kεkγ
2
k < +∞

by (2.11), then the series
n∑

k=1

γ2k |S∗
k|

|H(θk−1, Yk−1)|√
1 + L(θk−1)

converges in L1.

For the second sum, we have by Hölder’s inequality

E

[
|S∗

k |
|∆Mk)|√
1 + L(θk−1)

]
≤ ‖S∗

k‖p

∥∥∥∥∥
|∆Mk|√

1 + L(θk−1)

∥∥∥∥∥
p

p−1

≤ CM ‖S∗
k‖p ‖φ(Yk−1)‖ p

p−1
< +∞

owing to the same arguments as for the previous series. This yields that

n∑

k=1

γ2k |S∗
k |

|∆Mk|√
1 + L(θk−1)

converges in L1 too.
Finally we then obtain that

Wn
a.s.−→

n→∞
W∞ and sup

n≥1
‖Wn‖1 < +∞.

Thus we have that

(Vn +Wn)
− ≤ W−

n ≤ |Wn| ∈ L1(P) since sup
n≥1

‖Wn‖1 < +∞.

As V0 = Λ(θ0) ≤ C(1 + |θ0|) ∈ L1, it follows by induction from (2.14) that, for every n ≥ 0,
EVn < ∞. Hence Sn := Vn +Wn, n ≥ 0, is a true supermartingale with an L1-bounded negative
part. We then deduce that

Sn
a.s.−→

n→∞
S∞ ∈ L1.

Now Wn
a.s.−→

n→∞
W∞ implies Vn

a.s.−→
n→∞

V∞ < +∞ a.s.

Third step : Now we show that the product Bn converges a.s. to derive that An converges a.s..
In fact

n∑

n≥1

γ2nφ
2(Yn−1) < +∞ a.s.,

since sup
n≥1

E
[
φ2(Yn)

]
< +∞, which in turn implies that

Bn
a.s.−→

n→∞
B∞ < +∞.

As a consequence An
a.s.−→

n→∞
A∞ < +∞. Therefore using the mean reverting property (2.7) of H

with respect to ∇Λ, we classically derive that
∑

n≥1

γn 〈∇Λ(θn−1) |H(θn−1, Yn−1)−H(θ∗, Yn−1)〉 < +∞ a.s. (2.15)
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Consequently
Λ(θn)

a.s.−→
n→∞

Λ∞ < +∞ a.s.

As lim
|θ|→+∞

L(θ) = +∞, lim
|θ|→+∞

Λ(θ) = +∞, then the sequence (θn)n≥0 is a.s.-bounded and

L(θn)
a.s.−→ L∞ < +∞ a.s.

Now let us show that ∆θn −→
n→∞

0. In fact |∆θn+1|2 ≤ Cγ2n+1

(
|H(θn, Yn)|2 + |∆Mn+1|2

)
, so

E

[
|∆θn+1|2 | Fn

]
≤ Cγ2n+1(1 +EL(θn)). Now (Λ(θn))n≥0 is bounded so that

∑

n≥0

E

[
|∆θn+1|2 | Fn

]
< +∞. a.s.

which classically implies that
∑

n≥0 |∆θn+1|2 < +∞ a.s.

Fourth step : To prove the convergence of θn toward θ∗, we use Assumptions (2.7) and (3.30) to
deduce that ∑

n≥1

γnχδ
(Yn−1)Ψδ(θn−1) < +∞ a.s. (2.16)

Now,
n∑

k=0

γk+1χδ
(Yk) =

n∑

k=0

γk+1∆Sχ
k = γn+1S

χ
n −

n−1∑

k=1

∆γk+2S
χ
k

where Sχ
n =

∑n
k=0 χδ

(Yk) and we set Sχ
0 = 0 and ∆Sχ

0 = 0.

By Assumption (2.3),
Sχ
n

n
→ ν(χ

δ
) > 0 as n → ∞. Let n0 be the smallest integer such that

∀n ≥ n0,
Sχ
n

n
≥ ǫ0 =

ν(χ
δ
)

2
> 0.

Then, the usual discrete integration by part yields

∀n ≥ n0,

n∑

k=n0

γk+1χδ
(Yk) = nγn+1

Sχ
n

n
−Cn0 +

n−1∑

k=n0

k(−∆γk+2)
Sχ
k

k
a.s.,

where Cn0 = γn0+1S
χ
n0−1.

Therefore, using that the sequence (−∆γn)n≥1 is non-negative,

n∑

k=n0

γk+1χδ
(Yk) ≥ nγn+1ǫ0 − Cn0 +

n−1∑

k=n0

k(−∆γk+2)ǫ0

= ǫ0


nγn+1 +

n−1∑

k=n0

k(−∆γk+2)


− Cn0

= ǫ0


γn+1 + n0γn0+1 +

n−1∑

k=n0+1

γk+1


− Cn0
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by a reverse discrete integration by parts. Finally

n∑

k=n0

γk+1χδ
(Yk) ≥ ǫ0


γn+1 +

n−1∑

k=n0+1

γk+1


− Cn0 → ∞ as n → ∞

since
∑

n≥1

γn = +∞. We have then shown that

∑

k≥0

γk+1χδ
(Yk) = +∞ a.s.

Combining this fact with (2.16) classically implies that

lim inf
n

Ψ̃δ(θn) = 0.

Let Θ∞ be the set of limiting points of the sequence (θn)n≥0. Θ∞ is a compact connected set since
(θn)n≥0 is bounded and ∆θn −→

n→∞
0. So Θ∞∩{Ψδ = 0} is a family of non-empty compact sets which

decreases as δ ց 0 since it is bounded because Θ∞ is closed since {Ψδ = 0} is because Ψδ ≤ 0
and l.s.c.. As a consequence,

⋂
δ>0 (Θ∞ ∩ {Ψδ = 0}) 6= ∅. The other assumption on Ψδ implies⋂

δ>0 (Θ∞ ∩ {Ψδ = 0}) ⊂ ⋂δ>0{Ψδ = 0} = {θ∗}, so that in fact it is reduced to θ∗. Hence θ∗ is a
limiting point of (θn)n≥0 which implies that L(θn) converges towards L(θ

∗). By the assumption on
the Lyapunov function L, {θ∗} is a connected component of {L = L(θ∗)} and as Θ∞ is connected,
Θ∞ = {θ∗}. Therefore

θn
a.s.−→ θ∗ as n → ∞. �

2.3 The case of multiplicative noise

If we assume that the function H is of the following form

∀θ ∈ R
d, ∀y ∈ R

q, H(θ, y) = χ(y)h(θ) +H(θ∗, y), (2.17)

where χ is a Borel function such that ν(χ) = 1 and χ ∈ Vεn,p, h is Lipschitz bounded with h(θ∗) = 0,
then we replace the growth assumption (2.9) on H by one on the mean function h, i.e.

∀θ ∈ R
d,∀y ∈ R

q, |h(θ)| ≤ Chφ(y)
√

1 + L(θ) (2.18)

and the “local” mean-reverting assumption (2.7) is the classical

∀θ ∈ R
d \ {θ∗}, 〈∇L | h〉 (θ) > 0. (2.19)

Theorem 2.2. The recursive procedure (2.2) with the function H defined by (2.17) and the prece-
dent assumptions on χ and h satisfies

θn
a.s.−→

n→∞
θ∗.
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Proof. This setting cannot be reduced to the general setting. We use the same notations as in
the proof of Theorem 2.1. With the new form of the function H, we obtain

Λ(θn+1) ≤ Λ(θn)− γn+1 〈∇Λ(θn) |χ(Yn)h(θn)〉 − γn+1 〈∇Λ(θn) |H(θ∗, Yn)〉

−γn+1 〈∇Λ(θn) |∆Mn+1〉+ CLγ
2
n+1

|H(θn, Yn) + ∆Mn+1|2√
1 + L(θn)

.

By the same arguments as before we get

E [Λ(θn+1) | Fn] ≤ Λ(θn)
(
1 +C ′

Lγ
2
n+1φ(Yn)

2
)
−γn+1 〈∇Λ(θn) |χ(Yn)h(θn)〉−γn+1 〈∇Λ(θn) |H(θ∗, Yn)〉 .

We set Vn :=
An

Bn
, where

An := Λ(θn) +
n−1∑

k=0

γk+1 〈∇Λ |h〉 (θk) and Bn :=
n∏

k=1

(
1 + C ′

Lγ
2
kφ(Yk−1)

2
)
.

Using the mean-reverting assumption (2.19) implies that (An)n≥0 is a non-negative process whereas
(Bn)n≥0 is still Fn−1-adapted. Elementary computations show that

E [An+1 | Fn] ≤ An
Bn+1

Bn
− γn+1 〈∇Λ(θn) |H(θ∗, Yn)〉 − γn+1χ̃(Yn) 〈∇Λ | h〉 (θn)

where χ̃(Yn) := χ(Yn)− ν(χ), n ≥ 0. Finally we have

∀n ≥ 0, E [Vn+1 | Fn] ≤ Vn −∆Wn+1 −∆Zn+1, (2.20)

where

Wn :=
n−1∑

k=0

γ̃k+1 〈∇Λ(θk) |H(θ∗, Yk)〉 and Zn :=
n−1∑

k=0

γ̃k+1χ̃(Yk) 〈∇Λ | h〉 (θk)

with γ̃n := γn
Bn

, n ≥ 0.

Second step: Following the lines of the proof of Theorem 2.1 we show that the sequence (Wn)n≥1

is L1-bounded and a.s. converges. Now our aim is to prove the same results for the sequence
(Zn)n≥1. To this end we set Sχ̃

n :=
∑n−1

k=0 χ̃(Yk), then it follows

Zn =

n−1∑

k=0

γ̃k+1∆Sχ̃
k+1 〈∇Λ | h〉 (θk)

= γ̃nS
χ̃
n 〈∇Λ |h〉 (θn−1)−

n−1∑

k=1

Sχ̃
k (γ̃k+1 〈∇Λ |h〉 (θk)− γ̃k 〈∇Λ | h〉 (θk−1)) .

By the same methods as for the sequence (Wn)n≥1 (i.e. using assumptions on H, Λ and (γn)n≥1),
we obtain that

Zn
a.s.−→

n→∞
Z∞ and sup

n≥1
‖Zn‖1 < +∞.
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Thus we have that

(Vn +Wn + Zn)
− ≤ (Wn + Zn)

− ≤ |Wn + Zn| ∈ L1(P) since sup
n≥1

‖Wn + Zn‖1 < +∞.

As V0 = Λ(θ0) ≤ C(1 + |θ0|) ∈ L1, it follows by induction from (2.14) that, for every n ≥ 0,
EVn < ∞. Hence Sn := Vn + Wn + Zn, n ≥ 0, is a true supermartingale with a L1-bounded
negative part. We then deduce that

Sn
a.s.−→

n→∞
S∞ ∈ L1.

Now Wn
a.s.−→

n→∞
W∞ and Zn

a.s.−→ Z∞ implie Vn
a.s.−→

n→∞
V∞ < +∞ a.s.

Third step : Like in the proof of Theorem 2.1, we have that Bn
a.s.−→

n→∞
B∞ < +∞ which implies

that An
a.s.−→

n→∞
A∞ < +∞. Therefore using the pseudo-mean reverting property (2.19) of h with

respect to ∇Λ, we classically derive that
∑

n≥0

γn+1ν(χ) 〈∇Λ |h〉 (θn) < +∞ a.s. (2.21)

The end of the proof is the same as in the one of Theorem 2.1. �

3 Applications to different types of random innovations

This section is devoted to some first applications of the above theorem. By applications, we mean
here printing out some classes of random innovation processes (Yn)n≥0 for which the averaging rate
assumption (2.5) is naturally satisfied by “large” class Vεn,p.

The simplest setting is the case where (Yn)n≥0 is an i.i.d. sequence (hence trivially satisfying
the averaging assumption (2.3)). In that case we partially retrieve the regular Robbins-Monro
algorithm: then the quasi-mean function is the true mean function of the algorithm, ν is the law of
Y0. However our result is not optimal in terms of assumptions on the sequence of gain parameters.

Then we present a simple framework of stochastic approximation where the noise is additive.
This framework is studied in [5] with some mixing properties on the additive noise, but here we
only need (2.3). We showed in [19] how easily our result applies to real life stochastic optimization
problem (as far as convergence is concerned).

Afterwards we focus on mixing innovations: we consider that the sequence (Yn)n≥0 is a func-
tional of a stationary α-mixing process (satisfying condition on the summability of the mixing
coefficients).

The next application is the case of an homogeneous Markov chain which can be seen as a possible
more elementary counterpart of some (convergence) result obtained e.g. [3]. Some (quasi-optimal)
a.s. rate of convergence can be obtained if H is smooth enough in θ, but to establish a regular CLT
it is most likely that we cannot avoid to deal with the Poisson equation.

3.1 I.i.d. innovations

Let (θn)n≥0 be a stochastic algorithm defined by

θn+1 = θn − γn+1K(θn, Yn+1)
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where (Yn)n≥0 is i.i.d. with distribution ν. Assume that ∀θ ∈ Rd, E [K(θ, Y1)] < ∞. Then, (θn)n≥0

can be represented in the form (2.2) by setting

H(θ, y) = h(θ) =

∫

Rq

K(θ, y)ν(dy)

and
∆Mn+1 = K(θn, Yn+1)− E [K(θn, Yn+1) | Fn] = K(θn, Yn+1)− h(θn).

If we set p = 2, Assumption (2.10) is satisfied (with φ ≡ 1) as soon as

‖K(θ, Y1)‖2 ≤ CK

√
1 + L(θ).

This in turn implies classically that h satisfies (2.9) owing to Schwarz Inequality.
Now, as soon as concerns the averaging properties of (Yn)n≥0, it follows from the L2-law of large

numbers (LLN) (at rate n− 1
2 ) and the law of the iterated logarithm (LLI) at rate O

(√
log logn

n

)

that if one sets εn =
√

log logn
n

, then Vεn,2 = L2(ν).

As a consequence the condition on the step sequence (γn)n≥1 reads

∑

n≥1

γn = +∞,
√

n log log nγn −→
n→∞

0 and
∑

n≥1

√
n log log nmax(γ2n, |∆γn|) < +∞. (3.22)

This condition is clearly more restrictive than the step assumption in the regular Robbins-Monro
Theorem (namely

∑
n≥1 γn = +∞ and

∑
n≥1 γ

2
n < +∞), however any step of the form γn = c

nα ,

c > 0, 3
4 < α ≤ 1 satisfies (3.22).

3.2 Recursive procedure with additive noise

We consider here the case where the function H is the sum of the mean function h and a noise,
namely

∀θ ∈ R
d, ∀y ∈ R

q, H(θ, y) = h(θ) + y, and ∆Mn+1 ≡ 0.

In this framework, the Lyapunov assumption (2.7) becomes classical involving only the mean func-
tion h, namely

∀θ ∈ R
d \ {θ∗} 〈∇L(θ) | h(θ)〉 > 0.

Likewise, the growth control assumption (2.9) amounts to

∀θ ∈ R
d, |h(θ)| ≤ Ch

√
1 + L(θ),

provided the moment assumption supn ‖Yn‖ p
p−1

< +∞, for some p ∈ (1,∞], is satisfied (take

φ(y) := |y| ∨ 1). The martingale is vanishing in this example. Finally the step assumption (2.11)
is ruled by the averaging rate of the sequence (Yn)n≥0.
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3.3 Functional of an α-mixing process

Here we provide a short background on α-mixing processes and their functionals. Our motiva-
tion here is to relax as much as possible our assumption on (Yn)n≥0 in order to apply stochastic
approximation methods to exogenous data (e.g. from financial markets).

We aim now at applying our convergence theorem to input sequences (Yn)n≥0 which are (causal)
functionals of an α-mixing process.

Consider a stationary Rq-valued process X = (Xk)k∈Z with the associated filtration Fn =
FX
n := σ(Xk; k ≤ n) and Gn = GX

n := σ(Xk; k ≥ n). The α-mixing coefficients are defined as
follows

αn = sup {|P(U ∩ V )− P(U)P(V )| | U ∈ Fk, V ∈ Gk+n, k ≥ 0} . (3.23)

Let f be a measurable mapping from (Rq)Z to Rq. Let (Yk)k∈Z be a causal functional of the process
X, i.e.

∀n ∈ Z, Yn := f(· · · ,Xn−1,Xn).

Then (Yn)n≥0 is a stationnary process with marginal distribution ν = L(Y0). For notational
convenience, we also set ∀n ∈ Z, Zn := H(θ∗, Yn).

Proposition 3.1. Assume that H(θ∗, ·) ∈ L2+δ(ν), δ > 0 and one of the following assumption

1. for all n ∈ Z, Yn := f(· · · ,Xn−1,Xn) and X is a stationary α-mixing process satisfying the
following condition

∞∑

k=1

√
α

δ
2+δ

k

k
< ∞. (3.24)

2. Yn = Xn for all n ≥ 0 and X is a stationary α-mixing process satisfying the condition

∑

k≥0

α
δ

2+δ

k < +∞. (3.25)

Then

H(θ∗, ·) ∈ Vεn,2 with εn = n−β for every β ∈
[
0,

1

2

)
. (3.26)

Remark. Condition (3.25) is clearly satisfied as soon as the underlying process X is geometrically
α-mixing.

The proof of Proposition 3.1 relies on the Gàl-Koksma Theorem (see [10]) stated and proved in
a probabilistic setting in [1].

Theorem 3.1. (Gàl-Koksma’s Theorem) Let (Ω,F ,P) be a probability space and let (Zn)n≥1 be a
sequence of random variables belonging to Lp, p ≥ 1, satisfying

E |ZM+1 + ZM+2 + · · ·+ ZM+N |p = O(Ψ(n))

uniformly in M where Ψ(N)
N

, N ≥ 1, is a non-decreasing sequence. Then for every ǫ > 0,

Z1(ω) + Z2(ω) + · · · + ZN (ω) = o
(
(Ψ(N)(log(N))p+1+ǫ)

1
p

)
P(dω)-a.s.
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Remark. The conditions on X and Z come from a relsult established by Dedecker, Merlevède
and Volný in [6] : by setting P0(Zk) := E [Zk | F0]− E [Zk | F−1], if

∑

k∈Z
‖P0(Zk)‖2 < +∞ (3.27)

then ∑

k∈Z
|Cov(Z0, Zk)| < +∞.

Moreover Peligrad and Utev show in [26] that condition (3.27) is satisfied as soon as

∞∑

k=1

1√
k
‖E [Z0 | Gk]‖2 < +∞. (3.28)

Proof of Proposition 3.1. 1. By the ergodic theorem, we have

1

n

n−1∑

k=0

H(θ∗, Yk) −→
n→∞

∫

Rq

H(θ∗, y)ν(dy) = 0. (3.29)

We simply wish to obtain an estimation of the a.s. convergence rate in (3.29). To this end, we
rely on Gal-Koksma’s Theorem (see Theorem 3.1). We are going to evaluate Eν |Z0 + · · ·+ Zn−1|2.
Elementary computations lead to

Eν |Z0 + · · · + Zn−1|2 = nEνZ
2
0 +2

n−1∑

k=1

k∑

j=1

Eν [ZjZ0] = nEνZ
2
0 +2

n−1∑

k=1

SZ
k = n

(
EνZ

2
0 +

2

n

n−1∑

k=1

SZ
k

)

where SZ
k =

∑k
j=1Eν [ZjZ0].

To establish that SZ
n converges, we must establish that (3.28) holds.

Set B2(Gk) := {W ∈ Gk : ‖W‖2 ≤ 1}. Then

‖E (Z0 | Gn)‖2 = sup
W∈B2(Gk)

E (WZ0) ≤ 8α
1
r

k ‖H(θ∗, Y0)‖p

owing to the classical covariance inequality for α-mixing process (see [7]) with 1
r
+ 1

p
= 1

2 , r, p > 2.

As H(θ∗, ·) ∈ L2+δ(ν), δ > 0, we may set p = 2 + δ, and r = 2(2+δ)
δ

. As a consequence

∞∑

k=1

1√
k
‖E (Z0 | Gk)‖2 < +∞,

which implies (through (3.27)) that SZ
k converges.

Now, by Cesaro’s Lemma we have

Eν |Z0 + · · ·+ Zn−1|2 = O(n).
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Thus, by Gal-Koksma’s Theorem, for all ǫ > 0,

Z0 + · · ·+ Zn−1 = o
(√

n (lnn)
3
2
+ǫ
)

Pν-a.s.,

and as a result,

nβ

(
1

n

n−1∑

k=0

H(θ∗, Yk)−
∫

H(θ∗, y)ν(dy)

)
a.s.−→

n→∞
0, for every β ∈

[
0,

1

2

)
.

So we obtain

H(θ∗, ·) ∈ Vεn,2, with εn = n−β for a β ∈
[
0,

1

2

)
. (3.30)

2. If we assume that Yn = Xn for all n ≥ 0, then we can directly use the covariance inequality for
α-mixing process

|Eν [H(θ∗, Yj)H(θ∗, Y0)]| = |Covν (H(θ∗, Yj),H(θ∗, Y0))| ≤ 8α
1
r

j ‖H(θ∗, Y0)‖p ‖H(θ∗, Y0)‖q ,

where 1
r
+ 1

p
+ 1

q
= 1. By symmetry, we take p = q > 2 and we get

|Eν [H(θ∗, Yj)H(θ∗, Y0)]| ≤ 8α
1− 2

p

j ‖H(θ∗, Y0)‖2p .

As H(θ∗, ·) ∈ L2+δ, δ > 0, we set p = 2 + δ and we obtain α
1− 2

2+δ

j = α
δ

2+δ

j . Then the condition
(3.24) can be replace by the less stringent (3.25) called Ibragimov’s condition. The rest of the proof
is the same as in 1. �

3.4 Homogeneous Markov chain

Assume that the innovation process (Yn)n≥0 is an Rq-valued homogeneous Markov chain which
transition is (P (y, dx))y∈Rd . Let FY

n = σ(Y0, . . . , Yn), n ≥ 0, the natural filtratiron of the chain.
We use Pµ and Eµ to denote the distribution and the expectation conditional of (Yn)n≥0 starting
at Y0 with distribution µ. When µ = δy we will use Py and Ey.

3.4.1 Application of the convergence theorem

The associated recursive procedure reads

θn+1 = θn − γn+1K(θn, Yn+1), n ≥ 0,

whereK(θ, y) := E [K(θ, Y1) | Y0 = y] and ∆Mn+1 := K(θn, Yn+1)−E [K(θn, Yn+1) | Fn] = K(θn, Yn+1)−
H(θn, Yn).

The growth assumption is required here on the function K, namely

∀θ ∈ R
d, ∀y ∈ R

q, |K(θ, y)| ≤ CK φ̃(y)
√

1 + L(θ)

with supn

∥∥∥φ̃(Yn)
∥∥∥

p
p−1

< +∞ and the Lyapunov assumption (2.7) is on H.
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Remark. In this setting, the function φ of the convergence theorem is then
∣∣∣φ̃
∣∣∣∨
∣∣∣Pφ̃

∣∣∣ or
∣∣∣φ̃
∣∣∣∨P

∣∣∣φ̃
∣∣∣

or
∣∣∣φ̃
∣∣∣+ P

∣∣∣φ̃
∣∣∣ and we only need the above assumption on φ̃.

3.4.2 Ergodic framework description

We will say it is ν-ergodic if for every bounded Borel function f : Rq → R,

Pµ-a.s.
1

n

n−1∑

k=0

f(Yk) −→
n→∞

∫

Rq

fdν. (3.31)

Remark. As soon as the transition (P (y, dx))y∈Rq of (Yn)n is Feller, ν is an invariant distribution
of the chain, i.e. νP = ν.

If this property holds, ν is necessarily invariant for P . As a consequence the whole sequence
(Yn)n≥0 is stationary under Pν . Furthermore if (3.31) holds, the chain is ergodic under Pν for the
shift operator Θ, i.e., for every functional F : (RN,Bor(RN)) → R, f ∈ Lr(ν),

1

n

n∑

k=1

F ◦Θk −→
n→∞

Eν(F ) Pν-a.s. and in Lr(ν).

Typically, if ν is an extremal invariant distribution for P then the chain is ergodic under Pν so
it is of course the case if ν is unique. Birkhoff’s theorem shows that

V0+,p(Pν) = Lp(ν).

Proposition 3.2. If (Yn)n≥0 is Pν-ergodic and ν(dy) ∼ P (x, dy) for every x ∈ Rq, then for every
sequence (εn)n≥0 such that εn → 0,

∀y ∈ R
q, Vεn,p(Py) = Vεn,p(Pν).

Proof. (a) The a.s. rate. For every f ∈ Lp(ν), Py(Af ) = Ey(1Af
), where

Af := {ω :
1

n

n−1∑

k=0

f(Yk(ω))−
∫

fdν = O(εn)},

since the convergence of a mean does not depend on the first terms. If Θ denotes the shift operator
on the canonical space of the chain (Yn)n≥0, Af clearly satisfies Af = Θ−1(Af ) i.e. 1Af

= 1Af
◦Θ.

Therefore
Ey(1Af

) = Ey(1Af
◦Θ) = Ey(EY0(1Af

)) = Ey(PY0(Af )).

Suppose f ∈ Vεn,p(Pν). By assumption Pν(Af ) = 1. Let x ∈ Rq. Then

Pν(Af ) =

∫
ν(dz)Pz(Af ) = 1 so ν(dy)-a.s. Py(Af ) = 1.

Now ν(dy) ∼ P (x, dy) implies
∫
P (x, dy)Py(Af ) = 1, i.e. Py(Af ) = 1.
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(b) The Lp-rate. For every f ∈ Lp(ν), we set

Bf :=



x :

∥∥∥∥∥
1

n

n−1∑

k=0

f(Yk(ω))−
∫

fdν

∥∥∥∥∥
Lp(Px)

= O(εn)



 .

We define ϕn(x) :=
∥∥∥ 1
n

∑n−1
k=0 f(Yk(ω))−

∫
fdν

∥∥∥
Lp(Px)

, then we have that
∫
ν(dy)φp

n(y) = O(εpn).

Consequently

ϕn(x) ≤
∣∣f(x)−

∫
fdν

∣∣
n

+

(
1− 1

n

)(
Ex

∣∣∣∣∣
1

n− 1

n−1∑

k=1

f(Yk)−
∫

fdν

∣∣∣∣∣

p) 1
p

=

∣∣f(x)−
∫
fdν

∣∣
n

+

(
1− 1

n

)(
Ex

[
E

(∣∣∣∣∣
1

n− 1

n−1∑

k=1

f(Yk)−
∫

fdν

∣∣∣∣∣

p

| F1

)]) 1
p

=

∣∣f(x)−
∫
fdν

∣∣
n

+

(
1− 1

n

)
(Exϕn−1(Y1)

p)
1
p .

Set P (x, dy) = g(x, y)ν(dy). Then

Exϕn−1(Y1)
p =

∫
ϕn−1(y)

pP (x, dy)

=

∫
ϕn−1(y)

pg(x, y)ν(dy)

≤ ‖g(x, ·)‖Lr(ν)

(∫
ϕn−1(y)

psν(dy)

) 1
s

where
1

r
+

1

s
= 1

≤ ‖g(x, ·)‖Lr(ν) O(εpn)
1
s .

Therefore

ϕn(x) ≤
c

n
+

(
1− 1

n

)
‖g(x, ·)‖ s

s−1
O(ε

p
s
n ), s ≥ 1. �

Comments. By contrast with the approach of [3], we do not need to solve the Poisson equation
related to the pseudo-transition Πθ(x, dy) of the algorithm. This pseudo-transition is defined by

Πθn(x, dy) = P (Yn+1 ∈ dy | Fn) .

Indeed, they assume there exists a function vθ := v(θ, ·) solution to

Id−Πθvθ = H(θ, ·)− h(θ) (3.32)

(Assumption (H4) in [3] page 220). The target θ∗ is then a zero of the mean function h (not
canonically defined at this stage in [3]). In our setting, Πθ(x, dy) = P (x, dy) since the dynamics of
Yn does not depend upon θ, so that Condition (3.32) reads

v(θ, x)−
∫

v(θ, y)P (x, dy) = H(θ, x)− h(θ),
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where the mean function is naturally defined in our setting by

h(θ) =

∫
H(θ, x)ν(dx),

ν is the unique invariant probability measure for P . Then the family of Poisson’s equations (indexed
by the parameter θ) reads

v(θ, x)− Pv(θ, x) = H(θ, x)− h(θ).

A formal solution is given by

v(θ, x) =
∑

k≥0

P k (H(θ, ·)− h(θ)) (x).

4 Application to quasi-stochastic approximation

This section is devoted to quasi-random innovations introduced in [18] and we generalize their result
to multi-dimensional setting when the function H is not bounded. We first recall some definitions
and properties of such sequences and apply Theorem 2.1 when H has bounded variation (in the
sense of Hardy & Krause see [24]) thanks to Koksma-Hlawka inequality and when H is Lipschitz
with Proinov Theorem (see [27]).

4.1 Definitions and characterizations

Definition 4.1. A [0, 1]q-valued sequence (ξn)n≥1 is uniformly distributed (u.d.) on [0, 1]q if

1

n

n∑

k=1

δξk
(Rq)
=⇒ U([0, 1]q) as n → ∞.

The proposition below provides a characterization of uniform distribution.

Proposition 4.1. Let (ξn)n≥1 be a [0, 1]q-valued sequence. Then (ξn)n≥1 is uniformly distributed
on [0, 1]q if and only if

D∗
n(ξ) := sup

x∈[0,1]q

∣∣∣∣∣
1

n

n∑

k=1

1J0,xK(ξk)−
q∏

i=1

xi

∣∣∣∣∣ −→ 0 as n → ∞,

where D∗
n(ξ) is called the discrepancy at the origin or star discrepancy.

4.2 Application of the convergence theorem

We set here Yn = ξn+1, Fn = {∅,Ω}, n ≥ 0, and ∆Mn+1 ≡ 0. We need the strong Lyapunov
condition on H and notice that the function φ becomes useless because we place in the case p = 1
and p

p−1 = ∞. To apply the convergence theorem, we need to check the assumption of the class of
functions Vεn,1. We then use two main results which give us two cases of applications which depend
on the regularity of the quasi-mean function H.
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⊲ The finite variation case Assume that u 7→ H(θ∗, u) has finite variation (in the measure
sense or in the Hardy and Krause sense). The Koksma-Hlawka Inequality provides an error bound
for the empirical mean 1

n

∑n
k=1H(θ∗, ξk) as estimator of E [H(θ∗, U1)].

Proposition 4.2. (Koksma-Hlawka Inequality) Let ξ = (ξ1, . . . , ξn) be an n-tuple of [0, 1]q-valued
vectors and let f be a function with finite variation. Then

∣∣∣∣∣
1

n

n∑

k=1

f(ξk)−
∫

[0,1]q
f(u)λq(du)

∣∣∣∣∣ ≤ V (f)D∗
n(ξ).

Consequently, the class of functions for the ergodicity assumption becomes

V = {f : [0, 1]q → R s.t. V (f) < +∞} ⊂ Vεn,1 with εn =
(log n)q

n

and assume that

∀θ ∈ R
d, H(θ, ·) ∈ V and ℓn := max

1≤k≤n
k (D∗

k(ξ)) = O((log n)q).

The assumptions on the sequence of gain parameters then become

∑

n≥1

γn = +∞, γn(log n)
q → 0,

∑

k≥1

max(|∆γn+1| , γ2n)(log n)q < +∞.

Remark. The choise of γn := c
nρ ,

1
2 < ρ ≤ 1 satisfies the assumptions (like in i.i.d. setting).

⊲ The Lipschitz case If q ≥ 2 it is difficult to check that f ∈ V and these functions become
“rare” as q increases. If we assume the more natural regularity assumption u 7→ H(θ∗, u) is Lipschitz
continuous, the following theorem due to Proinov (see [27]) provides another error bound depending
on the continuity modulus of the function.

Theorem 4.1. (Proinov) Assume Rq is equipped with the ℓ∞-norm (|x|∞ := max1≤i≤q |xi|, x =
(x1, . . . , xq) ∈ Rq). Let (ξ1, . . . , ξn) ∈ ([0, 1]q)⊗n. For every continuous function f : [0, 1]q → R,

∣∣∣∣∣
1

n

n∑

k=1

f (ξk)−
∫

[0,1]q
f(u)λq(du)

∣∣∣∣∣ ≤ Cqwf

(
D∗

n (ξ1, . . . , ξn)
1
q

)

where
wf (δ) := sup

x,y∈[0,1]q,|x−y|∞≤δ

|f(x)− f(y)| , δ ∈ (0, 1),

is the uniform continuity modulus of f (with respect to the ℓ∞-norm) and Cq ∈ (0,∞) is a universal
constant only depending on q.

If q = 1, Cq = 1 and if q ≥ 2, Cq ∈ [1, 4].
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Then we have

H(θ∗, ·) ∈ Vεn,1 with εn =
log n

n
1
q

.

In this case, (γn)n≥1 be a non-increasing sequence of gain parameters satisfying

∑

n≥1

γn = +∞, γn(log n)n
1− 1

q → 0, and
∑

k≥1

max(|∆γn+1| , γ2n)(log n)n1− 1
q < +∞.

Remark. The choise of γn := c
n
is always acceptable (γn = cn−ρ, 1− 1

q
< ρ ≤ 1).

5 Numerical examples

This section is devoted to several examples (notably in Finance) of application of convergence
theorems in the different framework developed Section 3 and 4. They are divided in two parts:
the first one concerns the generated innovations and the second one the applications on real data.
Primarily we present an implicit parameter search, i.e. a procedure to look for the value that
reaches some threshold of the mean function with i.i.d. and uniformly distributed sequences.
Then we develop some stochastic gradient procedures with a companion procedure to compute risk
measures (see [2]) and minimization of potential associated to a diffusion by using some result on
the computation of the invariant distribution (see [14] and [20]). Next we consider an example
introduced in learning automata, the so-called two-armed bandit, which recursive procedure was
studied in [17] and [30]. Finally we examine a problem of optimal allocation (see [19]) which is
implemented on real data.

5.1 Application to implicit correlation search

One considers a 2-dimensional Black-Sholes toy model i.e. Xt
0 = ert (riskless asset) and

Xi
t = xi0e

(r−σ2
i
2
)t+σiW

i
t , xi0 > 0, i = 1, 2,

for the two risky assets where
〈
W 1,W 2

〉
t
= ρt, ρ ∈ [−1, 1] denotes the correlation between W 1 and

W 2 (that is the correlation between the yields of the risky assets X1 and X2). In this market, we
consider a best-of call option characterized by its payoff

(
max

(
X1

T ,X
2
T

)
−K

)
+
.

A market of such best-of calls is a market of the correlation ρ (the respective volatilities being
obtained from the markets of vanilla options on each asset as implicit volatilities). In this 2-
dimensional Black-Scholes setting there is a closed formula for the premium involving the bi-variate
standard normal distribution, but what follows can be applied as soon as the asset dynamics or
their time discretization can be simulated.

We will use a stochastic recursive procedure to solve the inverse problem in ρ

PBoC(x
1
0, x

2
0,K, σ1, σ2, r, ρ, T ) = Pmarket

0 [MtM premium]
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where

PBoC (x
1
0, x

2
0,K, σ1, σ2, r, ρ, T ) := e−rT

E

[(
max

(
X1

T ,X
2
T

)
−K

)
+

]

= e−rT
E

[(
max

(
x10e

µ1T+σ1

√
TZ1

, x20e
µ2T+σ2

√
TZ2
)
−K

)
+

]

where µi = r − σ2
i

2 , i = 1, 2, Z = (Z1, Z2)
d
= N (0, I2).

We assume from now on that this equation (in ρ) has at least one solution, say ρ∗. Once again,
this is a toy example since in this very setting, some more efficient (and deterministic) procedures
could be called upon, based on the closed form for the option. On the other hand, what we propose
below is a universal approach.

The most convenient way to prevent edge effects due to the fact that ρ ∈ [−1, 1] is to use a
trigonometric parametrization of the correlation by setting ρ = cos θ, θ ∈ R. This introduces an
over-parametrization (inside [0, 2π]) since θ and π− θ yield the same solution, but this is not at all
a significant problem for practical implementation (a careful examination shows that in fact one
equilibrium is repulsive and one is attractive). From now on, for convenience, we will just mention
the dependence of the premium function in the variable θ,, namely

θ 7−→ P (θ) := PBoC(x
1
0, x

2
0,K, σ1, σ2, r, cos(θ), T ).

The function P is a 2π-periodic continuous function. Extracting the implicit correlation from the
market amounts to solving

P (θ) = Pmarket
0 (avec ρ = cos θ)

where Pmarket
0 is the quoted premium of the option (mark-to-market). We need an additional

assumption (which is in fact necessary with any procedure): we assume that

Pmarket
0 ∈ (min

θ
P,max

θ
P )

i.e. that Pmarket
0 is not an extremal value of P .

It is natural to set for every θ ∈ R and every z = (z1, z2) ∈ R2

H(θ, z) = e−rT
(
max

(
x10e

µ1T+σ1

√
Tz1 , x20e

µ2T+σ2

√
T (z1 cos θ+z2 sin θ)

)
−K

)
+
− Pmarket

0

and to define the recursive procedure

θn+1 = θn − γn+1H(θn, Zn+1) where (Zn)n≥1
L∼ N (0, I2)

and the gain parameter sequence satisfies (2.11). For every z ∈ R2, θ 7−→ H(θ, z) is continuous
and 2π-periodic. One derives that the mean function h(θ) := EH(θ, Z1) = P (θ) − Pmarket

0 and
θ 7−→ E(H2(θ, Z1)) are both continuous and 2π-periodic as well (hence bounded).

The main difficulty to apply Theorem 2.1 is to find out the appropriate Lyapunov function.
The quoted value Pmarket

0 is not an extremum of the function P , hence
∫ 2π
0 h±(θ)dθ > 0 where

h± := max(±h, 0). We consider θ0 any (fixed) solution to the equation h(θ) = 0 and two real
numbers β± such that

0 < β+ <

∫ 2π
0 h+(θ)dθ∫ 2π
0 h−(θ)dθ

< β−
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and we set

g(θ) :=

{
1{h>0}(θ) + β+1{h<0}(θ) si θ ≥ θ0
1{h>0}(θ) + β−1{h<0}(θ) si θ < θ0.

The function
θ 7−→ g(θ)h(θ) = h+ − β±h−

is continuous and 2π-periodic on (θ0,∞) and 2π-periodic (sic) on (−∞, θ0). Furthermore gh(θ) = 0
iff h(θ) = 0 so that gh(θ0) = gh(θ0−) = 0 which ensures on the way the continuity of gh on the
whole real line. Furthermore

∫ 2π

0
gh(θ)dθ > 0 et

∫ 0

−2π
gh(θ)dθ < 0

so that, on the one hand,

lim
θ→±∞

∫ θ

0
gh(u)du = +∞

and, on the other hand, there exists a real constant C > 0 such that the function

L(θ) =

∫ θ

0
gh(u)du + C

is nonnegative. Its derivative is given by L′ = gh so that L′h = gh2 ≥ 0 and {L′h = 0} = {h = 0}.
It remains to prove that L′ is Lipschitz continuous. Calling upon the usual arguments, one shows
that the function

∂P

∂θ
(θ) = σ2

√
TE

(
1{X2

T
>max(X1

T
,K)}X

2
T (cos(θ)Z

2 − sin(θ)Z1)
)

is a continuous 2π-periodic function, hence bounded. Consequently h and h± are Lipschitz contin-
uous which implies in turn that L′ = gh is Lipschitz as well.

Moreover, one can show that the equation P (θ) = Pmarket
0 market has finitely many solutions

on every interval of length 2π. One may apply Theorem 2.1 to derive that θn will converge toward
a solution θ∗ of the equation P (θ) = Pmarket

0 .

Numerical experiment. We set the model parameters to the following values

x10 = x20 = 100, r = 0.10, σ1 = σ2 = 0.30, ρ = −0.50

and the payoff parameters
T = 1, K = 100.

The implicit correlation search recursive procedure is implemented with a sequence of some
quasi-random normal numbers, namely

(ζ1n, ζ
2
n) =

(√
−2 log (ξ1n) sin

(
2πξ2n

)
,
√

−2 log (ξ1n) cos
(
2πξ2n

))
,

where ξn = (ξ1n, ξ
2
n), n ≥ 1, is simply a regular 2-dimensional Halton sequence.

The reference Black-Scholes price 30.75 is used as a market price so that the target of the
stochastic algorithm is θ∗ ∈ arccos(−0.5). The stochastic approximation procedure parameters are

θ0 = 0, n = 105.

The choice of θ0 is blind on purpose. Finally we set γn = 8
n
. No re-scaling of the procedure has

been made in the below example.
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Figure 1: B-S Best-of-Call option. T = 1, r = 0.10, σ1 = σ2 = 0.30, x10 = x20 = 100, K = 100. Left:
convergence of θn toward a θ∗. (up to n = 10000). Right: convergence of ρn := cos(θn) toward -0.5

5.2 Computation of the VaR-CVaR

Another example of application is the recursive computation of financial risk measure which are
the best known and the most common: the Value-at-Risk (VaR) and the Conditional Value-at-Risk
(CVaR). This risk measures evaluate the extreme losses of a portfolio potentially faced by traders.
The recursive computation of the VaR and the CVaR was introduced in [2] based on the formulation
as an optimization problem (see [29]) with unconstrained importance sampling developed in [21].
We only present in this section the companion recursive procedure to compute these risk measures
without any variance reduction techniques.

5.2.1 Definitions and formulation

Let Y : (Ω, A,P) → R be a random variable representative of a loss (i.e. Y ≥ 0 stands for a loss
equal to Y ).

Definition 5.1. The Value at Risk (at level α ∈ (0, 1)) of a given portfolio is the (lowest) α-quantile
of the distribution Y i.e.

V aRα(Y ) := inf {θ |P(Y ≤ θ) ≥ α} .

As soon as the distribution function of Y has no atom, the value at risk satisfies P (Y ≤
V aRα(Y )) = α and if the distribution function FY of Y is also increasing (strictly) then, it is the
unique solution. As this risk measure is not consistent (see [9]), another consistent risk measure
is provided by the Conditional value at Risk when Y ∈ L1(P) with a continuous distribution (no
atom).

Definition 5.2. Let Y ∈ L1(P) with an atomless distribution. The Conditional value at Risk (at
level α) is the conditional expectation of the portofolio losses Y above the V aRα(Y ), i.e.

CV aRα(Y ) := E [Y |Y ≥ V aRα(Y )] .
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The following formulation of the V aRα(Y ) and CV aRα(Y ) as solutions to an optimization
problem is due to Rockafellar and Uryasev in [29].

Proposition 5.1. (Rockafellar and Uryasev) Let Y ∈ L1(P) with an atomless distribution. The
function L : θ 7→ θ + 1

1−α
E (Y − θ)+ is convex, and

CV aRα(Y ) = min
θ

(
θ +

1

1− α
E (Y − θ)+

)
with V aRα(Y ) = inf argmin

θ

(
θ +

1

1− α
E(Y − θ)+

)
.

5.2.2 Stochastic gradient for the computation of the V aRα(Y )

This suggests to implement a stochastic gradient descent derived from the above Lyapunov function
L(θ) = θ + 1

1−α
E(Y − θ)+. Assume that Y ∈ L1(P) and that the distribution of Y has a bounded

density function fY . Then, we set

H(θ, y) := 1− 1

1− α
1{y≥θ}

so that L′(θ) = E[H(θ, Y )] and devise the stochastic gradient descent

θn+1 = θn − γn+1H(θn, Yn+1), n ≥ 0, θ0 ∈ L1(P).

The function L to be minimized satisfies

lim
θ→+∞

L(θ)

θ
= 1 and lim

θ→+∞
L(−θ)

θ
=

α

1− α
hence lim

θ→±∞
L(θ) = +∞.

Now, the derivative L′(θ) = 1− 1
1−α

P(Y > θ) satisfies a Lipschitz property, namely

∣∣L′(θ′)− L′(θ)
∣∣ ≤ 1

1− α
P(θ ∧ θ′ ≤ Y ≤ θ ∨ θ′) ≤ ‖fY ‖∞

1− α

∣∣θ′ − θ
∣∣ .

Finally it is clear that

|H(θ, y)| ≤ 1 ∨ α

1− α
.

So one may apply Theorem 2.1 to conclude that

θn
a.s.−→

n→∞
θ∗ = V aRα(Y ).

5.2.3 Computation of the CV aRα(Y )

The idea to compute the CV aRα(Y ) is to devise a companion procedure of the above stochastic
gradient by setting

ζn+1 = ζn − 1

n+ 1
(ζn −K(θn, Yn+1)) , n ≥ 0, ζ0 = 0

where

K(θ, y) := θ +
(y − θ)+
1− α

.

By rewriting this procedure, one shows that, for every n ≥ 0, (n + 1)ζn+1 = nζn + K(θn, Yn+1).
Martingale argument and Kronecker Lemma imply that

ζn
a.s.−→

n→∞
CV aRα(Y ).

VaR and CVaR are linked to rare events when α → 1, in practice one must add an eventually
adaptive importance sampling procedure which is detailed in [2].
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5.3 Minimization of integral with respect to the invariant measure of a diffusion.

This example present the case of Markov innovations. To describe the class of functions Vεn,p,
we use some results on computation of invariant measure of a diffusion developed in [14] and [20]
which lead to assumptions on the coefficients of the diffusion and on the regularity of the solution
of Poisson equation.

5.3.1 Computation of the invariant distribution of a diffusion

We consider a stochastic recursive algorithm for the computation of the invariant distribution ν
introduced in [14] of a Brownian diffusion process

dYt = b(Yt)dt+ σ(Yt)dWt (5.33)

where b : Rq → Rq is a continuous vector field, σ is continuous on Rq with values in the set M(q×d)
of matrices with q rows and d columns, and W is a d-dimensional Brownian motion. We denote by
A the infinitesimal generator associated to this diffusion.

First, we compute the Euler discretization of (5.33) with a step γn vanishing to 0, i.e.

∀n ∈ N, Ȳn+1 = Ȳn + γn+1b(Ȳn) +
√
γn+1σ(Ȳn)Un+1, (5.34)

where Ȳ0 ∈ L0
Rq(Ω,A,P) and (Un)n≥1 is Rd-valued normalised white noise defined on a probability

space (Ω,A,P), independent of Ȳ0. The step sequence γ := (γn)n≥1 satisfies the conditions

∀n ≥ 1, γn ≥ 0, lim
n→∞

γn = 0, and lim
n→∞

Γn = lim
n→∞

n∑

k=1

γk = +∞. (5.35)

Let δy denote the Dirac mass at y. For every n ≥ 1 and every ω ∈ Ω, set

νn(ω, dy) :=
1

n

n−1∑

k=0

δȲk(ω)
(5.36)

and use νn(ω, f) to approximate ν(f) which can be compute recursively.

Definition 5.3. (Strong condition of stability) A diffusion with generator A satisfies a strong
condition of stability if it exists a function V ∈ C2(Rq, [1,+∞[) such that

1. lim|y|→+∞ V (y) = +∞,

2. ∃α > 0, β > 0 s.t. AV ≤ −α(Id ◦ V ) + β.

Remark. We will denote that the generatorA satisfies a strong condtion of stability of type (V, α).

We assume that b and σ are continuous and the diffusion (Yt)t≥0 satisfies a strong condition of
stability of type (V, α) with V sub-quadratic et that it exists a unique invariant measure ν. Besides
the coefficients b and σ satisfy |b|2 +Tr(σσt) = O(V ). Then the Euler scheme (Ȳn)n≥0 defined by
(5.34) satisfies a strong condition of stability of type (W,n0) where W is a function depending on
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V and on the moments of U1.

Assume that the function f defined on Rq admits a solution φ to the the Poisson equation

Aφ = −(f − ν(f)), (5.37)

sufficiently regular, i.e. belonging to the set

Ep,W :=

{
φ ∈ Cp(Rq,R), ∀j ∈ {0, . . . , p}, ∀y ∈ R

q,
∣∣Djφ(y)

∣∣2 = o

(
W (y)

V j(y)

)}

and satisfying Dpφ Lipschitz.

Proposition 5.2. Let p ≥ 2 such that U1 ∈ L2(p+1) and φ ∈ Ep,W solution to Poisson equation
(5.37) with compact support such that Dpφ is Lipschitz. If (vn)n≥1 is a positive real sequence such
that ( vn

nγn
)n≥1 decreases to 0 and that

∑

n≥1

vn
n

∣∣∣∣∆
1

γn

∣∣∣∣ < +∞,
∑

n≥1

(vn
n

)2 1

γn
< +∞, and lim

n

vn
n

n∑

k=1

γ
p−1
2

k = 0,

then f ∈ V
v−1
n ,2.

Remark. This proposition is based on the Proposition V.4 in [20].

5.3.2 Application to the minimization of a potential

We consider the following sequence of gain parameters

∀n ≥ 1, γn := cn− 1
3 , with c > 0,

then (see [14])

a.s.
1

n

n−1∑

k=0

δȲk

(Rq)
=⇒ ν and n

1
3

(
1

n

n−1∑

k=0

f(Ȳk)− ν(f)

)
L−→ N (m,Σ2

c),

where Σc ∈ Gℓ(d,R) ∩ S+(d,R). Assume that

1. ∀y ∈ Rq, θ 7→ K(θ, y) is convex,

2. ∀θ ∈ Rd, K(θ, ·) ∈ L1(ν),

3. ∀θ ∈ Rd, ∇θK(θ, y) exists ν(dy)-a.s.,

4. ∀θ, θ′ ∈ Rd, |K(θ, y)−K(θ′, y)| ≤ gθ(y).

Then

min
θ∈Rd

∫

Rq

K(θ, y)ν(dy) ⇐⇒
∫

Rq

∇θK(θ, y)ν(dy) = 0,

consequently we devise the following recursive zero search procedure, also called stochastic gradient,

∀n ≥ 0, θn+1 = θn − γ̃n+1∇θK(θn, Ȳn),

and we can apply Theorem 2.1 to prove its convergence towards the target θ∗.
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Numerical example. We consider a long-term investment project (see the example in [22])
which yields payoff at a rate that depends on the installed capacity level an on the value of an
underlying state process modeled with an ergodic diffusion. The state process Y can represent
an economic indicator such the asset demand or its discounted price. The aim is to determine
the capacity expansion strategy that maximizes the long-term average payoff resulting from the
project operation. So it is an ergodic control problem applying in a microeconomic framework.
In [22] the authors show that this dynamical optimization problem is asymptotically equivalent to
a static optimization problem only involving the stationary distribution ν of Y and the running
payoff function K. We refer to [22] for further details.

We consider the following running payoff function

∀θ ∈ R+,∀y ∈ R, K(θ, y) = yαθβ − cθ,

where α, β ∈ (0, 1) and c ∈ (0,∞). The term yαθβ can be identified with the so-called Cobb-
Douglas production function, while the term cθ provides a measure for the cost of capital use. The
mean function of the associated recursive procedure then reads

∀θ ∈ R, k(θ) := βsign(θ) |θ|β
∫

R

yαν(dy)− cθ,

where we have extended the function on the whole-real line and we have chosen this form to avoid
the explosion at zero. Consequently the associated stochastic gradient procedure to maximize the
payoff is given by

∀n ≥ 0, θn+1 = θn + γ̃n+1

(
βsign(θn) |θn|β Ȳ α

n − cθn

)
.

The choice and the extension of the functions k introduces two more equilibrium points: 0 and
−θ∗. The literature on traps in Stochastic Approximation does not apply straightforwardly in our
setting, but 0 is a repulsive point (because the derivative is infinite at this point) and one checks on
simulations that it is never a target for the procedure. On the other hand −θ∗ is a possible target
but induces no difficulty.

In [22] the dynamic of the underlying state process is modeled by the one-dimensional CIR
diffusion, namely

dYt = κ (ϑ− Yt) dt+ σ
√

YtdWt (5.38)

where κ, ϑ, σ > 0 are constants satisfying 2κϑ > σ2. The invariant distribution of Y is a Gamma
law which density is given by

ν(dy) =
1

Γ
(
2κϑ
σ2

)y
2κϑ
σ2 −1 exp

(
2κ

σ2

[
ϑ ln

(
2κ

σ2
− y

)])
1{y≥0},

where Γ is the gamma function. Thus we can compute the previous integral, namely

∫

R

yαν(dy) =
Γ
(
2κϑ
σ2 + α

)

Γ
(
2κϑ
σ2

)
(
σ2

2κ

)α

,

so we have a closed form for θ∗ given by

θ∗ =

(
βΓ
(
2κϑ
σ2 + α

)

cΓ
(
2κϑ
σ2

)
(
σ2

2κ

)α
) 1

1−β

.
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Figure 2: Convergence towards the optimal capacity level of the investment project : κ = 1, ϑ = 1,
σ = 1.5, α = 0.8, β = 0.7, c = 0.5, n = 105.

If one considers a basket of assets modeled by a Wishart process (see [4] and [11]), a similar
long-term ergodic control process can be devised. Closed forms are no longer available for the
static optimization problem. However, our numerical approach can be extended straightforwardly
(provided one has at hand an efficient method of simulation for Wishart process, see [11]).

5.4 The ergodic two-armed bandit

An application of the case of multiplicative function is the so-called two-armed bandit algorithm
introduced in mathematical psychology and learning automata (see [25] and [23]). The criteria on
a.s. convergence under i.i.d. assumptions was obtained in [17] and under ergodic assumptions in
[30]. A penalized version of this algorithm is also studied in [16]. This algorithm is defined as
follows: at each step n ≥ 0, one plays arm A (resp. arm B) with probability θn (resp. 1 − θn),
where θn is updated according the following rule, for all n ≥ 0,

{
θn+1 = θn + γn+1

(
(1− θn)1{Un+1≤θn}∩An+1

− θn1{Un+1>θn}∩Bn+1

)

θ0 = θ ∈ (0, 1)
(5.39)

where (Un)n≥1 is a sequence of uniform random variables, (An)n≥1 and (Bn)n≥1 are two sequences
of events evaluating the performances of the arms A and B.

This stochastic procedure can be rewrite as follows
{

θn+1 = θn + γn+1

(
1An+1 − 1Bn+1

)
θn(1− θn) + γn+1∆Mn+1

θ0 = θ ∈ (0, 1)
(5.40)

where Mn :=
∑n

k=1 ǫk, M0 := 0, with

ǫk := 1Ak
(1− θk−1)

(
1{Un+1≤θn} − θk−1

)
+ 1Bk

θk−1

(
(1− θk−1)− 1{Un+1>θn}

)
.

Then applying Theorem 2.2 with h(θ) = θ(1−θ), Yk := 1Ak+1
−1Bk+1

, k ≥ 0, and χ(y) = y
ν(A)−ν(B)

where ν(A) > ν(B), we show that
θn

a.s.−→
n→∞

θ∞ ∈ {0, 1} .
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In fact 0 is a trap and 1 is target. Further investigations on θ∗ are carried in [30] in the ergodic
framework (see also [17] in the purely i.i.d. setting).

5.5 Optimal split of orders across liquidity pools

This example is an application to real data in Finance. It is an optimal allocation problem which
leads to a stochastic gradient by using Lagrangian approach developed in [19]. We present numerical
results with (pseudo-)real data but simulations with α-mixing innovations are also presented in the
reference paper.

5.5.1 Modelling description

The principle of a Dark pool is to propose a bid price with no guarantee of executed quantity at
the occasion of an OTC transaction. Usually this price is lower than the bid price offered on the
regular market. So one can model the impact of the existence of N dark pools (N ≥ 2) on a
given transaction as follows: let V > 0 be the random volume to be executed, let θi ∈ (0, 1) be
the discount factor proposed by the dark pool i. Let ri denote the percentage of V sent to the
dark pool i for execution. Let Di ≥ 0 be the quantity of securities that can be delivered (or made
available) by the dark pool i at price θiS.

The rest of the order is to be executed on the regular market, at price S. Then the cost C of
the whole executed order is given by

C = S

N∑

i=1

θimin (riV,Di) + S

(
V −

N∑

i=1

min (riV,Di)

)
= S

(
V −

N∑

i=1

ρi min (riV,Di)

)

where ρi = 1 − θi ∈ (0, 1), i = 1, . . . , N . Minimizing the mean execution cost, given the price S,
amounts to solving the following maximization problem

max

{
N∑

i=1

ρiE (Smin (riV,Di)) , r ∈ PN

}
(5.41)

where PN :=
{
r = (ri)1≤i≤N ∈ RN

+ |∑N
i=1 ri = 1

}
. It is then convenient to include the price S into

both random variables V and Di by considering Ṽ := V S and D̃i := DiS instead of V and Di.
Let IN = {1, . . . , N}. We set for all r = (r1, . . . , rN ) ∈ PN , Φ(r1, . . . , rN ) :=

∑N
i=1 ϕi(ri), where

∀i ∈ IN , ϕi(u) := ρiE (min (uV,Di)) , u ∈ [0, 1] .

We assume that for all i ∈ IN ,

V > 0 P− a.s., P(Di > 0) > 0 and the distribution function of Di

V
is continuous on R+, (5.42)

then ϕi, i ∈ IN , are everywhere differentiable on the unit interval [0, 1] with

ϕ′
i(u) = ρE

(
1{uV≤D}V

)
, r ∈ (0, 1] , (5.43)

and one extends ϕi, i ∈ IN , on the whole real line into a concave non-decreasing function with
lim±∞ ϕi = ±∞. So we can formally extend Φ on the whole affine hyperplan spanned by PN i.e.

HN :=
{
r = (r1, . . . , rN ) ∈ RN |∑N

i=1 ri = 1
}
.
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We aim at solving the following maximization problem maxr∈PN
Φ(r). The Lagrangian associ-

ated to the sole affine constraint suggests that any r∗ ∈ argmaxPN
Φ iff ϕ′

i(r
∗
i ) is constant when i

runs over IN or equivalently if ϕ′
i(r

∗
i ) =

1
N

∑N
j=1 ϕ

′
j(r

∗
j ), i ∈ IN .

Proposition 5.3. Assume (5.42) and that the functions ϕi satisfy the following assumption

(C) ≡ min
i∈IN

ϕ′
i(0) > max

i∈IN
ϕ′
i

(
1

N − 1

)
. (5.44)

Then argmaxHN
Φ = argmaxPN

Φ = {r ∈ PN |ϕ′
i(ri) = ϕ′

1(r1), i = 1, . . . , N} ⊂ int(PN ).

5.5.2 Description of the recursive procedure

We set Y n := (V n,Dn
1 , . . . ,D

n
N )

n≥1. By noticing that a1, . . . , aN are equal iff ai =
a1+···+aN

N
, ∀1 ≤

i ≤ N , then using the representation of the derivatives ϕ′
i yields that, if Assumption (C) is satisfied,

then

r∗ ∈ argmax
PN

Φ ⇐⇒ ∀i ∈ {1, . . . , N} , E


V


ρi1{r∗i V <Di} − 1

N

N∑

j=1

ρj1{r∗j V <Dj}




 = 0.

Consequently, this leads to the following recursive zero search procedure

rn+1
i = rni + γn+1Hi(r

n, Y n+1), r0 ∈ PN , i ∈ IN , (5.45)

where for i ∈ IN , every r ∈ PN , every V > 0 and every D1, . . . ,DN ≥ 0,

Hi(r, Y ) = V


ρi1{riV <Di} −

1

N

N∑

j=1

ρj1{rjV <Dj}




where (Y n)n≥1 is a sequence of random vectors with non negative components such that, for every

n ≥ 1, (V n,Dn
i , i = 1, . . . , N)

d
= (V,Di, i = 1, . . . , N).

The underlying idea of the algorithm is to reward the dark pools which outperform the mean
of the N dark pools by increasing the allocated volume sent at the next step (and conversely).

5.5.3 Innovation dynamics

For sake of simplicity that argmaxP
N
Φ = {r∗} ⊂ int(P

N
). Assume that the sequence (V n,Dn

i , i =

1, . . . , N)n≥1 satisfies

(A1) the sequence (Y n)n≥1 is averaging i.e. P-a.s.
1

n

n∑

k=1

δ(Y k)

(RN+1
+ )
=⇒
n→∞

ν = L(V,D1, . . . ,DN
),

(A2) supnE(V
n)2 < +∞,

with a limiting distribution ν such that, for every i ∈ IN , its marginal νi = L(V,Di) satisfies the
consistency and continuity assumption (5.42).

We will also need to make a specific assumption: there exists ǫ0 > 0 such that
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(A3) P(V ≥ ǫ0) > 0,

(A4) supp
(
L
(
Di

V
, i = 1, . . . , N | {V ≥ ǫ0}

))
is a neighbourhood of P

N
in RN

+ .

This assumption means that all allocations across the pools lying in the neighbourhood of P
N

can
be executed.

Our specific assumption is to assume that there exists an exponent αi ∈ (0, 1] such that for
every u∈ R+,

1

n

n∑

k=1

V k1{uV k<Dk
i } − E(V 1{uV <Di}) = O(n−αi) a.s. and in L2(P). (5.46)

Then we can apply Theorem 2.1 by assuming that the sequence (γn)n≥1 satisfies (2.11) to obtain
that the algorithm defined by (5.45) a.s. converges towards r∗ = argmaxP

N
Φ.

5.5.4 Numerical Tests

We consider here the setting where the mean of V is less that the sum of the means of the Di, i.e.
EV >

∑N
i=1EDi because it is the most interesting case and the most common in the market. Now,

we introduce indexes to measure the performances of our recursive allocation procedure.

⊲ Relative cost reduction (w.r.t. the regular market): it is defined as the ratios between
the cost reduction of the execution using dark pools and the cost resulting from an execution on
the regular market, i.e., for every n ≥ 1,

CRalgo

V n
=

∑N
i=1 ρimin (rni V

n,Dn
i )

V n
.

We have considered for V the traded volumes of a very liquid security – namely the asset
BNP – during an 11 day period. Then we selected the N most correlated assets (in terms of traded
volumes) with the original asset. These assets are denoted Si, i = 1, . . . , N and we considered their
traded volumes during the same 11 day period. Finally, the available volumes of each dark pool i
have been modelled as follows using the mixing function

∀ 1 ≤ i ≤ N, Di := βi

(
(1− αi)V + αiSi

EV

ESi

)

where αi, i = 1, . . . , N are the mixing coefficients, βi, i = 1, . . . , N some scaling parameters and
EV and ESi stand for the empirical mean of the data sets of V and Si. The simulations presented
here have been made with four dark pools (N = 4). Since the data used here covers 11 days and it
is clear that unlike the simulated data, these pseudo-real data are not stationary: in particular they
are subject to daily changes of trend and volatility (at least). To highlight this resulting changes
in the response of the algorithms, we have specified the days by drawing vertical doted lines. The
dark pool pseudo-data parameters are set to β =

(
0.1 0.2 0.3 0.2

)t
, α =

(
0.4 0.6 0.8 0.2

)t

and the dark pool trading (rebate) parameters are set to ρ =
(
0.01 0.02 0.04 0.06

)t
.

33



We benchmarked the algorithm on the whole data set (11 days) as though it were stationary.
In particular, the running means of the performances are computed from the very beginning for
the first 1500 data, and by a moving average on a window of 1500 data.
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Figure 3: Case N = 4,
∑N

i=1 βi < 1, 0 < αi ≤ 0.2 and r0i = 1/N , 1 ≤ i ≤ N .
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2005.

[21] V. Lemaire and G. Pagès. Unconstrained recursive importance sampling. preprint, 2008.

[22] A. Lokka and M. Zervos. A model for the long-term optimal capacity level of an investment
project.

[23] K. S. Narendra and I. J. Shapiro. Use of stochastic automata for parameter self-optimization
with multimodal performance criteria. IEEE Trans. Syst. Sci. and Cybern., 5(4):352 – 360,
1969.

35



[24] H. Niederreiter. Random number generation and quasi-Monte Carlo methods, volume 63 of
CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, 1992.

[25] M. F. Norman. On the linear model with two absorbing barriers. J. Mathematical Psychology,
5:225–241, 1968.

[26] M. Peligrad and S. Utev. Central limit theorem for stationary linear processes. Ann. Probab.,
34(4):1608–1622, 2006.
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