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Probing three-body correlations in a quantum gas red using the measurement of the
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J. Armijo(1), T. Jacqmin(1), K. V. Kheruntsyan(2), and I. Bouchoule(1)
(1)Laboratoire Charles Fabry, UMR 8501 du CNRS,

Institut d’Optique, 91 127 Palaiseau Cedex, France
(2)ARC Centre of Excellence for Quantum-Atom Optics, School of Mathematics and Physics,

University of Queensland, Brisbane, Queensland 4072, Australia

(Dated: July 21, 2010)

We perform measurements of the third moment of atom number fluctuations in small slices of a
very elongated weakly interacting degenerate Bose gas. We find a positive skewness of the atom
number distribution in the ideal gas regime and a reduced skewness compatible with zero in the
quasi-condensate regime. For our parameters, the third moment is a thermodynamic quantity whose
measurement constitutes a sensitive test of the equation of state and our results are in agreement
with a modified Yang-Yang thermodynamic prediction. Moreover, we show that the measured
skewness reveals the presence of true three body correlations in the system.

PACS numbers: 03.75.Hh, 67.10.Ba

Measurements of higher-order correlations and the
density fluctuations, in particular, are becoming an in-
creasingly important tool in the studies of ultracold quan-
tum gases. Such measurements are able to probe quan-
tum many-body states of interacting systems, often giv-
ing access to key quantities that characterize the sys-
tem. This is particularly true for one-dimensional (1D)
gases, where the effects of fluctuations are enhanced com-
pared to 3D systems and govern the rich underlying
physics. Zero-distance (or local) second- and third-order
correlation functions have been probed in several ultra-
cold gas experiments by measuring the rates of two- and
three-body inelastic processes such as photoassociation
and three-body recombination [1–3]. Such measurements
enabled the study of the strongly correlated regime of
‘fermionization’ in a 1D Bose gas.

An alternative experimental technique is the in situ

measurement of atom number fluctuations in a small de-
tection volume, achievable through the analysis of noise
in absorption images. The fluctuation variance (or sec-
ond moment) provides information about an integrated
non-local (two-point) density-density correlation func-
tion. In addition, under adequate experimental con-
ditions, the variance is a thermodynamic quantity and
therefore such measurements can be used to probe the
thermodynamic properties of quantum gases. In situ

measurements of atom number fluctuations in weakly in-
teracting quasi-1D Bose gases were used to probe the
crossover from the nearly ideal gas regime, where bosonic
bunching is present, to the quasi-condensate regime,
where the density fluctuations are suppressed [4, 5]. In
fermionic systems, sub shot-noise atom number fluctu-
ations were observed in a degenerate Fermi gas [6, 7].
Combining this with the measurement of compressibility
of the gas deduced from the known density profile and
confining potential, such measurements have been shown
to provide reliable thermometry [6].

In this paper we expand the arsenal of probes of higher-
order correlations in quantum gases by measuring the
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FIG. 1: (Color online) (a) Scheme of the absorption imaging
setup. The probe laser beam crosses the atomic cloud (shown
as a red dot) before its reflection from the chip surface and
detection on a CCD camera. (b) A typical in-situ absorption
image, with the scale on the colorbar corresponding to the
optical density. The pixel size in the object plane is ∆ =
4.5 µm. (c) A typical longitudinal density profile (solid curve),
together with the mean profile (dashed red curve).

third moment of atom number fluctuations. The atom
number fluctuations are measured using in situ absorp-
tion imaging of an ultracold gas on an atom-chip setup
sketched in Fig. 1 (a). We probe a weakly interacting
quasi-1D Bose gas. We have measured a positive third
moment of the atom number distribution in a degenerate
gas within the ideal gas regime and within the crossover
towards a quasi-condensate. In the quasi-condensate
regime the measured third moment is compatible with
zero. The third moment of the atom number distribution
is linked to the third-order correlation function and our
measurements demonstrate the presence of true three-
body correlations in the gas. Apart from this, we show
that the measured third moment is related to a thermo-
dynamic relation that involves a second-order derivative,
and therefore the technique can be used as a sensitive
probe of the thermodynamics of a quantum gas.

Our quasi-1D Bose gases are produced using 87Rb
atoms in the hyperfine state |F = 2,m = 2〉. A very
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elongated Ioffe magnetic trap with a longitudinal oscilla-
tion frequency ranging from 5.0 Hz to 8 Hz and a trans-
verse oscillation frequency ω⊥/2π ranging from 3 kHz
to 4 kHz is realized using on-chip micro-wires [9] and
an external homogeneous magnetic field. Using forced
rf evaporation, we produce ultracold clouds at tempera-
tures from T = 20 nK to 500 nK. The longitudinal rms
size L of the cloud ranges from ∼50 µm to ∼100 µm. As
shown previously [4], under these conditions such gases
explore the crossover from the ideal gas regime to the
quasi-condensate regime, and the underlying physics lies
in the 1D regime or in the crossover from 1D to 3D [5].

In situ measurements of density fluctuations are per-
formed using absorption images such as the one shown
in Fig. 1 (b). The details of our imaging and calibra-
tion techniques are described in the appendix. As the
transverse size of the trapped cloud (< 500 nm rms) is
much smaller than the pixel size (4.5 µm), the only in-
formation in the transverse direction is the diffractional
and motional blur on the image. By summing the atom
number over transverse pixels, we reduce the notion of a
pixel to a segment of length ∆ and derive from each image
the longitudinal density profile [Fig. 1 (c)]. We perform
a statistical analysis of hundreds of images taken under
the same experimental conditions [4, 5]. For each pro-
file and pixel we extract δN = N − 〈N〉, where 〈N〉 is
given by the average density profile. To remove the ef-
fect of shot-to-shot variations in the total atom number
Ntot, the profiles are ordered according to Ntot and we
use a running average of about 20 profiles. As will be
explained below, the longitudinal confining potential is
irrelevant and each δN is binned according to the corre-
sponding mean atom number in the pixel 〈N〉. For each
bin, we compute the second and third moment of atom
number fluctuations, 〈δN2〉 and 〈δN3〉. The contribution
of the optical shot noise to these quantities is subtracted,
although it is negligible for 〈δN3〉.
The measured third moment of the atom number fluc-

tuations, 〈δN3〉m, is plotted in Fig. 2 for two different
temperatures. For the higher temperature [Fig. 2 (a)],
we observe a positive value of 〈δN3〉m that increases with
the average atom number 〈N〉. At a smaller temperature
[Fig. 2 (b)], 〈δN3〉m initially grows with 〈N〉 and reaches
a maximum, before taking a value compatible with zero
at large 〈N〉. The corresponding second moments or vari-
ances 〈δN2〉m are shown in the insets. A finite third mo-
ment indicates an asymmetry of the atom number distri-
bution, which is usually quantified by the skewness of the

distribution, sm = 〈δN3〉m/〈δN2〉3/2m , shown in Figs. 2
(c) and (d). Before discussing the physics and theoreti-
cal understanding of these results, we first describe how
the measured moments 〈δN3〉m and 〈δN2〉m are related
to the true moments 〈δN3〉 and 〈δN2〉.
The measurements of atom number fluctuations are

affected by the finite spatial resolution due to both the
optical resolution and the diffusion of atoms during the
optical pulse, which cause the absorption signal from
each atom to spread over several pixels and blur the
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FIG. 2: Measured third moment (open circles) of the atom
number fluctuations versus the mean atom number per pixel,
for temperatures of 376 nK (a) and 96 nK (b). The insets
show the corresponding atom number variances. The error-
bars are the statistical errors. Graphs (c) and (d) show the
skewness sm corresponding to (a) and (b), respectively. The
theoretical predictions, scaled by κ2 = 0.55 and κ3 = 0.34 for
(a) and (c), and by κ2 = 0.52 and κ3 = 0.31 for (b) and (d),
are shown for comparison: solid lines – the modified Yang-
Yang prediction; dashed lines – the ideal Bose gas prediction;
dash-dotted lines on (b) and (d) – the quasi-condensate pre-
diction; dotted lines – the shot noise limit 〈N〉.

image. Denoting by A the impulse response function
of the imaging system, the impulse response for the

pixel [0,∆] is F(z0) =
∫∆

0
dzA(z − z0), and the mea-

sured atom number fluctuation in the pixel is given by

δNm =
∫ +∞

−∞
dz0F(z0)δn(z0), where δn(z0) is the local

density fluctuation. For the parameters explored in this
paper, the expected correlation length lc of density fluc-
tuations [10] is smaller than 0.5 µm. This is sufficiently
smaller than the width of A so that we can assume that
the density fluctuations have zero range. Moreover, since
the resolution and the pixel size are much smaller than
the longitudinal size of the atomic cloud, we can assume
that the gas is locally homogeneous with respect to z.
Then, the measured second and third moments of den-
sity fluctuations can be obtained as

〈δN2〉m = 〈δN2〉
∫ +∞

−∞
dz0 F(z0)

2/∆ = κ2〈δN2〉, (1)

〈δN3〉m = 〈δN3〉
∫ +∞

−∞
dz0 F(z0)

3/∆ = κ3〈δN3〉, (2)

where 〈δN2〉 and 〈δN3〉 are the respective true moments,
whereas κ2 and κ3 are the reduction factors. For low
enough linear densities, the gas lies in the nondegenerate
ideal gas regime. Then the fluctuations are almost that of
a Poissonian distribution, so that 〈δN2〉 ≃ 〈δN3〉 ≃ 〈N〉,
and the reduction factors may be deduced from a linear
fit of the measured fluctuations versus 〈N〉, where 〈N〉 is
experimentally determined absolutely. However, such a
deduction is difficult in very cold clouds where only few
pixels lie in the nondegenerate ideal gas regime.
We thus develop an alternative method that uses the
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FIG. 3: Correlation of atom number fluctuations between ad-
jacent (open squares) and next-neighbor (crosses) pixels. The
solid lines are the predictions for an impulse response function
with an rms width of 2.0 µm, obtained by fitting Ci,i+1.

measurement of the atom number correlation between
the pixel i and the adjacent (j = 1) or the next-
neighboring (j = 2) pixels, defined via

Ci,i+j =
〈δNiδNi+j〉m

〈δN2
i 〉m

=

∫ +∞

−∞
dz0 F(z0)F(z0 − j∆)
∫ +∞

−∞
dz0 F(z0)2

(3)
Such correlation arises due to the contribution of an
atom to the absorption in both pixels. Making a Gaus-
sian ansatz for the impulse response function A, the rms
width of A can obtained by fitting Eq. (3) to the mea-
sured correlations. The reduction factors κ2 and κ3 can
then be deduced from Eqs. (1) and (2). Fig. 3 shows
the measured correlation between the pixels for the case
of Fig. 2 (a). Fitting Ci,i+1 results in κ3 = 0.34 and
κ2 = 0.55, which is in good agreement with the slope of
〈δN2〉m at small 〈N〉 [see the inset of Fig. 2 (a)].
Turning to the discussion of the physics behind our ex-

perimental results, we first point out that the third mo-
ment of atom number fluctuations is actually a thermo-
dynamic quantity when, as in our experiment, the pixel
size is both much larger than the characteristic correla-
tion length of density fluctuations lc and much smaller
than the cloud length L, lc ≪ ∆ ≪ L. Then a lo-
cal density approximation is valid and the gas contained
in a pixel can be well described by a grand canonical
ensemble, in which the rest of the cloud is acting as
a reservoir that fixes the chemical potential µ and the
temperature T . Denoting by Z the grand-canonical par-
tition function, we have 〈N〉 = (kBT/Z)∂Z/∂µ, 〈N2〉 =
(kBT/Z)∂2Z/∂µ2 and 〈N3〉 = (kBT/Z)∂3Z/∂µ3. From
the first two equations, we obtain the well known thermo-
dynamics relation 〈δN2〉 = kBT∂〈N〉/∂µ, whereas the
three equations give the following relation

〈δN3〉 = (kBT )
2
∂2〈N〉/∂µ2, (4)

where 〈N〉 = n∆, with n being the linear density of a
gas homogeneous along z. Thus, the knowledge of the
equation of state n(µ, T ) is sufficient to predict the third
moment of the atom number distribution.
We now compare our measurements with the predic-

tions from different models for the equation of state
n(µ, T ). The temperature of the cloud for the case

of Fig. 2 (a) is deduced from an ideal Bose gas fit to
the wings of the density profile [5]. For the data of
Fig 2 (b), corresponding to the quasi-condensate regime,
such wings are vanishingly small and hard to detect. In
this case we deduce the temperature [5] from the mea-
surement of density fluctuations in the cloud centre where
the gas lies in the quasi-condensate regime, using the
thermodynamic relation 〈δN2〉 = kBT∂〈N〉/∂µ and the
equation of state of a quasi-condensate (see below).

The predictions from the equation of state for an ideal
Bose gas are shown by the dashed lines in Fig. 2. For a
highly nondegenerate (or classical) gas, corresponding to
small 〈N〉, this model predicts 〈δN3〉 ≃ 〈δN2〉 ≃ 〈N〉 as
expected for a gas of uncorrelated particles. When the
gas becomes degenerate with the increase of 〈N〉, the con-
tribution of the quantum-statistical exchange interaction
term to 〈δN3〉 is no longer negligible, and 〈δN3〉 becomes
larger than the shot-noise term 〈N〉. Such an increase is
observed in the experimental data in Fig. 2 (a). However,
the ideal Bose gas model strongly overestimates the third
moment with further increase of 〈N〉 and we eventually
observe large discrepancy between the predictions of this
model and the experimental data. The discrepancy is due
to the repulsive interactions between the atoms, which
reduce the energetically costly density fluctuations.

Describing the effects of atomic interactions beyond
the perturbative regime is a challenging theoretical prob-
lem. However, a purely 1D Bose gas with contact re-
pulsive interactions is a particular case of a many-body
problem for which an exact solution is available through
the Yang-Yang thermodynamic formalism [11] in the en-
tire parameter space. For the temperatures correspond-
ing to Figs. 2 (a) and (b), the ratios of kBT/h̄ω⊥ are
2.6 and 0.50, respectively, implying that the population
of the transverse excited states is not negligible. Ac-
cordingly, we use a modified Yang-Yang model [12], in
which the transverse ground state is described within the
exact Yang-Yang theory, whereas the transverse excited
states are treated as ideal 1D Bose gases. This model
has been shown to be valid for our parameters until the
quasi-condensate regime is reached [5]; the correspond-
ing predictions are plotted as solid lines in Fig. 2 and
show that the modified Yang-Yang model accounts for
the measured 〈δN3〉 very well.

In the quasi-condensate regime [corresponding to
〈N〉 >∼ 70 in Fig 2 (b)], where the density fluctua-
tions are suppressed [13, 14], the equation of state can
be obtained numerically from the 3D Gross-Pitaevskii
equation and is well described by the heuristic function
µ = h̄ω⊥(

√
1 + 4na− 1) [15]. In contrast to the modified

Yang-Yang model, this equation of state accounts for the
transverse swelling of the cloud due to interatomic inter-
actions and better describes the measured variance [see
the inset of Fig. 2 (b)]. The measured third moment is
compatible with this equation of state.

To unveil the role of many-body correlations, which
underly the measured density fluctuations while remain-
ing hidden in the thermodynamic analysis, we consider
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FIG. 4: The measured three-body integral Hm versus 〈N〉,
corresponding to the data of Figs. 2 (a) and (b), respectively.
The solid (dash-dotted) curves are the thermodynamic predic-
tions from the modified Yang-Yang (quasi-condensate) model.

the 1D two- (k = 2) and three-body (k = 3) correlation
functions,

g̃(k)(z1, . . . , zk) = 〈ψ̃†(z1) . . . ψ̃
†(zk)ψ̃(zk) . . . ψ̃(z1)〉/nk,

(5)

where ψ̃(z) =
∫

dxdy ψ(x, y, z) and ψ (ψ†) is the bosonic
field annihilation (creation) operator. Using standard
commutation relations and the expression 〈N2〉 = 〈N〉2+
〈N〉+ n2

∫∫

dz1dz2[g̃
(2)(z1, z2)− 1], we find

〈δN3〉 = 〈N〉+ n3
∫∫∫

dz1dz2dz3
[

g̃(3)(z1, z2, z3)− 1
]

−3〈N〉n2
∫∫

dz1dz2[g̃
(2)(z1, z2)− 1]

+3n2
∫∫

dz1dz2[g̃
(2)(z1, z2)− 1], (6)

where the integrals are in the interval [0,∆]. As we see
the third moment of atom number distribution depends
on both the g̃(3) and g̃(2) functions. Moreover, g̃(3) con-
tains a contribution from g̃(2) since, when one of the three
particles is far from the other two, g̃(3) reduces to g̃(2). To
remove such contributions, we introduce the h-function

h(z1, z2, z3) = 2 + g̃(3)(z1, z2, z3) (7)

−[g̃(2)(z1, z2)+g̃
(2)(z2, z3)+g̃

(2)(z1, z3)],

which is nonzero only for z1, z2 and z3 being all in the
vicinity of each other. Such a decomposition has been

previously used in the description of weakly correlated
plasmas [16], with the approximation h ≃ 0 being used
to truncate the BBGKY hierarchy.
Using the h-function, Eq. (6) can be rewritten as

〈δN3〉 = 〈N〉+ 3n2
∫∫

dz1dz2[g̃
(2)(z1, z2)− 1]

+ n3
∫∫∫

dz1dz2dz3h(z1, z2, z3). (8)

Here, the first two terms represent one- and two-body
effects, with the second term being equal to 3〈δN2〉 −
3〈N〉. The contribution of true three-body correlations
to 〈δN3〉 comes from the three-body integral

H=〈δN3〉+2〈N〉−3〈δN2〉=n3
∫∫∫

dz1dz2dz3h(z1, z2, z3).
(9)

In Fig. 2, we plot the measured value of H. More
precisely, taking into account the reduction factors κ2
and κ3, we plot H = 〈δN3〉m/κ3 + 2〈N〉 − 3〈δN2〉m/κ2.
We observe nonzero values of H, which is a signature
of the presence of true three-body correlations in the
gas: H is positive within the ideal gas regime and in
the crossover region towards the quasi-condensate [see
Fig. 4 (a)], whereas it is slightly negative in the quasi-
condensate regime [Fig. 4 (b)]. The results are in agree-
ment with the thermodynamic predictions of the modi-
fied Yang-Yang and the quasi-condensate models.
In summary, we have shown that the measurement of

the third moment of density fluctuations constitutes a
sensitive probe of correlated quantum gases. Such mea-
surements allow for a very precise test of thermodynamics
of the gas for large pixels and reveal the presence of true
three-body correlations. The method can be extended to
the studies of other ultracold gas systems in which the
physics is governed by quantum many-body effects.
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FIG. 5: (Color online) Typical absorption images used for cal-
ibration and the analysis of density fluctuations: (a) – taken
with a nearly resonant probe, after a small time of flight of
0.5 ms [same as Fig. 1 (b) of the main text, except with a
larger field of view]; (b) – taken with a probe detuned by
5 MHz and a time of flight of 1.5 ms; (d) – taken with a
resonant probe and a time of flight of 2.2 ms to measure the
total atom number. The scales on the colorbars correspond
to optical densities.

mas (Cambridge University Press, Cambridge, 2003).

Appendix A: Precise atomic profile measurement

A probe laser beam, locked onto the D2 transition at
the wavelength λ = 780 nm, is reflected from the chip
surface (covered by a gold mirror) after passing through
the atomic cloud. The shadow image of the atomic cloud
is then recorded on a CCD camera, with quantum effi-
ciency larger than 90%. The diffraction-limited optical
resolution has an rms width of 1.0 µm. Great care has
to be taken in absorption imaging to allow for a reliable
measurement of the atom number in each pixel.
We have chosen a configuration that maximizes the ab-

sorption efficiency. To achieve this, we focus the probe
beam onto the chip surface using a cylindrical lens as de-
picted in Fig. 1 (a) of the main text. The 1/e2 size of
the beam in the focused direction x is 50 µm, which is
smaller than the distance of the atomic cloud from the
chip surface so that the beam crosses the atomic cloud
only on its way to the chip and not after its reflection.
Images as in Fig. 5 (a)-(c) are taken after switching off
the wire currents so that only the external homogeneous
magnetic field, whose orientation is close to the y direc-
tion [see Fig. 1 (a) of the main text for the axis defini-
tion], remains switched on. With this geometry, using
a σ+-polarized probe beam we address only the closed
transition |F = 2,m = 2〉 → |F ′ = 3,m′ = 3〉, and the
absorption cross-section at low intensity takes its maxi-
mum value σ0 = 3λ2/2π.
The absorption is measured by taking two pictures,

the first one with the atomic cloud present and the sec-
ond one without the atoms. The atom number in a
given pixel Np is estimated from the Beer-Lambert law
Np = ln(N2/N1)∆

2/σ, where N1 and N2 are the photon
numbers in the pixel on the first and second image, re-
spectively, and σ is the atomic absorption cross-section.
With the transverse size of the cloud being smaller than
the pixel size, no information is available in the transverse
direction, and the number of atoms NBL in an effective
pixel of size ∆ can be obtained by summing Np over of
the transverse pixels. However, as the use of a resonant
probe at high atomic densities produces high optical den-
sities (up to 1.5) this naive procedure fails to correctly
estimate the true atom number N in the pixel. Firstly,
when the transverse extension of the cloud is smaller than
both the pixel size and the optical resolution, the Beer-
Lambert law underestimates the true atom number due
to the concavity of the logarithm function, as already
pointed out in [1]. Moreover, the validity of the Beer-
Lambert law is questionable for high atomic densities due
to nontrivial reabsorption effects that may arise. In or-
der to reduce these effects, without decreasing too much
the absorption, we use a near resonant probe and enable
the cloud to spread transversally during a small time of
flight of about 0.5 ms – sufficient to reduce the effects
of high atomic densities, but small enough so that the
atom number fluctuations in a pixel are barely affected.
The measured atom number NBL, however, still deviates
from the true atom number N and we introduce a func-
tion f defined as N = f(NBL) to describe the deviation
from linearity at high optical densities.

The function f is deduced from the comparison, in
each effective pixel, of the measured NBL with the cor-
rect atom number N . The latter itself is measured as fol-
lows. First, the correct profile is obtained using images
[such as that shown in Fig. 5 (b)] taken with a detuning
of about 5 MHz that reduces the absorption cross-section
and a time of flight of ∼1.5 ms that permits a transverse
expansion of the cloud. We checked experimentally that
these parameters ensure the validity of the Beer-Lambert
law, while the expansion is small enough as to retain the
longitudinal profile essentially unaffected. Second, the
absolute normalization of the atomic density profile (or,
equivalently, a measure of the absorption cross-section
σ), is deduced form the knowledge of the total atom num-
ber. The latter is measured using a resonant probe with a
time of flight of ∼2.5 ms, as in Fig. 5 (c). With such time
of flight, the cloud transverse expansion is sufficiently
large and the atomic density is small enough as to render
the Beer-Lambert law applicable. Atomic saturation is
taken into account via the formula σ = σ0(1 + I/Isat),
where I is the intensity of the probe beam and Isat is the
saturation intensity. A fit of the measured absorption
versus I gives Isat = 1.4(1) mW/cm2, which is close to
the reported value of 1.62 mW/cm2 [2]. The remaining
discrepancy could be because of possible underestimation
of the intensity of the probe beam seen by the atoms due
to the losses during the reflection of the beam from the
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FIG. 6: Experimental determination of the correction to the
Beer-Lambert law. The solid curve is a fit to the experimen-
tal data with a third-order polynomial, the straight dashed
line being the linear contribution. NBL is obtained by using
the Beer-Lambert law and summing over transverse pixels in
images taken with a nearly resonant probe and a small time
of flight of 0.5 ms [see Fig. 5 (a)]. N is obtained from images
taken with a probe detuned by 5 MHz and a time of flight
of 1.5 ms, for which the Beer-Lambert law is adequate [see
Fig. 5 (b)].

gold mirror and during the transmission through the op-
tical lenses. Finally, the function f is estimated by fitting
the experimental points N versus NBL with a third-order
polynomial, as shown in Fig. 6.

All these calibrations are performed using values aver-
aged over tens of experimental realizations. The images
used for the analysis of fluctuations [as in Fig. 5 (a)] and
those used for calibration [as in Figs. 5 (b) and (c)] are
taken in an alternated way – typically one picture of type
(b) and then (c) after every 15 images of type (a) – to
eliminate the dependence on noise arising from long-time
magnetic field and thermal drifts.

The normalization procedure described above, while
compensating for the effect of the small transverse size
of the atomic cloud, does not compensate for a possible
error induced by short-scale longitudinal density fluctua-
tions. However, in our experimental situation, those fluc-
tuations are smeared out by the atomic diffusion during
the probe pulse and are small.

[1] J. Esteve et al., Phys. Rev. Lett. 96, 130403 (2006).
[2] http://steck.us/alkalidata/


