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Asymptotic properties of adaptive penalized
optimal designs over a finite space

L. Pronzato

Abstract Adaptive optimal design with a cost constraint is considered, both for
LS estimation in nonlinear regression and ML estimation in Bernoulli-type experi-
ments, with possible applications in clinical trials. We obtain the strong consistency
of the estimators for designs over a finite space, both when the cost level is fixed
(and the adaptive design converges to an optimum constrained design) and when
the objective is to minimize the cost. Moreover, the asymptotic normality of the es-
timators is obtained in the first situation, with an asymptotic covariance matrix given
by the inverse of the usual information matrix, calculated as if the design were not
constructed sequentially.

1 Introduction

Let X , a compact subset of Rd , denote the admissible domain for the experimen-
tal variables x (design points) and θ ∈ Θ , a compact subset of Rp, denote the p-
dimensional vector of parameters, all of interest, in a parametric model with inde-
pendent observations Yi(xi) conditionally on the xi, i = 1,2 . . . The information ma-
trix for parameters θ and design measure ξ (a probability measure on X ) is denoted
by M(ξ ,θ) =

∫
X µ(x,θ)ξ (dx), with µ(x,θ) the contribution of the design point x.

We only consider the case of scalar observations, so that µ(x,θ) is a rank-one ma-
trix, which we denote µ(x,θ) = fθ (x)f>θ (x) with fθ (x) a p-dimensional vector. We
shall suppose that fθ (x) is continuously differentiable with respect to θ in the inte-
rior of Θ for all x ∈X . In a nonlinear situation, M(ξ ,θ) depends on θ and locally
optimal design maximizes a concave function Ψ(·) of M(ξ ,θ) for some nominal
value of θ . Here we shall only consider D-optimal design, i.e. Ψ(M) = logdet(M),
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2 L. Pronzato

but the extension to other global optimality criteria, such as [trace(M−1)]−1 for in-
stance, could be obtained by following a similar route. A rather common approach
to overcome the difficulty caused by the dependence of a locally optimal design on
the unknown value of the model parameters is to design the experiment sequentially.

In fully-adaptive D-optimal design, the next design point xn+1 after n observa-
tions is taken as

xn+1 = argmax
x∈X

trace[µ(x, θ̂ n)M−1(ξn, θ̂ n)] , (1)

where θ̂ n ∈Θ is the current estimated value for θ , based on x1, . . . ,xn and the asso-
ciated observations Y1, . . . ,Yn, and ξn = (1/n)∑n

i=1 δxi is the current empirical design
measure. We leave aside initialisation issues and simply assume that x1, . . . ,xp are
such that M(ξp,θ) is nonsingular for any θ ∈Θ .

When θ̂ n is frozen to a fixed value θ , the iteration (1) corresponds to one step of
a steepest-ascent vertex-direction algorithm with step-length 1/n and convergence
to a D-optimal design measure is proved in (Wynn 1970). The fact that θ̂ n is es-
timated in adaptive design creates dependency among observations and makes the
investigation of the asymptotic behavior of the design and estimator a much more
complicated issue for which few results are available: (Ford and Silvey 1980, Wu
1985, Müller and Pötscher 1992) concern a particular example with LS estimation;
(Hu 1998) is specific of Bayesian estimation by posterior mean and does not use
a fully sequential design of the form (1); Lai (1994) and Chaudhuri and Mykland
(1995) require the introduction of a subsequence of non-adaptive design points to
ensure consistency of the estimator and Chaudhuri and Mykland (1993) require that
the size of the initial experiment (non-adaptive) grows with the increase in size of the
total experiment. Notice that the situation is different in clinical trials for comparing
treatments: the designs considered are typically such that the number of allocations
of each treatment goes to infinity a.s., which then yields the strong consistency of the
ML estimators, see for instance the ML design in (Antognini and Giovagnoli 2005).
It is shown in (Pronzato 2009b) that the situation becomes much simpler when X
is a finite set and that, under reasonable assumptions, (1) yields the a.s. convergence
and asymptotic normality of the estimator θ̂ n. Using the results in (Pronzato 2009a),
we show here that similar asymptotic properties are obtained for adaptive penalized
D-optimal design. We shall always assume that

X = {x(1),x(2), . . . ,x(K)} , K < ∞ .

2 Asymptotic properties of estimators when X is finite

Consider a nonlinear regression model with observations

Yi = Y (xi) = η(xi, θ̄)+ εi , (2)
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where the εi are i.i.d. with zero mean and finite variance (which we take equal to
one without any loss of generality) and η(x,θ) is a known function of θ and x.
We suppose that θ̄ , the unknown ‘true’ value of θ , is in the interior of Θ . We have
µ(x,θ) = fθ (x)f>θ (x) with fθ (x) = ∂η(x,θ)/∂θ . The LS estimator θ̂ n

LS minimizes
Sn(θ) = ∑n

k=1[Y (xk)−η(xk,θ)]2 and we define

Dn(θ ,θ ′) =
n

∑
i=1

[η(xi,θ)−η(xi,θ ′)]2 . (3)

The following properties, see (Pronzato 2009a), will be used in §3.2 and 3.3.

Theorem 1. Suppose that X is finite. If Dn(θ , θ̄) given by (3) satisfies for all δ > 0,[
inf‖θ−θ̄‖≥δ/τn

Dn(θ , θ̄)
]
/(log logn) a.s.→ ∞ (n→ ∞), with {τn} a nondecreasing se-

quence of positive deterministic constants, then τn‖θ̂ n
LS− θ̄‖ a.s.→ 0 as n→ ∞.

Theorem 2. Suppose that X is finite and that there exist non-random symmetric
positive definite p× p matrices Cn such that C−1

n M1/2(ξn, θ̄)
p→ I , with I the p-

dimensional identity matrix. If cn = λmin(Cn) and Dn(θ , θ̄) satisfy n1/4cn → ∞ and
for all δ > 0, inf‖θ−θ̄‖≥c2

nδ Dn(θ , θ̄)/(log logn) a.s.→ ∞ (n → ∞), then θ̂ n
LS satisfies

√
nM1/2(ξn, θ̂ n

LS)(θ̂
n
LS− θ̄) d→ ω ∼N (0,σ2I) as n→ ∞ .

Consider now the case of dose-response experiments with

Y ∈ {0,1} , with Pr{Y = 1|xi,θ}= η(xi,θ) . (4)

Suppose that the ‘true’ value of θ that generates the observations lies in the interior
of Θ , that η(x,θ) ∈ (0,1) for any θ ∈Θ and x ∈X , and that when n observations
Y1, . . . ,Yn are performed at the design points x1, . . . ,xn, the Yi are independent con-
ditionally on the xi. Also suppose that xi is a non-random function of Y1, . . . ,Yi−1,
x1, . . . ,xi−1 for all i. Theorems 1 and 2 are then also valid for the ML estimator θ̂ n

ML
in this model, see (Pronzato 2009a), and, in the rest of the paper, θ̃ n will denote
indifferently θ̂ n

LS in the model (2) or θ̂ n
ML in (4).

3 Adaptive penalized D-optimal design

Consider constrained locally D-optimal design that maximizes logdet[M(ξ ,θ)] un-
der a constraint Φ(ξ ,θ) ≤C on the average cost Φ(ξ ,θ) =

∫
X φ(x,θ)ξ (dx). We

suppose that φ(x,θ), the cost induced by a single observation at x, is a positive
continuous function of θ for all x ∈X . The extension to nonlinear or multiple con-
straints is considered, e.g., in (Cook and Fedorov 1995) and (Fedorov and Hackl
1997, Chap. 4). A necessary and sufficient condition for the optimality of ξ ∗C sat-
isfying Φ(ξ ∗C ,θ) ≤ C is the existence of a Lagrange coefficient λ ∗ = λ ∗(θ) ≥ 0
satisfying λ ∗[C−Φ(ξ ∗C ,θ)] = 0 and ∀x ∈ X , trace[µ(x,θ)M−1(ξ ∗C ,θ)] ≤ p +
λ ∗[φ(x,θ)−Φ(ξ ∗C ,θ)] . In practice, ξ ∗C can be determined by maximizing
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Hθ (ξ ,λi) = logdet[M(ξ ,θ)]−λi Φ(ξ ,θ) (5)

for an increasing sequence {λi} of coefficients, starting at λ0 = 0 and stopping at
the first λi such that the associated optimal design ξ ∗ satisfies Φ(ξ ∗,θ) ≤ C, see,
e.g., Mikulecká (1983) (notice that for C large enough the unconstrained D-optimal
design is optimal for the constrained problem). The coefficient λ in Hθ (ξ ,λ ) can
thus be considered as a penalty coefficient that penalizes costly experiments and sets
the tradeoff between the maximization of logdet[M(ξ ,θ)] and the minimization of
Φ(ξ ,θ). One may refer to Cook and Wong (1994) for the equivalence between
constrained and compound optimal designs.

In adaptive constrained D-optimal design, we take xn+1 that gives the steepest
ascent direction for Hθ̂ n(ξn,λn),

xn+1 = argmax
x∈X

{
trace[µ(x, θ̂ n)M−1(ξn, θ̂ n)]−λn φ(x, θ̂ n)

}
, (6)

where different choices for λn are discussed below. Since (1) can be considered as a
special case of (6), the results to be presented also cover the case of classical (uncon-
strained) adaptive D-optimal design (1) treated in (Pronzato 2009b) (they therefore
also cover the case of the adaptive penalized designs considered in (Dragalin and
Fedorov 2006, Dragalin, Fedorov, and Wu 2008), where the constrained problem is
formulated as a standard D-optimal design problem). One may notice the similarity
between (6) and the construction used in (Pronzato 2000) to optimize a paramet-
ric function, the parameters of which being estimated by least-squares in a linear
regression model.

Two situations will be considered concerning the choice of the sequence {λn}
in (6), respectively in §3.2 and 3.3. In the first one, the objective is to obtain an
optimal design with a specified cost: we adapt λn to θ̂ n and take λn = λ ∗(θ̂ n), the
optimal Lagrange coefficient for the constrained D-optimal design problem with
parameters θ̂ n. The second situation corresponds to the case where {λn} forms an
increasing sequence, which gives more and more importance to the constraint in
the construction of the design. When φ(x,θ) has a single minimum, by letting the
Lagrange coefficient λn increase with n one may hope to be able to force the design
to concentrate at the minimizer of φ associated with the true value of θ . In clinical
trials, when φ(x,θ) is related to the probability of success of treatment x, it means
that we can focuss more and more on individual ethics by allocating treatments with
increasing efficacy, see (Pronzato 2010).

3.1 A bound on the sampling rate of nonsingular designs

The key idea used below for investigating the asymptotic properties of an estimator
for a design generated by (6) is to suppose first that {θ̂ n} is an arbitrary sequence
in Θ . We shall use the following assumptions on the design space X , the vectors
fθ (x) and the Lagrange coefficients λn.
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HX -(i): infθ∈Θ λmin

[
∑K

i=1 fθ (x(i))f>θ (x(i))
]

> γ > 0;

Hλ -(i): 0≤ λn < λ̄ < ∞ , ∀n;
Hλ -(ii): {λn} is a non-decreasing positive sequence and limn→∞ λn = ∞.

Theorem 3. Let {θ̂ n} be an arbitrary sequence in Θ used to generate design points
according to (6) in a finite design space satisfying HX -(i), with an initialisation
such that M(ξn,θ) is non-singular for all θ in Θ and all n ≥ p. Let rn,i = rn(x(i))
denote the number of times x(i) appears in the sequence x1, . . . ,xn, i = 1, . . . ,K, and
consider the associated order statistics rn,1:K ≥ rn,2:K ≥ ·· · ≥ rn,K:K . Define

q∗ = max{ j : there exists α > 0 such that liminfn→∞ rn, j:K/n > α} ,
q∗∗ = max{ j : there exists α > 0 such that liminfn→∞ λn rn, j:K/n > α} .

Then Hλ -(i) implies q∗ ≥ p and Hλ -(ii) implies q∗∗ ≥ p. When the sequence {θ̂ n} is
random, the statement holds with probability one.

The proof is similar to that of Lemma 2 in (Pronzato 2009b). X finite implies
that q∗ and q∗∗ > 1. Supposing that p ≥ 2, we show that assuming q∗ or q∗∗ < p
leads to a contradiction under Hλ -(i) or Hλ -(ii) respectively.

3.2 λn is bounded in (6)

When λn is bounded, for any sequence {θ̂ n} used in (6) the conditions of Th. 3
ensure the existence of n1 and α > 0 such that rn, j:K > αn for all n > n1 and all
j = 1, . . . , p. Under the additional assumption

HX -(ii): For all δ > 0 there exists ε(δ ) > 0 such that for any subset {i1, . . . , ip} of
distinct elements of {1, . . . ,K}, inf‖θ−θ̄‖≥δ ∑p

j=1[η(x(i j),θ)−η(x(i j), θ̄)]2 > ε(δ );

we thus obtain that Dn(θ , θ̄) given by (3) satisfies inf‖θ−θ̄‖≥δ Dn(θ , θ̄) > αnε(δ ),

n > n1. Therefore, θ̃ n a.s.→ θ̄ (n → ∞) from Th. 1, with θ̃ n = θ̂ n
LS in (2) or θ̂ n

ML in
(4). Since this holds for any sequence {θ̂ n} in Θ , it is true in particular when θ̃ n

is substituted for θ̂ n in (6). One can take in particular λn = λ ∗(θ̃ n), with λ ∗(θ)
the optimal Lagrange coefficient for the constrained D-optimal design problem with
parameters θ . The following condition then guarantees that Hλ -(i) is satisfied so
that Th. 3 applies and θ̃ n is strongly consistent from Th. 1.

Hλ -(i’): There exists C′ < C such that ∀θ ∈Θ , ∃ξ̂ (θ) ∈ Ξ with Φ [ξ̂ (θ),θ ]≤C′

and M[ξ̂ (θ),θ ] has full rank.

Making the following additional assumption on X

HX -(iii): λmin

[
∑p

j=1 fθ̄ (x(i j))f>̄θ (x(i j))
]
≥ γ̄ > 0 for any subset {i1, . . . , ip} of dis-

tinct elements of {1, . . . ,K},
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we then obtain the following concerning the convergence of M(ξn, θ̃ n).

Theorem 4. Suppose that the design points for n > p are generated sequentially
according to (6) with λn = λ ∗(θ̃ n) and θ̂ n = θ̃ n, the LS-estimator θ̂ n

LS in (2) or the
ML-estimator θ̂ n

ML in (4). Suppose, moreover, that the first p design points are such
that the information matrix is nonsingular for any θ ∈Θ . Then, under HX -(i-iii)
and Hλ -(i’) we have θ̃ n a.s.→ θ̄ and M(ξn, θ̃ n) a.s.→ M[ξ ∗(θ̄), θ̄ ], n → ∞, with ξ ∗(θ̄) a
constrained D-optimal design for θ̄ .

From Th. 4 we can take Cn = M1/2[ξ ∗(θ̄), θ̄ ] in Th. 2 and obtain the usual
asymptotic normality of θ̃ n for the adaptive design (6) (although the sequential
construction of the design implies that M(ξn,θ) is not the information matrix for
parameters θ ).

3.3 λn tends to infinity in (6)

For any sequence {θ̂ n} used in (6), the conditions of Th. 3 ensure the existence of n1
and α > 0 such that rn, j:K > αn/λn for all n > n1 and all j = 1, . . . , p. HX -(ii) then

implies that Dn(θ , θ̄) given by (3) satisfies
[
inf‖θ−θ̄‖≥δ Dn(θ , θ̄)

]
/(log logn) >

αnε(δ )/[λn (log logn)] for n > n1. Therefore, if λn(log logn)/n → 0 as n → ∞,
θ̃ n a.s.→ θ̄ from Th. 1. Since this holds for any sequence {θ̂ n} in Θ , it is true in partic-
ular when θ̃ n is substituted for θ̂ n in (6). (One may notice that Th. 1 provides some
indication about the rate of convergence of θ̃ n towards θ̄ : for ‖θ − θ̄‖ = δ small
enough, Dn(θ , θ̄)/n ≈ (θ − θ̄)>M(ξn, θ̄)(θ − θ̄), which is larger than αγ̄δ 2/λn
from HX -(iii); therefore, ‖θ̃ n − θ̄‖ = O(

√
λn(log logn)/

√
n) a.s.) Next theorem

indicates that when the following is satisfied in addition to Hλ -(ii):

Hλ -(iii): λn/n is non-increasing and λn(log logn)/n→ 0, n→ ∞;
Hφ : φ(x, θ̄) has a unique global minimizer in X : φ(x(i∗), θ̄) = minx∈X φ(x, θ̄) <

φ(x(i), θ̄), ∀i ∈ {1, . . . ,K}, i 6= i∗;

then {xn} tends to accumulate at the point of minimum cost for θ̄ .

Theorem 5. Suppose that the design points for n > p are generated sequentially
according to (6), where λn satisfies Hλ -(ii) and Hλ -(iii). Suppose, moreover, that
the first p design points are such that the information matrix is nonsingular for any
θ ∈Θ . Then, under HX -(i-iii) we have θ̃ n a.s.→ θ̄ and

Φ(ξn, θ̄) a.s.→ φ ∗̄θ = min
x∈X

φ(x, θ̄) , n→ ∞ .

If, moreover, Hφ is satisfied, then ξn(x(i)) a.s.→ 0 for all i 6= i∗.

Example. Suppose that η(x,θ) = [θ1/(θ1− θ2)] [exp(−θ2 x)− exp(−θ1 x)] in the
model (2) with i.i.d. errors N (0,1). The objective is to maximize η(x, θ̄) for x∈X
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consisting of 1001 points regularly spaced in [0,10]. We take φ(x,θ) = −η(x,θ)
and θ̄ = (0.7 , 0.2)>, so that η(x, θ̄) reaches its maximum value in X (approxi-
mately 0.606, indicated by a dashed line on Fig. 1) at x∗ = 2.51. The design points
are generated by (6) for n ≥ 2, with θ̂ n the LS estimator and x1 = 1.25, x2 = 6.6.
Three sequences are considered for {λn} : λ (a)

n = log2 n, λ (b)
n = n/(1 + log2 n) and

λ (c)
n = n1.1, n ≤ 1000 (notice that λ (b) < λ (a) on the horizon considered). Th. 5 is

satisfied for λ (a)
n and λ (b), but λ (c)

n increases too fast and does not insure conver-
gence of ξn to the delta measure at x∗, see Fig. 1 for a typical realization. Of course,
the behavior is even worse for the “best intention design” (also called “forced cer-
tainty equivalence” in the control literature) xk+1 = argminx∈X φ(x, θ̂ k).
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Fig. 1 Evolution of η(xn, θ̄) as a function of n for three different sequences {λn}.

Similar results are obtained when the cost φ(x, θ̄) to be minimized is not directly
related to η(x, θ̄). Consider for instance a regulation problem where the objective
is to set a function ϕ(x, θ̄) on a given target T , so that one may take φ(x,θ) as a
measure of the distance between ϕ(x,θ) and T , e.g., φ(x,θ) = [ϕ(x,θ)−T ]2. There,
“best intention design” (the “continuous reassessment method” in dose finding), or
Robbins-Monro type procedures (see, e.g., Lai and Robbins (1978)) can be used
when ϕ(x,θ) = η(x,θ). The adaptive design (6) may be convenient in more general
circumstances where the function ϕ(x,θ) to be regulated differs from η(x,θ).
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