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Abstract—This paper presents an analytical model and ex-
perimental results from a study of guiding tasks in micro-
assembly. This work is focused on the use of two fingers for
gripping microparts. The stability of the grasp when the contact
appears is investigated and strategies during the guiding task
are discussed. The contact side detection and the contact force
estimation are studied. The incremental control in static mode is
then investigated for controlling the guiding task. Experimental
setups are proposed and some experimental results are presented.

I. INTRODUCTION

The integration of MEMS (Micro Electro Mechanical Sys-
temS) and MOEMS (Micro Opto Electro Mechanical Sys-
temS) technology in commercial products is growing espe-
cially in the field of telecommunication and sensor technology
[1]. Heterogeneous microparts produced from various fabri-
cation processes are frequently used for producing complex
3D microstructures through microparts micro-assembly tasks
for example [2], [3], [4]. The use of a robotic workstation
at the microscale which comprises a micromanipulator, high
precision positioning stages, a set of visual systems and
microforce sensors is commonly practiced. Micro-assembly
of microparts is usually carried out by precise positioning but
this approach is not sufficient for all of the micro-assembly
tasks [5]. Indeed, the control of the position in a short range
does not permit the control of interaction forces between the
microgripper and the micropart . To avoid the destruction of
microparts, a control of the grasping force is often employed.
In addition, the integration of the micropositioning sensors on
the microgripper is hampered by the volume of sensors [6].
Forces dominating micromanipulation of micropart smaller
than 1 mm?® are in the range of tens of micro-Newton up to
several hundreds of micro-Newtons (when planar contacts are
considered) [7], [8]. In the literature, many studies have been
done on using the force control for improving the assembly
tasks. Due to the fragility of the objects and the microgrippers,
significant researches have been reported on controlling impact
forces [9], [10], [11], [12], [13] and on ensuring stable grasp
of microparts during micro-assembly [14], [15], [16], [17]. For
succeeding in insertion tasks, force control constitutes chosen
solutions like [18], [19] and [20]. For a complete micro-
assembly tasks based on the force control, controlling both
the gripping force and the contact force with the environment

is not yet fully available. In our work, we propose the use of
the grasp force control with two sensorized fingers for guiding
tasks consisting in the displacement of a micropart held by a
microgripper in a rail with a certain play. This task enables
the micro-assembly of reconfigurable micro-optical bench like
[21]. The paper is organized as follows. Section 2 describes
the model of sensorized grasping during micro-assembly. In
order to control the contact force, section 3 deals with the
detection of contact and the evaluation of the contact force
during the guiding task. The hybrid force/position control of
the micropart is presented in section 4. Experimental results on
the evaluation of the contact force and the applied controller
are proposed in Section 5. Finally section 6 concludes the
paper and presents future works.

II. MODEL OF SENSORIZED GRASPING

In this section, we propose a model of sensorized grasping
during the guiding task. This model enables to establish
grasping force conditions for succeding tasks and to deduce
the guiding strategy.

A. Guiding system and steps

For performing guiding tasks, the micropart is grasped by
two sensorized fingers (Fig. 1). This type of microgripper is
largely used for micro-assembly. Each finger has to move in
Y for ensuring the open/close of the microgripper. Here it is
mounted on a high resolution XY Z stages. Each finger of
the microgripper is the tip of a capacitive force sensor (S270
from FemtoTools, http://www.femtotools.com/). This compact
probe sensor has a measuring range from O up to 2000 uN
with 0.4 uN in resolution. A relative motion along X between
the micropart and the rail is generated to achieve the desired
position. The correction of the trajectory along Y ensures the
control of the contact force. The manipulated object measures
1500 pm x 1000 pgm x 100 pm.

A guiding task can be decomposed in 7 steps (Fig. 2). Step
1 is the initial situation to start the task. The fingers come in
contact with the micropart for applying a gripping force along
Y (preload force, Step 2). The pick operation is operated by
moving down the movable substrate (Step 3). The insertion of
the grasped micropart in the rail is carried out by moving up
the rail attached to the movable substrate (Step 4). Step 5 is



Correction of the trajectory along Y

Fig. 1. Principle of a guiding task in a rail

characterized by the relative displacement of the micropart and
the rail along X (guiding direction). When the contact appears
(Step 6), the trajectory correction is applied (correction of the
position in the guide along Y using force feedback). At the
desired position, fingers are moved back (opening motion) for
releasing the micropart (Step 7).
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Fig. 2. The steps which are achieved during the guiding task

B. Model of the pick

We consider a micropart with rigid body which is hold by
a sensorized microgripper (Fig. 1). The model of the grasp is
established for a static case in the Y Z plane. The microgripper
which holds a micropart is represented by two fingers (here
the force sensors) which behaviors can be modeled by a linear
spring, a linear bond and a flexible cantilever along Z (Fig. 3).
This flexibility is due to the dimensions of the cantilever that
are 3000 pm x 300 pm x 50 pm. The tips of the microgripper
are planar surfaces (50 pym x 50 pm) generating a planar
contact with the micropart. We assume that geometry defaults
(alignement of the probe: offset and tilt in XY and Y Z2)

between the two fingers of the microgripper are negligible.
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Model of the microgripper with its two fingers

Fig. 3.

The micropart is initially placed on the subtrate and main-
tained right by GelPack™ in Step 1. Each finger is moved
towards the micropart for applying the gripping force (Step
2). For succeeding in the grasping, the static equations are
derived in taking into account that the weight is negligible.
When the movable substrate is going down along Z (Step 3),
the grasping forces have to overcome adhesion forces between
the micropart and the substrate. Fig. 4 illustrates a simplified
body diagram that is used to obtain force equations and pick
condition. Lets note that F}; and F, are applied forces by
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Fig. 4. Gripping force for ensuring the grasp

Finger 1 and Finger 2 to the object along Y, F; and F,, are
forces induced to friction, F, 4, the adhesion force between
the substrate and the micropart , and y the friction coefficient.
When the equilibrium of the micropart is studied, the Coulomb
model gives:

Fyl = Fy2 (1)
le = ﬂFyl (2)
Foo = pFy 3)

The condition of the pick (removing of the contact between
the micropart and substrate) is established:

Foi+ F.o > Faan 4)

Using Eq. (2), Eq. (3), and Eq. (4), we can write:
wlyr + plys > Faan 5
When the micropart and the substrate are separated (Step 3),

the equilibrium of the micropart is obtained if the gripping
forces are equal and opposite along the same line.



C. Grasp stability

During Step 5 and Step 6, the stability of the grasp has
to be ensured. Indeed, when a contact appears, the grasp is
perturbated due to the contact force. As a result, the micropart
can slip through the fingers and can be lost. We consider
separately the contact force I’ components: I, I, and I,
and we determine the gripping force to apply according to the
contact force for ensuring the stability of the grasp.
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Fig. 5. Perturbated grasp with (a) F., (b) Fy, (c) I

1) Stability according to F, perturbation (Fig. 7(a)): Ac-
cording to the Coulomb friction, the slidding does not happen
if the tangential forces applied by the fingers are important.
The condition is 2p4 ) > F'z with Fyy = Fp = F.

2) Stability according to Fy perturbation (Fig. 7(b)): The
force F, induces the displacement of the object between
the two fingers but the object is maintained. The maximum
admissible force F), corresponds to the breaking of the fingers
due to the generated torque.

3) Stability according to F, perturbation (Fig. 7(c)): F),
induces a torque that can cause the rotation of the micropart.
To prevent from this rotation, the admissible force F}, can be
calculated. The surface in contact (between fingers and object)
is square with 50 pum of side. We consider the circle (12: radius)
with the equivalent surface (5), F),; the applied force by the
finger to the micropart, P the uniiorm pressure induced by

Fy;, dS the elementary surface, dN and d1' the elementary
normal and tangential force vector respectively (Fig. 6). Note
that ¢ is the distance of the applied force F) to the center of
the rotation and 7 is the normal unit vector.
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The condition of non sliding in a elementary considered point
Pi is

ar
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According to the elementary torque dC' (Eq. (9)), the integra-
tion for the complete surface gives Eq. (10) for one finger.

ac = p chH )
2
C = ngiuR (10)
The condition of the stability is thus:
4F,;uR
F, < =¥ 11
< —5; (11D

D. Guiding strategies

During the Step 5, the object is moved unconstrained in the
rail with a fixed velocity. When a contact on the side of the
rail happens (Step 6), there are two strategies for continuing
the task:

o Leave the contact and moved forward simultaneously. In

that case, the gripping force must comply the condition
in the Eq. (11).

« Stop the motion along X and correct the trajectory along
Y by leaving the contact. After that the manipulator can
be moved forward along X again.

According to the stability of the grasp in Eq. (11), the limite
force I, for ensuring the stable grasp according to Fy1= Fyo=
1100 pN, = 0.3, /=500 pm and R=28.2 um is estimated to
F, < 24.8 uN. Consequently, the last strategy is chosen in
the following.

III. DETECTING CONTACT DURING GUIDING TASK

The objective of this section is the contact side detection and
the contact force estimation. For this purpose, two sensorized
fingers are used and some assumptions are proposed.

A. Gripping force vs. contact force

During the guiding task, the contact between the micropart
and the rail appears and creates a force F' = F,, F,, F, at
the distance ¢. We assume that the components of F' along X
and Z are negligible. The evolution of the gripping forces (£
and Fj) is studied according to the contact force F), (see Fig.
7). The model of the microgripper shown in Fig. 3 is used.
We define (Ay;, A;) the displacement of the finger ¢ = 1,2
(points A and B) in Y and Z, A,y; the decrease along Y of
the sensor cantilever due to its flexion, F,, = F.1 = F.o the
induced force to friction along Z, c; the width of the micropart,
e the thickness of the finger, L length of the sensor cantilever,
E young module of the silicon, I the quadratic moment of the
cantilever.

A system of 5 equations enables to determine Ays, Ay,
Az = AZZ', an, and Ayf = Ayfi.



E | [0}
g |
F i
S e ; : |
Micropart —FY—;.C mea“ \
Fig. 7. Grasp before and after the apparition of Fy,

The equilibrium of forces along Y gives:

Fy=Ky(Ay — Ay1) (12)
The expression of the cantilever flexion along Z gives:
0.85F,,L>
A, =0.85Lsin(————) (13)

2.25E1

The decrease along Y of the sensor cantilever due to its flexion

gives:

0.85F,,L?
2.25E1

The torque equilibrium at the point A’ gives:

Ays = 0.85L(1 — cos( ) (14)

‘ Ey A HO’A’ = ‘ F; A HB’A’ + ’ Fzz A HB’A’
15)
Fy(d—l—e—Az) :an(cl +Ay1 +Ay2+2Ayf) (16)
+(Fy20 + KyAy2)(e — 24A;)
The condition of non slipping of the object, A_B.' = HA’ B’

gives:

4eA, —4A2 = (Ay1+A2+20, 1) +2¢1 (Ay1 + Ay +2A, )

a7
The numerical resolution of this system gives the evolution
of the gripping forces according to the applied contact force
in Fig. 8. These curves show that the gripping force on the
two fingers are not equal when the contact force is applied.
The finger on the opposite side of the contact applied the
biggest force to the micropart. Consequently, the side of the
contact can be distinguished. This model enables to predict
the behavior of the system, it will be used for the control of
the contact force.

HEEEEERE

Gripping force, pN

Fig. 8. Simulation results of gripping forces evolution according to F, with
Fy10 = Fy20= 1700 pN, =800 pm, ¢1=100 pm, e=50 pm, Ky=1000 N/m,
E= 170 GPa, L=3000 mm, w=300 pm

B. Evaluation of the contact force by two sensorized fingers

The proposed model shows that the contact force F,, can be
evaluated from the force equilibrium along the Y axis ( Eq.
(18)) by using the information from two sensorized fingers.

F,=F, —Fy (18)

Force sensors used are coupled (the measurement depend on
the force applied in the Y direction but also along Z direction).
The expression of the force on the sensorized fingers are Fi.; =
Fy1+aF,; (Finger 1) and F.o = Fy»+al’,» (Finger 2) where
« is the coupling coefficient. Consequently,

Fy: chFclfan (19)

The coupling coefficient is small (o« = 0.01 given by Fem-
toTools). F, is also small during the contact, aF, becomes
negligible thus the contact force F), can be evaluated:

Fy:Fc2_Fc1 (20)

IV. HYBRID FORCE/POSITION CONTROL OF THE OBJECT

For controlling the guiding task in automated mode, a
control of the system is established. The objective of this
control is to remove the contact using the measure of the
gripping forces. The proposed block diagram (Fig. 9) enables
to control the position in X (move forward) and to remove the
contact in Y. Indeed, X4 = [X,Y, Z] is the input position of
the 3 DOF robot, Fy; is the input contact force (F;; = 0 in our
case). The matrix of selection S enables the position control
along the X and Z axis:

1 00

0 0 O

0 01
In the following we focus on the force control loop and
propose an incremental static control (Fig. 10) for ensuring
the Force Control Law (FCL). The proposed controller enables
to overcome the tiresome setup of the proportional gain. It
is composed of a dead zone for rejecting the sensor noise
measurement (= 15 ;¢ V), the sign operator indicates the sense
of the increment, the memory operation enables the relative
positionning. Indeed the robot is a direct-drive position control
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Block diagram of the hybrid force/position control during the guiding
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Fig. 10. Details of the incremental controller (FCL)

actuated by piezo stack. The controller gives the absolute
position control along Y to the manipulator. This controller
is implemented and the experimental validation is proposed.

V. EXPERIMENTAL RESULTS

A. Measurement of the contact force F,

The objective of this section is the comparison of the
estimated contact force [} according to the assumption in
section III and the applied contact force. Consequently a
third force sensor is used instead of the rail enabling the
measurement of the contact force. Due to the obstruction of the
two fingers of the microgripper, it is not possible to use the
same sensor (S270 FemtoTools). The proposed setup needs
the modification of the sensor design by rotate in 90° the
active part of the sensor. This change necessitates welding and
calibration of the new sensor (called “perpendicular sensor”).
The calibration of this perpendicular sensor is done with the
conventional S270 FemtoTools and permits to establish the
sensitivity of the perpendicular sensor (Sp,= 1743 uN, the
stiffness is not affected).

The validation of the measurement of the contact force F)
is done by using the setup measurement shown in Fig. 11.
This is composed of two S270 mounted on the X;Y;Z; stages
which constitute the microgripper, a movable substrate (is also
mounted on the fine stage X Y;Z; Nanocube) and the perpen-
dicular sensor mounted on the X_.Y.Z. coarse stage. Fig. 12
shows the evolution of the gripping forces (F,i, Fi.2) and the
comparison of the measured applied contact force F, ,cqsured
and the estimated contact force F cstimateqd(using Eq. (20)).
The estimated force is equal to the measured force in static
part. This result validates the assumptions made in section III.
The measured force is affected by a slow dynamic part due to
the fact that we added wire and welding between the active
part of the sensor and the readout circuit.

Fig. 11.  Setup measurement of F; by using perpendicular sensor
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Fig. 12. Estimation of the contact force Fycstimated by using Fe1 and Fea
compared to the applied contact force Fymeasured

B. Validation of the incremental control

For validating the incremental control, the movable substrate
perturbates the grasped micropart when the controller is turned
off (Fig. 13). The contact force I, is not yet measured. During
this validation, the measurement is focused on:

o the generation of the perturbation by actuating Y axis,
« the observation of the gripping forces evolution,

o the estimation of the contact force F,

o the activation of the controller,

« the observation of the correction effect.

The proposed incremental control is implemented on a 1103
Dspace board with a sampling frequency Fiqmpiing = 25H 2.
The results are shown on Fig. 14. The controller is activated
and the estimated contact force decreases until the dead zone
[-20:20] pN is reached. A residual contact force is maintained
due to the dead zone but the induced friction force (along X)
is smaller than the limit force calculated in subsection II-D
(F, < 24.8 uN) then the grasp stability is ensured.



Fig. 13.  Sequence during the validation of the incremental control: 1a) and
1b) correspond to the Step 1, 2) after that the preload force is applied (Step
2), the movable substrat is moving down (Step 3), 3) the micropart is aligned
to the movable substrate, 4) the micropart is in contact with the substrate, F,
is estimated, and the correction can work

Activation of the controller

—Fel|
—Fe2||
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Time, 3

Fig. 14. Incremental control validation with step= 1 pm: (1) the variation
of the measured gripping force F.1 and Feo, (2) estimated contact force
Fy = Feo — Fe1, (3), Ye desired position of along Y and Y;,, the measured
position along Y, (4) output of the sign operation

VI. CONCLUSION

In this paper, we discussed the guiding task based on two
sensorized fingers ensuring the grasp during micro-assembly.
The complete sequence of the guiding task is studied and the
static model of two fingers grasp is proposed. The stability
conditions during the task are investigated and conduct to a
limit value of the contact force F), according to the gripping
force. According to this result, the guiding strategy is to stop
the motion along X when the contact force F}, is bigger than
the fixed limit (dead zone). It was highlighted that the use of
two sensorized fingers enables to detect the contact side and
to estimate the contact force. The contact force (F),) control
between the micropart and the rail enables to correct the
trajectory when the contact appears. An incremental control
is proposed and it produces a residual contact force due to the
dead zone which does not destabilize the grasp. Validation se-
tups and experimental results have been presented for validate
the principle of the guiding task by two sensorized fingers.
Future works will focus on complete hybrid force/position
control and dynamic force/position control of guiding tasks.
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