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Abstract

The point process N = {(Tk,Xk), k = 0, 1, 2, 3 . . .} defines the sequence of maxima

M(t) =
∨

{k:Tk≤t}

Xk. Using time and space scaling it is possible to define different

sequences of random time changed extremal processes. The convergence of such
sequences to non degenerate extremal processes is proved in case where the time
and space components of the point process are correlated.

Key words: Sequence of maxima, Random time change, Extremal processes, Limit
theorems.
AMS (2000) Subject Classification: 60G70.

1 Introduction

Let us consider the point process N = {(Tk, Xk), k = 0, 1, 2, 3 . . .} where the time points
Tk form an ordinary renewal process determined by the sequence of iid positive random
variables (r.v.) Yk, k = 1, 2, . . ., i.e.

T0 = Y0 = 0, a.s. and Tk+1 = Tk + Yk+1, k = 0, 1, 2, . . . .

Denote by N(t) = max{n : Tn ≤ t}, t ≥ 0 the corresponding counting process.

∗ Corresponding author: Faculty of Aviation, 5856 D. Mitropolia, Pleven, BULGARIA. email:
kmitov@af-acad.bg
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The space points Xk, k = 1, 2, . . . are assumed to be iid non-negative random variables,
and X0 = 0 a.s. Thus, the random vectors {(Xk, Yk), k = 1, 2, . . .} are independent
and identically distributed but the random variables in each pair are correlated. Denote
the joint cumulative distribution function(cdf) FXY (x, y) = P(Xk ≤ x, Yk ≤ y) and the
marginal cdfs by FX(x) = FXY (x,∞) and FY (y) = FXY (∞, y). Denote also F̄X(x) =
1 − FX(x), F̄Y (y) = 1 − FY (y), and F̄XY (x, y) = 1 − FX(x) − FY (y) + FXY (x, y).

Define the sequence of maxima of the space variables Xk

Mn =
n
∨

k=0

Xk, n = 0, 1, 2, . . . (1)

and the random time changed extremal process

M(t) = MN(t) =
N(t)
∨

k=0

Xk, t ≥ 0.

The weak convergence of sequences of extremal processes and extremal processes sub-
ordinated to random time has been studied extensively in the recent years. Different
functional limits are obtained in rather general settings, like multivariate space com-
ponents and non-linear normalization, see e.g. Balkema and Pancheva (1996), Silve-
strov and Teugels (1998), Pancheva (1998), Pancheva et al. (2006), Meerschaert and
Stoev (2007) and references therein. In most of the studies concerning the extremal
processes the main assumption is the independence of the time process and the space (or
magnitude) variables. The aim of this note is to prove limit theorems (Theorem 4 and
Theorem 5) for suitably scaled sequences of random time changed extremal processes
Mn(.), n = 0, 1, 2, . . . in case where the time and space components are correlated. In
order to do this we use the duality between the process {M(t), t ≥ 0} and the first
hitting time process {T (x), x ≥ 0} defined by T (x) = inf{t : M(t) > x}, x ≥ 0, or
equivalently

{T (x) ≤ t} ⇐⇒ {M(t) > x}. (2)

The pair of processes M(t) and T (x) arises naturally in the investigations of stochastic
systems that are subject to random shocks at random times. The random variable Xn

represents the magnitude of the nth shock which occurs at time Tn. Assuming that the
system fails when the magnitude of the shock is greater than the level x, the time T (x)
is then the failure time of the system. This model is well-known as the general shock
model. It is widely studied in the literature, see e.g. Shanthikumar and Sumita (1983),
Anderson (1987), Gut and Huesler (1999), Gut (2001) and references therein. In these
investigations the main object of study is the process {T (x), x ≥ 0} and its limiting
distributions as x → xF . Here and later xF denotes the right endpoint of the support of
the r.v.’s Xk, i.e. xF = sup{x : FX(x) < 1} ≤ ∞. We continue the investigation of the
process T (x) by proving a functional limit theorem for it (Theorem 3).
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2 Conditions and preliminaries

We assume one of the following conditions for the interarrival times of the renewal
sequence.

Condition 1 The mean of the interarrival times Yk is finite,

µY = E[Yn] =
∫ ∞

0
F̄Y (y)dy ∈ (0,∞).

Condition 2 The interarrival times Yk have an infinite mean, and

µY (t) =
∫ t

0
F̄Y (y)dy ∼

t1−βL(t)

Γ(2 − β)
, t → ∞, β ∈ (0, 1],

where L(.) is a function slowly varying at infinity (s.v.f.).

If Condition 1 holds then from the well-known results of renewal theory it follows that
for every t > 0,

N(tn)

n/µY

a.s.
→ t, n → ∞. (3)

If Condition 2 holds let us denote the function

r̃(t) :=
t

µY (t)Γ(2 − β)
∼

tβ

L(t)
, as t → ∞.

Its asymptotic inverse r(t), t > 0 is defined as follows (see Bingham et al. (1987),
Theorem 1.5.12)

r(r̃(t)) ∼ r̃(r(t)) ∼ t as t → ∞. (4)

The function r(t) is regularly varying with exponent 1/β ≥ 1.

These two functions provide the proper normalizations for the following limits (see e.g.
Meerschaert and Scheffler (2004))

T[nt]

r(n)
⇒ Dβ(t) and

N(nt)

r̃(n)
⇒ Wβ(t), as n → ∞, for t ≥ 0

in the Skorohod topology. Here and later ⇒ denotes the weak convergence in the space
D([0,∞)).

The process Dβ(t) is a one-sided β−stable Lévy motion, Dβ := Dβ(1) is almost surely

positive r.v. and E
[

e−λDβ

]

= e−λβ

, λ > 0. The process Wβ(t) is the first hitting time

process of Dβ(t), i.e. Wβ(t) = inf{s : Dβ(s) > t}. Its Laplace transform is

E[e−λWβ(t)] =
∞
∑

n=0

(−λtβ)n

Γ(1 + nβ)
. (5)

For more details about these processes see e.g. Meerschaert and Scheffler (2004).
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In the case when the mean interarrival time is finite there are no restrictions on the
correlation between Xk and Yk, whereas in the case when the mean interarrival time is
infinite the correlation between Xk and Yk will be specified by the following condition
(Anderson (1987)).

Condition 3 There exists a function m(x) such that m(x) → 1, x → xF , and for every
x sufficiently close to xF , the following relation holds

F̄Y (y) − F̄XY (x, y) ∼ m(x)F̄Y (y), as y → ∞.

Proposition 1 (i) (Shanthikumar and Sumita (1983), Gut and Huesler (1999)) As-
sume Condition 1. Then

T (x)

µY /F̄X(x)
d
→ ξ, as x → xF ,

where ξ is a standard exponential random variable.

(ii) (Anderson (1987)) Assume Conditions 2 and 3. Then

T (x)

r(1/F̄X(x))
d
→ ξ1/βDβ, as x → xF ,

where ξ is a standard exponential random variable independent of Dβ.

The last condition concerns the extremal limit laws for the sequence {Mn, n = 0, 1, 2, . . .}
defined by (1).

Condition 4 The sequence of random variables Xk, k = 0, 1, 2, . . . belongs to the domain
of attraction of the max-stable law G(x), i.e. there exist sequences A(n) > 0 and B(n)
such that

FX(A(n)x + B(n))n → G(x), as n → ∞,

for every x > 0.

It is well known that the limiting distribution G(x) can take one of the three standard
forms (Gumbel, Frechet or Weibull). Further, the following limit exists

M[nt] − B(n)

A(n)
⇒ E(t), as n → ∞, (6)

where E(t) is a G-extremal process, whose one dimensional distributions are P(E(t) ≤
x) = G(x)t, t > 0 (see e.g. Resnick (1987) or Lamperti (1964), Theorem 3.2).

Assume that independent copies of the G− extremal process E(t), t > 0, and the process
Wβ(t), t > 0 are given on a common probability space. Since Wβ(t) has nondecreasing
sample paths then the subordinated process

E(t) = E(Wβ(t)), t > 0 (7)

is well defined.
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Proposition 2 The subordinated process E(t), t > 0 has the following one dimensional
distributions

P(E(t) ≤ x) = E[G(x)Wβ(t)] = 1 +
∞
∑

n=1

(log G(x))ntnβ

Γ(1 + nβ)
. (8)

Proof. The proof follows immediately from the independence and (5), applying the total
probability formula.

3 Limit Theorems

Now we are ready to prove limit theorems for the processes T (x) and M(t) under the
conditions stated in the previous section. The first theorem extends the result of Gut
and Huesler (1999) (Section 4.3) to the case where the interarrival times have infinite
mean.

Theorem 3 Assume Condition 2, Condition 3 and

F̄X(x) ∼ x−αLX(x), x → ∞, (9)

for α > 0 and a s.v.f. LX(.). Then for x > 0,

T (xz)

r(1/F̄X(z))
⇒ xα/βξ1/βDβ, as z → ∞,

where ξ is a standard exponential random variable independent of Dβ.

Proof. Let x > 0, y > 0 be fixed. From (9) and the fact that r(.) is regularly varying with
exponent 1/β one gets that r(1/F̄X(z)) varies regularly with exponent α/β. Therefore

y
r(1/F̄X(z))

r(1/F̄X(xz))
→ yx−α/β as z → ∞.

Using this limit, the fact that the cdf of ξ1/βDβ is continuous, and Proposition 1 (ii) one
obtains that ((9) yields that xF = ∞)

lim
z→∞

P

(

T (xz)

r(1/F̄X(z))
≤ y

)

= lim
z→∞

P

(

T (xz)

r(1/F̄X(xz))
≤ y

r(1/F̄X(z))

r(1/F̄X(xz))

)

=P
(

ξ1/βDβ ≤ yx−α/β
)

= P
(

xα/βξ1/βDβ ≤ y
)

.

Thus, the convergence of the one dimensional distributions is proved.

The convergence of the finite dimensional distributions follows in the same way as in Gut
and Huesler (1999) (Section 4.3) under Condition 1. Furthermore, we have also that for

every fixed z > 0, the process

{

T (xz)

r(1/F̄X(z))
, x ≥ 0

}

has nondecreasing sample paths and

the limiting process
{

θ(x) := xα/βξ1/βDβ, x ≥ 0
}

is stochastically continuous. Applying

Theorem 3 of Bingham (1971) we complete the proof.
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The next two theorems establish the convergence of the sequences of maxima of a random
number of random variables to nondegenerate random time changed extremal processes.

First we consider the case when µY < ∞. Define the following sequence of maxima

Mn(t) =
M(µY nt) − B(n)

A(n)
=

N(µY nt)
∨

k=1

Xk − B(n)

A(n)
, n = 0, 1, 2, . . . .

Theorem 4 Let Conditions 1 and 4 be satisfied. Then for every t > 0

Mn(t)
d
→ E(t),

where E(t) is the G-extremal process determined in (6) and
d
→ means the convergence of

the one dimensional distributions.

Proof. Let t > 0 and x > 0 be fixed. Then from the duality relation (2) one has

P (Mn(t) ≤ x) = P (M(µY nt) ≤ A(n)x + B(n))

=P (T (A(n)x + B(n) > µY nt)

=P

(

F̄ (A(n)x + B(n))

µY
T (A(n)x + B(n)) > nF̄ (A(n)x + B(n))t

)

Condition 4 provides that

A(n)x + B(n) → ∞ and nF̄ (A(n)x + B(n)) → − log G(x), n → ∞.

These two relations and Proposition 1 (i) give

lim
n→∞

P

(

F̄ (A(n)x + B(n))

µY
T (A(n)x + B(n)) > nF̄ (A(n)x + B(n))t

)

=exp(−(−t log G(x))) = G(x)t.

Comment 1 The theorem shows that the limiting process is the same as in the case
without subordination (see (6)). This fact can be explained by the SLLN which provides
the almost surely linear increase of the indexing process N(t) (see (3) above).

Now we turn to the case when µY = ∞. In this case we define

Mn(t) =
M(r(n)t) − B(n)

A(n)
=

N(r(n)t)
∨

k=1

Xk − B(n)

A(n)
, n = 0, 1, 2, . . . ,

where r(.) is defined in (4).

Theorem 5 Let Conditions 2, 3, and 4 be satisfied. Then for every t > 0

Mn(t)
d
→ E(t)

where E(t) is the subordinated process defined in (7).
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Proof. We first prove that

lim
n→∞

P(Mn(t) ≤ x) = P(ξ1/βDβ > t(− log G(x))1/β). (10)

Let t > 0 and x > 0 be fixed. Then by the duality relation (2) it follows that

P(Mn(t) ≤ x)

=P (M(r(n)t) ≤ A(n)x + B(n)) = P (T (A(n)x + B(n)) > r(n)t)

=P





T (A(n)x + B(n))

r
(

1/F̄X(A(n)x + B(n))
) >

r(n)t

r
(

1/F̄X(A(n)x + B(n))
)



 . (11)

Condition 4 provides that, as n → ∞,

A(n)x + B(n) → ∞ and nF̄X(A(n)x + B(n)) → − log G(x). (12)

Taking in view that r(t) is regularly varying with exponent 1/β, one gets

r(n)t

r
(

1/F̄X(A(n)x + B(n))
) → t(− log G(x))1/β

as n → ∞ from the second relation in (12). Using this and the first relation there, an
application of Proposition 1 (ii) to the right hand side of (11) yields (10).

We still have to prove that the right hand sides of (10) and (8) are equivalent. It is known
that (see Meerschaert and Scheffler (2004) or Feller (1971), §13.6) Hβ(x) := P(Wβ(1) ≤
x) = P(Dβ > x−1/β). Then

P(ξ(Dβ)
β > z) =

∫ ∞

0
P(Dβ

β > z/u)dP(ξ ≤ u)

=
∫ ∞

0
P(Dβ > (u/z)−1/β)dP(ξ ≤ u) =

∫ ∞

0
Hβ(u/z)e−udu =

∫ ∞

0
Hβ(v)ze−vzdu.

An integration by parts gives that (see also (5) with t = 1)

P(ξ(Dβ)
β > z) =

∫ ∞

0
e−zvdHβ(v) =

∞
∑

n=0

(−z)n

Γ(1 + nβ)
.

This equation shows that

P(ξ1/βDβ > t(− log G(x))1/β) = P(ξ(Dβ)
β > − log(G(x))tβ)

=
∫ ∞

0
(G(x))tβudHβ(u) = E

[

G(x)tβWβ

]

= 1 +
∞
∑

n=1

(log G(x))ntnβ

Γ(1 + nβ)
,

which together with (8) completes the proof of the theorem.

Corollary 6 For t > 0, the following relation holds E(t)
d
= G←

(

e−ξ.(Dβ/t)β
)

, where

G←(.) is the inverse function of G(.).



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Proof. From (10) one has, for t > 0 and x > 0

P(E(t) ≤ x) = P
(

ξ1/βDβ > t(− log G(x))1/β
)

= P
(

ξ(Dβ/t)β > − log G(x)
)

=P
(

−ξ(Dβ/t)β < log G(x)
)

= P
(

e−ξ(Dβ/t)β

< G(x)
)

= P
(

G←
(

e−ξ(Dβ/t)β
)

< x
)

.

4 Conclusion remarks

Finally, we give some properties of the limiting process E(t)
d
= E(Wβ(t)) which follows

immediately from the known properties of the G-extremal process E(t) and the hitting
time process Wβ(t).

1. Since both E(t) and Wβ(t) (see Meerschaert and Scheffler (2004)) have nondecreasing
sample paths, the limiting process E(t), t > 0 also has nondecreasing sample paths.

2. Recall that the process Wβ(t) is β selfsimilar (see Meerschaert and Scheffler (2004))).
Then

- If G(x) = Φα(x), the G−extremal process E(t) is 1/α-selfsimilar and the compound
process E(t), t > 0 is self-similar with exponent β/α.

- If G(x) = Ψα(x), the G−extremal process E(t) is −1/α-selfsimilar and the compound
process E(t), t > 0 is self-similar with exponent −β/α.

- If G(x) = Λ(x) then it is not difficult to check directly that

P (E(tc) ≤ x) = P (E(t) + β log c ≤ x) .

3. Since the process E(t) has nondecreasing sample paths, it is possible to define its first
passage time process by the relation {τ(x) ≤ t} ⇔ {E(t) > x}. The one dimensional
distributions of τ(z) are

P(τ(x) ≤ t) = −
∞
∑

n=1

(log G(x))ntnβ

Γ(1 + nβ)
.

It is not hard to check that τ(x)
d
= θ(x) = xα/βξ1/βDβ, x > 0, where θ(x) is the limiting

process obtained in Theorem 3.

Comment 2 Meerschaert and Stoev (2007) considered similar processes in the case
where the random variables Xk and Yk in each pair are independent. Under this condition
they proved the weak convergence in Skorohod J1 topology in D(0,∞)× (−∞,∞) under
similar normalization as above. (See also Pancheva and Jordanova (2004)).
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