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A Note on Pasting Conditions for the

American Perpetual Optimal Stopping

Problem

Sören Christensen a, Albrecht Irle a

aUniversität Kiel, Mathematisches Seminar, Ludewig-Meyn-Str. 4, D-24098 Kiel

Abstract

The principles of smooth and continuous pasting play an important role in the
study of optimal stopping problems with jump processes. This principles state that
the optimal stopping boundary is selected so that the value function is smooth and
continuous respectively (depending on the behavior of the underlying process at the
boundary). Extending the results of Alili & Kyprianou (2005, Ann. Appl. Probab.,
1, 157) we show that in the case of an American perpetual put under a Lévy process
the optimal stopping point is in fact characterized as the only point that fulfills this
smooth/continuous pasting condition.

Key words: Optimal stopping, Lévy processes, American Put, smooth pasting,
continuous pasting

1 Introduction

We consider the optimal stopping problem

v(x) = sup
τ∈T

Ex(e
−qτ (K − eXτ )+), (AOOSP)

where X is a real-valued Lévy process defined on a probability space (Ω,F , P )
with filtration (Ft)t≥0, K, q > 0 and T is the set of all stopping times with
respect to the filtration (Ft)t≥0. As usual Ex denotes the expected value with
respect to the distribution of X when X0 = x. (AOOSP) is the stopping
problem connected with the pricing of an American put option in a financial
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market driven by a Lévy process (see e.g. Cont & Tankov (2004), Chapter
11.4).
The problem is well studied and solutions were published for many special
classes of Lévy processes (see e.g. Asmussen et al. (2004), Boyarchenko &
Levendroskii (2002)). It is not surprising that a first passage time of the form

τ−
y = inf{t > 0 : Xt < y}

solves the problem. This was proved by E. Mordecki in 2002 for a general Lévy
process by random-walk approximation (see Mordecki (2002)). L. Alili and
A. E. Kyprianou gave an alternative proof using fluctational theory (see Alili
& Kyprianou (2005)). Using a stochastic version of the Pecherskii-Rogozin
identity they showed that for y < log K and x ≥ y

vy(x) := Ex(e
−qτ−

y (K − e
X

τ
−

y )+)

=
E((KE(e

Xeq ) − e
x+Xeq )1{−Xeq

>x−y})

E(eXeq )
(1)

= (K − ex) +
E((e

x+Xeq − KE(e
Xeq ))1{−Xeq

≤x−y})

E(eXeq )

where X denotes the running infimum of X, i.e. X t = infs≤t Xs, and eq is an
exponentially distributed random variable with parameter q, that is indepen-
dent of X. They concluded that τ−

x∗ is an optimal stopping time, where the
optimal stopping point x∗ is given by x∗ = log KE(e

Xeq ). This implies that

v(x) = vx∗(x) =
E((KE(e

Xeq ) − e
x+Xeq )+)

E(e
Xeq )

.

Using this approach they dealt with the principles of smooth and continuous
pasting. The principle of smooth pasting was already introduced in Mikhale-
vich (1957) and has been applied in a variety of problems, ranging from
sequential analysis to mathematical finance. The principle of continuous past-
ing is more recent and was introduced in Peskir & Shiryaev (2000) and Peskir
& Shiryaev (2002) as a variational principle to solve sequential testing and
disorder problems for the Poisson process. An excellent overview is given in
Peskir & Shiryaev (2006), Chapter IV.9, and one may summarize, see the
above reference, p. 49:

”If X enters the interior of the stopping region S immediately after starting
on ∂S, then the optimal stopping point x∗ is selected so that the value func-
tion v is smooth in x∗. If X does not enter the interior of the stopping region
immediately, then x∗ is selected so that v is continuous in x∗.”

2
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In our example the stopping region S is a half-plane and using the Markov-
property of X one sees that entering S immediately means, that τ−

0 = 0 P-a.s.
In this case the point 0 is said to be regular for (−∞, 0). Alili and Kyprianou
proved that if 0 is regular for (−∞, 0), then v is differentiable at x∗ and if 0
is not regular for (−∞, 0), then v is continuous at x∗.

In the next section we will extend this result by proving that x∗ is in fact the
only ”eligible” point with this property. This result underlines the strength of
the principle and shows that it is a good idea to use the smooth/continuous
pasting condition to find a solution to an optimal stopping problem. We refer
to Peskir & Shiryaev (2006) where a wealth of applications is to be found.

2 Smooth and continuous fit

We consider the optimal stopping problem (AOOSP) as described in section 1
and use all notions given there. To make the statement in the last paragraph
precise we have to say what an ”eligible” stopping point is: We call a point
y eligible if y < log(K). This is suggestive because if y ≥ log K, we have
vy(x) = 0 for all x ∈ [log K, y] and hence y cannot be an optimal stopping
point.

Now we cover the case of continuous pasting, i.e. 0 is not regular for (−∞, 0).
First we note that 0 is regular for (−∞, 0) if and only if P (Xeq

= 0) = 0
because – using the monotonicity of t 7→ Xt – we have

P (Xeq
= 0) = 0⇔

∫ ∞

0
P (Xt = 0)qe−qtdt = 0

⇔∀t > 0 : P (Xt < 0) = 1 ⇔ 0 is regular for (−∞, 0).

The case of continuous pasting was implicitly treated in the proof of Theorem
3 in Alili & Kyprianou (2005). For the sake of completeness and because it
is easy and instructive we repeat the proof of this case here.

Theorem 1 (Continuous fit)
Suppose that y < log(K). Then vy is continuous at y if and only if 0 is regular
for (−∞, 0) or y = x∗.

PROOF. For x < y we have vy(x) = K − ex and for x ≥ y the identity (1)

3
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states

vy(x) = (K − ex) +
E((e

x+Xeq − KE(e
Xeq ))1{−Xeq

≤x−y})

E(e
Xeq )

.

So vy is continuous at y if and only if

lim
xցy

E((ex+Xeq − KE(eXeq ))1{−Xeq
≤x−y}) = 0

and by dominated convergence this is the case if and only if

P (Xeq
= 0) = 0 or ey − KE(eXeq ) = 0.

Recalling that x∗ = log KE(eXeq ) this proves the result.

The case of smooth fit is not so easy to handle. The key step is the following
result on small ball probabilities of Xeq

, that is proved by using the theory of
subadditive functions.

Lemma 2 Suppose that 0 is regular for (−∞, 0). Then

lim
xց0

P (−Xeq
≤ x)

x
> 0.

PROOF. Write φ(x) = P (−Xeq
> x) = 1 − P (−Xeq

≤ x) for x ≥ 0. Then

limxց0

P (−Xeq
≤x)

x
= −φ′(0+) and for all x, y > 0 we have by the strong Markov

property and the lack of memory property of eq

φ(x + y) =P (−Xeq
> x + y) ≥ P (τ−

x < eq,−(Xeq
− Xτ−

−x
) > y)

=E(1{τ−

−x<eq}
E(1{−(Xeq

−X
τ
−

−x

)>y}|Fτ−

x
))

=P (τ−
−x < eq)P (τ−

−y < eq) = φ(x)φ(y)

where we used that conditionally on Fτ−

x
the random variables −(Xeq

−Xτ−

−x
)

and −Xeq
have the same distribution on {τ−

−x < eq}.
We obtain that f := − log ◦φ is subadditive and because 0 is regular for
(−∞, 0) we have that limt→0 f(t) = 0. It is well known, that every function f

with these properties fulfills

f ′(0) = lim
t→0

f(t)

t
= sup

t>0

f(t)

t

4
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(see Hille & Phillips (1957), Chapter VII). Because f 6≡ 0 we have f ′(0) > 0
and hence

lim
xց0

P (−Xeq
≤ x)

x
= −φ′(0) = −(e−f )′(0) = f ′(0)e−f(0) > 0.

Now we can prove the smooth fit condition.

Theorem 3 (Smooth fit)
Suppose that y < log(K).

(i) If 0 is not regular for (−∞, 0), then vy is not differentiable at y.
(ii) If 0 is regular for (−∞, 0), then vy is differentiable at y if and only if

y = x∗.

PROOF. If 0 is not regular for (−∞, 0) and y 6= x∗, then vy is not continuous
in y (see Theorem 1), so it is in particular not differentiable.
We can assume that 0 is regular for (−∞, 0) or y = x∗ and hence vy is
continuous in particular. Write r = ey

KE(e
Xeq )

. Then r = 1 if and only if y = x∗.

For x < y we have vy(x) = K − ex and hence v′
y(y−) = −ey . The identity (1)

gives

vy(x) = (K − ex) +
E((ex+Xeq − KE(eXeq ))1{−Xeq

≤x−y})

E(e
Xeq )

=−Kr(ex−y − 1)E(e
Xeq1{−Xeq

>x−y})

=−KE((reXeq − 1)1{−Xeq
>x−y}).

Hence

vy(x) − (K − ey)

x − y
=

vy(x) − (K − rKE(e
Xeq ))

x − y

=−Kr
ex−y − 1

x − y
E(e

Xeq1{−Xeq
>x−y})

+
KE((reXeq − 1)1{−Xeq

≤x−y})

x − y
.

Let s1(x) and s2(x) denote the first and second term respectively. Then

s1(0+) = −KrE(eXeq1{−Xeq
>0})

= −KrE(eXeq ) + rKP (−Xeq
= 0) = v′

y(y−) + rKP (−Xeq
= 0).

5
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In the case that r = 1 we have limxցy s2(x − y) = 0, because

0 ≥ s2(x − y) =KE(
e

Xeq − 1

x − y
1{−Xeq

≤x−y})

=KE(
e

Xeq − 1

x − y
1{0<−Xeq

≤x−y})

≥K
ey−x − 1

x − y
P (Xeq

∈]0, x − y])
xցy
→ 0.

If r 6= 1 we can assume that 0 is regular for (−∞, 0). Hence by Lemma 2

c := limxցy

P (−Xeq
≤x−y)

x−y
> 0 exists and we have

s2(x − y) =KE

(

(reXeq − 1)
1{−Xeq

≤x−y}

x − y

)

≥K(rey−x − 1)
P (−Xeq

≤ x − y)

x − y

xցy
→ K(r − 1)c

and

s2(x − y) =KE((reXeq − 1)
1{−Xeq

≤x−y}

x − y
)

≤K(r − 1)
P (−Xeq

≤ x − y)

x − y

xցy
→ K(r − 1)c.

Hence limxցy s2(x − y) = c(r − 1), where ∞ · 0 := 0.
Putting pieces together we have

v′
y(y+) = v′

y(y−) + rKP (Xeq
= 0) + Kc(r − 1).

If 0 is irregular for (−∞, 0) we have r = 1 and hence

v′
y(y+) = v′

y(y−) + KP (Xeq
= 0) 6= v′

y(y−)

and if 0 is regular for (−∞, 0)

v′
y(y+) = v′

y(y−) + Kc(r − 1).

Because c > 0 we have v′
y(y+) = v′

y(y−) if and only if r = 1, i.e. y = x∗.

Remark 4 All statements above remain true for q = 0 when we assume that
limt→∞ Xt = ∞.

6
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3 An Application

The following application of the above results demonstrates two things: On
the one hand it shows that in some special cases it is very easy to check the
uniqueness of the smooth fit condition directly and on the other hand Theorem
3 can be used to determine the only candidate solution by a little algebra.
In the case when X is a Lévy process with mixed exponential jumps and
a Brownian part, E. Mordecki gave explicit formulas for v and and x∗ in
Mordecki (2003). Using the general identities above this is easy, because it is
known that Xeq

has a density of the form

g(y) = (
n+1
∑

k=1

ckγke
γky)1{y≤0}

where γ1, ..., γn+1 and c1, ..., cn+1 are positive constants (see Mordecki (2002)).
The identity (1) yields that for all x > y one has

vy(x) =
1

E(eXeq )

n+1
∑

i=1

ciγi

(

KE(eXeq )

γi

eγi(y−x) −
1

γi + 1
e(γi+1)y−γix

)

and hence

v′
y(y+)=

1

E(e
Xeq )

n+1
∑

i=1

ciγi(−KE(eXeq ) +
γi

γi + 1
ey).

Calculating the optimal stopping point using the smooth pasting condition is
very easy now:

v′
y(y+) = v′

y(y−)⇔−ey =
1

E(eXeq )

n+1
∑

i=1

ciγi(−KE(e
Xeq ) +

γi

γi + 1
ey)

⇔E(eXeq )ey = KE(eXeq )
n+1
∑

i=1

ciγi − (
n+1
∑

i=1

ciγi

γi + 1
γi)e

y

⇔ ey = KE(eXeq ).

Hence y = x∗ = log(KE(eXeq )) is the uniquely determined candidate for an
optimal stopping point. This reaffirms the well known fact that the principle
of smooth pasting is an effective tool to handle optimal stopping problems.
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