
HAL Id: hal-00504133
https://hal.science/hal-00504133

Submitted on 20 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Asymptotic distribution of density ratios
Sabrina Antonelli, Giuliana Regoli

To cite this version:
Sabrina Antonelli, Giuliana Regoli. Asymptotic distribution of density ratios. Statistics and Proba-
bility Letters, 2009, 79 (3), pp.289. �10.1016/j.spl.2008.08.009�. �hal-00504133�

https://hal.science/hal-00504133
https://hal.archives-ouvertes.fr


Accepted Manuscript

Asymptotic distribution of density ratios

Sabrina Antonelli, Giuliana Regoli

PII: S0167-7152(08)00400-8
DOI: 10.1016/j.spl.2008.08.009
Reference: STAPRO 5191

To appear in: Statistics and Probability Letters

Received date: 14 September 2007
Revised date: 14 August 2008
Accepted date: 20 August 2008

Please cite this article as: Antonelli, S., Regoli, G., Asymptotic distribution of density ratios.
Statistics and Probability Letters (2008), doi:10.1016/j.spl.2008.08.009

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The manuscript
will undergo copyediting, typesetting, and review of the resulting proof before it is published in
its final form. Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.spl.2008.08.009


AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

Asymptotic distribution of density ratios

Antonelli Sabrina Regoli Giuliana∗

Dipartimento di Matematica e Informatica

University of Perugia, Italy

August 14, 2008

Abstract

We find limit theorems regarding asymptotic distribution of density

ratios. These results are applied to analyze the goodness of classical

approximations. Furthermore these theorems are used in statistical in-

ference procedures to find asymptotic distribution of likelihood ratios.
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1 Introduction

This paper focuses on asymptotic behavior of density ratios. Two kinds of

random variables {Xn} are considered: absolutely continuous random variables

with density function fXn(x) and Z-valued variables with probability function

pXn(x) and density function defined as fXn(x) = pXn(⌊x⌋). Let µn = E(Xn)

and σ2
n = V (Xn) be finite; the variables Zn = Xn−µn

σn
have density functions

fZn(z) = fXn(µn + zσn)σn. We consider sequences which locally converge to

normal distribution, that is:

lim
n→∞

fZn(z) = ϕ(z), (1)

where ϕ(z) = 1√
2π

e−
1
2
z2

. In Section 2 we find some limit theorems, con-

cerning asymptotic distribution and moment convergence of density ratio or

probability ratio. In the following sections these results are applied to find

asymptotic distribution of relative error and asymptotic distribution of like-

lihood ratios for not independent sampling. From the same results, we also

derive explicit formulas for evaluating the goodness of the well known ap-

proximations: the Binomial-Hypergeometric approximation ( see, for exam-

ple,Sródka, 1963, and Ord, 1968), Poisson-Binomial, Binomial-Hypergeometric

and Poisson-Hypergeometric approximations (e. g. Burr, 1973), Negative Bi-

nomial - Polya’s distribution. Other approaches to similar approximations can

be found in Johnson et al. (1992). Our work gives a unifying approach to study

all these approximations and provides us with the asymptotic mean relative
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error, as already done in Antonelli and Regoli (2005) for the Poisson-Binomial

approximation. Furthermore in the Appendix we prove a theorem of local

asymptotic normality for Polya’s distribution.

2 Limit theorems

Consider two sequences {Xn} and {Yn}, with E(Xn) = µn, E(Yn) = µ̃n,

V (Xn) = σ2
n and V (Yn) = σ̃2

n. Let gn(z) =
fYn(µn+zσn)

fXn(µn+zσn)
and g(z) = re

1
2
z2(1−r2),

then the following Lemma holds.

Lemma 1 Suppose lim
n→∞

σn

σ̃n
= r, lim

n→∞
µn−µ̃n

σ̃n
= 0. Moreover, for every sequence

of real numbers zn converging to z, suppose lim
n→∞

fXn(µn + znσn)σn = ϕ(z)

and lim
n→∞

fYn(µ̃n + znσ̃n)σ̃n = ϕ(z). Then lim
n→∞

gn(zn) = g(z). Therefore gn(z)

uniformly converges to g(z) on compact sets.

Proof. lim
n→∞

fYn(µn+znσn)σ̃n = lim
n→∞

fYn(µ̃n+(µn−µ̃n+znσn

σ̃n
)σ̃n)σ̃n = 1√

2π
e−

1
2
z2r2

,

since lim
n→∞

zn
σn

σ̃n
= zr and lim

n→∞
µn−µ̃n

σ̃n
= 0. Hence we have: lim

n→∞
fYn(µn+znσn)

fXn(µn+znσn)
=

lim
n→∞

fYn (µn+znσn)σn
σ̃n

σ̃n

fXn(µn+znσn)σn
= re

1
2
z2(1−r2).�

Furthermore we have the following theorem.

Theorem 2 Assume the conditions of Lemma1. Let Zn = Xn−µn

σn
. Then the

sequence {gn(Zn)} converges in distribution to {g(Z)}, where Z is a standard

normal random variable. Moreover lim
n→∞

E(gn(Zn)) = E(g(Z)).

Proof. By Lemma 1, gn(z) uniformly converges to g(z) on compact sets.

Therefore the convergence in distribution of the sequence {gn(Zn)} to g (Z)

3
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follows from the observation after Theorem 5.5, p. 34, in Billingsley (1968).

In fact, for the condition lim
n→∞

fXn(µn + znσn)σn = ϕ(z), the sequence of vari-

ables {Zn} converges in distribution to the variable Z; moreover the func-

tion g is everywhere continuous and the sequence {gn} uniformly converges

on compact sets. Now let Fn be the distribution function of Zn and let F ′
n

be the distribution function of Z ′
n = Yn−µn

σn
, with E(Z ′

n) = mn = µ̃n−µn

σn

and V (Z ′
n) = σ̃2

n

σ2
n
. The variables gn(Zn) are uniformly integrable: in fact,

since gn are uniformly bounded on compact sets, it suffices to prove that

sup
n

∫

|z|>a

gn(z)dFn(z) is small for a sufficiently large. We have
∫

|z|>a

gn(z)dFn(z) =

∫

|z|>a

dF ′
n(z) = Prob(|Z ′

n| > a) ≤ Prob(|Z ′
n − mn| > a − |mn|), and, by Cheby-

shev’s inequality, we get
∫

|y|>a

dF ′
n(z) ≤ σ̃2

n

(a−|mn|)2σ2
n
≤ 2C

a2 , for a sufficiently large

and C such that | σ̃2
n

σ2
n
| < C. Therefore the uniform integrability follows. Thus,

by using, for example, Theorem 5.4, p. 32, in Billingsley (1968), it follows that

lim
n→∞

E (gn (Zn)) = E (g (Z)) .�

Remark The density function fg(Z), with r > 0 and r 6= 1, can be found

by using the fact that Z2 has chi-square distribution with one degree of free-

dom. Thus we have: fg(Z)(t) = r1/(1−r2)√
(1−r2)π ln(t/r)

t−(2−r2)/(1−r2). For 0 < r < 1,

the support is t > r, otherwise, for r > 1, the support is 0 < t < r. Fur-

thermore E(g(Z)) = 1, while the variance is finite only for r >
√

2
2

and it is

V (g(Z)) = r2√
(2r2−1)

− 1.

In the previous theorem no relationships between Xn and Yn are considered.

By adding relationships other results can be found.

4
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Put V (Yn|Xn) = σ̃n(Xn) and g̃n(z) =
fYn|Xn(µn+zσn|µn+zσn)

fXn (µn+zσn)
, then we have the

following theorem.

Theorem 3 Assume that σn

σ̃n(Xn)
converges in probability to r 6= 0, fXn(µn +

znσn)σn uniformly converges to a density function f(z) on compact sets and

fYn|Xn(Xn|Xn)σ̃n(Xn) converges in probability to a real number k 6= 0. If

Zn = Xn−µn

σn
, then {g̃n(Zn)} converges in distribution to kr

f(Z)
, where Z has

density function f .

Proof. Set wn(z) = fXn(µn + zσn)σn. Since lim
n→∞

wn(z) = f(z), the se-

quences of variables {Zn} converges in distribution to Z, whose density func-

tion is f . Furthermore the convergence of wn(z) to f is uniform on com-

pact sets, therefore wn(Z) converges in distribution to f(Z). On the other

hand, if vn(Zn) = fYn|µn+Znσn(µn + Znσn|µn + Znσn)σ̃n(µn + Znσn), vn(Zn)

and fYn|Xn(Xn|Xn)σ̃n(Xn) are identically distributed. Therefore g̃n(Zn) =

vn(Zn)σn

wn(Zn)σ̃n(µn+Znσn)
converges in distribution to g̃(Z) = kr

f(Z)
.

Remark If f(z) = ϕ(z) and k = 1√
2π

, then (2ln(g̃(Z)) − 2lnr) has chi-square

distribution with one degree of freedom.

3 Approximation of distributions

The ratio gn(z) can be used for studying the relative error in the approxi-

mation of density or probability functions. When Yn approximate Xn, the

relative error at x is | fYn(x)−fXn (x)

fXn(x)
| = | fYn (x)

fXn(x)
− 1|. Suppose {Xn} and {Yn}

5
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are two sequences which satisfy the conditions of Lemma 1. If x is written

as x(n, z) = µn + zσn, for a suitable real number z, the relative error can be

written in terms of gn(z):

hn(z) = | fYn (µn+zσn)

fXn(µn+zσn)
− 1| = |gn(z) − 1|.

Let h(z) = |g(z) − 1|, then lim
n→∞

hn(z) = h(z), for every z. Set Zn = Xn−µn

σn

and suppose Z is a standard normal random variable. Since {gn(Zn)} is uni-

formly integrable and converges in distribution to g(Z), then also {hn(Zn)}

is uniformly integrable and converges in distribution to h(Z). Therefore,

lim
n→∞

E(hn(Zn)) = E(h(Z)). In particular, the asymptotic mean relative error

is:

E(h(Z)) = 4 |Φ(y0) − Φ(y0r)| , with y0 =

√
−2 ln r

1 − r2
and r = lim

n→∞

σn

σ̃n
, (2)

where Φ is the standard normal distribution function. Obviously an approxi-

mation is better when r is closer to one.

In Antonelli and Regoli (2005) this relative error was already studied for the

Poisson-binomial approximation. In that case Xn is a binomial random vari-

able with parameters n and p and Yn is a Poisson variable with parameter

λ = np. Given p, these sequences satisfy the conditions of Lemma 1, with

r =
√

1 − p (e. g. by Theorem 3 in Feller, 1950, vol. II, p. 490). In the

same way we can study the goodness of the approximation of a distribution to

another when both densities are asymptotically normal.

In Table 1, we report the distributions and the parameters used in well known

6
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approximations.

Distribution p(x) parameters

Poisson λx

x!
e−λ λ

Binomial
(

n
x

)
px(1 − p)n−x n, p

Negative Binomial
(

m−1+x
m−1

)
qm(1 − q)x m, q

Hypergeometric
(M

x )(N−M
n−x )

(N
n)

N , M , n

Polya’s distribution
(

n
x

)B(x+ M
k

,n−x+ N−M
k

)

B(M
k

, N−M
k

)
N , M , n, k

Table 1: λ > 0, 0 < p < 1, 0 < q < 1, n, m, M , N , and k are positive

integers. B is the beta function.

In the examples outlined in the sequel formula (2) gives the asymptotic mean

relative error, computing only r.

Binomial - Hypergeometric approximation. Given α, p ∈ (0; 1), for ev-

ery natural number N , set n = ⌊αN⌋ and M = ⌊pN⌋. Consider the sequence

of hypergeometric variables {XN}, with parameters N , M and n, and the se-

quence of binomial variables {YN}, with parameters n and p. The sequences

{XN} and {YN} satisfy the conditions of Lemma 1 as N tends to infinity, with

r =
√

1 − α.

Poisson - Hypergeometric approximation. Given α, p ∈ (0; 1), for every

natural number N set n = ⌊αN⌋ and M = ⌊pN⌋. Consider the sequence

of hypergeometric variables {XN}, with parameters N , M and n, and the se-

quence of Poisson variables {YN} with parameter λ = αpN . The two sequences

7
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{XN} and {YN} satisfy the conditions of Lemma 1 as N tends to infinity, with

r =
√

(1 − α)(1 − p).

Poisson - Negative Binomial approximation. The Negative Binomial

distribution with parameters m and q may be approximated by the Poisson

distribution with parameter λ = m1−q
q

if q and m are large. Given q, as m

tends to infinity, conditions of Lemma 1 are satisfied with r = 1√
q
.

Negative Binomial - Polya approximation. The Polya’s distribution with

parameters N , M = ⌊pN⌋, k and n may be approximated by the Negative Bi-

nomial distribution with parameters m = ⌊pN
k
⌋ and q = 1

1+αk
, if n and N

are large and p is small(see, for example, Feller [1950], vol. I, p.131). Given

α, p ∈ (0; 1) and k = {0, 1, 2, ...}, for every natural number N set n = ⌊αN⌋

and M = ⌊pN⌋. As N tends to infinity, the Polya’s distribution tends to Nor-

mal distribution (the proof is provided in the Appendix). Polya’s and Negative

Binomial distributions satisfy the conditions of Lemma 1, with r =
√

1 − p.

The expression of r is given for each approximation in Table 2.

Approximation r

Binomial - Hypergeometric
√

1 − α

Poisson - Hypergeometric
√

(1 − α)(1 − p)

Poisson - Negative Binomial 1√
q

Negative Binomial - Polya
√

1 − p

Table 2: the expression of r for each approximation.

8
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Formula (2) and expression of r suggest comparison among approximations.

Given a hypergeometric variable X of parameters N , M = ⌊pN⌋ and n =

⌊αN⌋ the binomial approximation with parameters n and p is better than Pois-

son approximation with parameter λ = αpN , since
√

1 − α >
√

(1 − α)(1 − p).

In particular, for α < 0.1, the mean relative error is less than 0.06(see Table

5). Since Hypergeometric distribution is unchanged by interchanging M and

n, the approximation improves by using a binomial with parameters M and

α when p < α. Furthermore when α and p are both close to 1, it is bet-

ter to approximate n − X by using a binomial distribution with parameters

⌊min((1 − p)N ; (1 − α)N)⌋ and max((1 − p); (1 − α)), as pointed out also in

Johnson at al., pag. 258.

Numerical results concerning Poisson -binomial approximation are provided in

Antonelli and Regoli (2005). Numerical results for the other approximations

are shown in the following tables.

Binomial - Hypergeometric approximation

9
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Binomial Hypergeometric Relative

x n = 6 and p = 0.5 N = 60, M = 30, n = 6 error h(z)

0 0.0156 0.0119 0.3174 0.3167

1 0.0938 0.0854 0.0978 0.0975

2 0.2344 0.2381 0.0157 0.0161

3 0.3125 0.3293 0.0509 0.0513

4 0.2344 0.2381 0.0157 0.0161

5 0.0938 0.0854 0.0978 0.0975

6 0.0156 0.0119 0.3174 0.3167

Table 4: relative error and pointwise approximation h(z), with z = x−µ
σ

,

µ = 3 and σ2 = 81
59

.

α N = 50 N = 80 N = 100 E(h(Z))

0.05 0.0204 0.0194 0.0256 0.0248

0.10 0.0526 0.0515 0.0518 0.0510

0.20 0.1095 0.1042 0.1049 0.1079

Table 5: mean relative error and asymptotic mean relative error E(h(Z)).

Binomial with n = αN , p = 0.5 and Hypergeometric with N , M = 0.5N ,

n = αN .

Poisson - Hypergeometric approximation

10



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

α N = 50 N = 80 N = 100 E(h(Z))

0.05 0.0566 0.0670 0.0722 0.0758

0.10 0.0967 0.1084 0.1154 0.1019

0.20 0.1781 0.1625 0.1525 0.1586

Table 6: mean relative error and asymptotic mean relative error E(h(Z)).

Poisson with λ = 0.1αN and Hypergeometric with N , M = 0.1N , n = αN .

Poisson - Negative Binomial approximation

q m = 50 m = 80 m = 100 E(h(Z))

0.80 0.1085 0.1083 0.1081 0.1079

0.90 0.0522 0.0516 0.0510 0.0510

0.95 0.0259 0.0254 0.0253 0.0248

Table 7: mean relative error and asymptotic mean relative error E(h(Z)).

Poisson with λ = m1−q
q

and Negative Binomial with m, q.

Negative Binomial - Polya approximation

p N = 50 N = 80 N = 100 E(h(Z))

0.05 0.2358 0.0298 0.0280 0.0248

0.10 0.0578 0.0545 0.0525 0.0510

0.20 0.1155 0.1095 0.1098 0.1079

Table 8: mean relative error and asymptotic mean relative error E(h(Z)).

Negative Binomial with m = ⌊pN
k
⌋ and q = 1

1+0.3
and Polya’s distribution

with N , M = pN , n = 0.3N , k = 1.

11
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4 Likelihood ratio

Theorem 3 may be used in statistical inference procedures to find the asymp-

totic distribution of a likelihood ratio. Suppose a sample of size n has a

distribution which depends on an unknown parameter θ. Consider a suffi-

cient statistic Xn with density (or probability function) fXn(x; θ). Let θ̂n be

a function of Xn and let Yn be a random variable whose conditional density

(or probability function), given Xn, is fXn(x; θ̂n). We are tempted to use the

last result of Section 2 in order to find the limit distribution of the likelihood

ratio ĝn(x) =
fXn (x;bθn)

fXn (x;θ)
. For instance, it is straightforward to check that the

assumptions of Theorem 3 are verified when Xn is the observation sum of in-

dependent bernoulli variables, with unknown parameter θ = p, and θ̂n is the

maximum likelihood estimate of p, that is the sample mean. In this case The-

orem 3 provides us with another proof of the well known result that 2ln(ĝ) is

asymptotically distributed as a chi-squared with one degree of freedom. But

Theorems 3 may be used also when observations are not independent and

identically distributed. Here, as a particular case, we shall analyze the sample

observations coming from a Polya’s urn scheme, with N , k, n known and un-

known parameter θ = M
N

. The observations sum Xn is a sufficient statistic for

θ.

Setting θ̂n = Xn

n
, Theorem 3 may be applied, as it is proved in the following

proposition.

12
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Proposition 4 Let β > 1, set Xn a Polya’s random variable with parameters

N = βn, pN , k and n. Furthermore suppose Yn, given Xn, is conditionally

distributed as a Polya’s random variable with parameters N , θ̂nN , k and n.

Then 2ln(g̃n) is asymptotically distributed as a chi-squared with one degree of

freedom.

Proof. We verify all assumptions of Theorem 3. Since E(Xn

n
) = p and

V (Xn

n
) = p(1−p)(N+nK)

n2(N+k)
, then Prob(|Xn

n
− p| > ε) 6

p(1−p)(N+nK)
ε2n2(N+k)

. As N = βn,

then Xn

n
converges in probability to p. Therefore V (Xn)

V (Yn|Xn)
converges in probabil-

ity to 1, being V (Yn|Xn) =
Xn
n

(1−Xn
n

)(N+nK)

(N+k)
. Set E(Xn) = µn and V (Xn) = σ2

n.

The density of Xn−µn

σn
uniformly converges to the normal density on compact

sets, as it is proved in the Appendix. Now we verify the last assumption

of Theorem 3. Set hn(t; s) = pYn|ns(ns + t
√

V (Yn|ns)|ns)
√

V (Yn|ns). Since

hn(t; s) is the density of the standardized Polya’s random variable with pa-

rameters N , sN , k and n, then hn(t; s) converges to ϕ(t) for every s ∈ (0; 1).

Moreover, as proved in the Appendix, the convergence to normal density

is uniform on compact sets also with respect to s. Therefore hn(0; Xn

n
) =

pYn|Xn(Xn|Xn)
√

V (Yn|Xn) converges in probability to ϕ(0). Hence all the as-

sumptions of Theorem 3 are verified and the thesis follows.�

Note that both θ̂n and the maximum likelihood estimate of θ converge in

probability to θ (see Corollary 6 in the Appendix). Hence a test based on the

likelihood ratio of Proposition 4 may replace the maximum likelihood ratio

test.

13
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Appendix

Normal and Polya’s distribution. Polya’s urn model and its extensions

are widely studied in literature also from the asymptotic point of view (see,

for example, Bai and Hu, 2005, and their references). Polya’s distribution is a

Generalized Hypergeometric distribution studied by Kemp and Kemp (1956).

Hida and Akahira (2003) provided a normal approximation of some type of

Generalized Hypergeometric distributions, which do not include Polya’s dis-

tribution.

Here we give another asymptotic result: we prove the convergence of the

Polya’s density to normal density, underlining that this convergence is uni-

form on compact sets with respect to two parameters.

Theorem 5 Given α, p ∈ (0; 1) and k = {0, 1, 2, ...}, consider Polya’s proba-

bility function:

pXN
(x) =

(
n

x

)
B(x + M

k
, n − x + N−M

k
)

B(M
k
, N−M

k
)

,

where n = ⌊αN⌋, M = ⌊pN⌋. Then, given two sequences of real numbers

zN converging to z and pN converging to p ∈ (0; 1), the following limit holds:

lim
N→∞

pXN
(⌊µN+zNσN⌋)σN = ϕ(z), where µN = αpNN , σN =

√
αpNqNN N+αkN

N+k

14
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and qN = 1 − pN . Therefore the convergence is uniform on compact sets both

in z and in p.

Proof. Set:

fN(x) =
Γ(n+1)Γ(M

k
+x)Γ(N−M

k
+n−x)Γ(N

k
)

Γ(x+1)Γ(n−x+1)Γ(M
k

)Γ(N−M
k

)Γ(N
k

+n)
, (3)

where Γ is the gamma function. Note that if x is a natural number fN (x) =

pXN
(x). Put x = µN + zNσN and note that x → ∞ as N → ∞. Furthermore,

for every sequence of real numbers zN converging to z, 0 ≤ x ≤ n, for N

sufficiently large. Writing n and M as a function of N , it follows that every

gamma argument in (3) tends to infinity as N → ∞. Therefore for all gamma

functions we can use the Stirling’s formula Γ(ν +1) ∼
√

2πνν+ 1
2 e−ν , where the

notation uν ∼ vν stands for lim
ν→∞

uν

vν
= 1. For example

Γ(n + 1) = Γ(⌊αN⌋ + 1) ∼
√

2παn+ 1
2 Nn+ 1

2

(
1 + ⌊αN⌋−αN

αN

)n+ 1
2
e−n,

and

Γ(n − x + 1) = Γ(⌊αN⌋ − αpNN − zNc
√

N + 1),

Γ(n − x + 1) ∼
√

2παn−x+ 1
2 q

n−x+ 1
2

N Nn−x+ 1
2

(
1 − zN c− ⌊αN⌋−αN√

N

αqN

√
N

)n−x+ 1
2

e−n+x,

where c = σN√
N

. Replacing all gamma functions in (3) with the analogous ex-

pressions, we get:

fN(x) ∼ 1√
2πσN

(1+a0)b0 (1+a1)b1 (1−a2)b2 (1−a3)b3

(1+a4)b4 (1−a5)b5 (1−a6)b6 (1−a7)b7 (1−a8)b8
,

where a0 = ⌊αN⌋−αN
αN

, a1 =
zNc− 1√

N
+

⌊pN⌋−pN N

k
√

N
pN
k

(1+αk)
√

N
, a2 =

zN c+ 1√
N

+
⌊pN⌋−pN N

k
√

N
− ⌊αN⌋−αN√

N
qN
k

(1+αk)
√

N
,

a3 = 1
N
k

, a4 = zNc

αpN

√
N

, a5 =
zNc− ⌊αN⌋−αN√

N

αqN

√
N

, a6 =
1− ⌊pN⌋−pN N

k
pN N

k

, a7 =
1+

⌊pN⌋−pN N

k
qN N

k

,
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a8 = 1−(⌊αN⌋−αN)
N(1+αk)

k

, and b0 = ⌊αN⌋+ 1
2
, b1 = pNN

k
(1+αk)+zNc

√
N + ⌊pN⌋−pNN

k
−

1
2
, b2 = qN N

k
(1 + αk) − zNc

√
N − ⌊pN⌋−pN N

k
+ (⌊αN⌋ − αN) − 1

2
, b3 = N

k
− 1

2
,

b4 = αpNN + zNc
√

N + 1
2
, b5 = αqNN − zNc

√
N + (⌊αN⌋ − αN) + 1

2
, b6 =

pNN
k

+ ⌊pN⌋−pN N
k

− 1
2
, b7 = qNN

k
− ⌊pN⌋−pNN

k
− 1

2
, b8 = N(1+αk)

k
+(⌊αN⌋−αN)− 1

2
.

As N → ∞, pN tends to p, c tends to
√

αpq(1 + αk) and ai tends to 0, for

every i = 0, 1, ..., 8. It is convenient to write (1 + ai)
bi = exp(bi(ln(1 + ai))),

for every i = 0, 1, ..., 8. Use Taylor’s expansion of ln(1 + ai), for every i: for

example

b1(ln(1 + a1)) ∼ z2
Nc2

2
pN
k

(1+αk)
+ zNc

√
N + ⌊pN⌋−pNN

k
− 1.

After tedious algebraical calculations, we obtain the simpler formula:

fN(x) ∼ 1√
2πσN

exp
(
−1

2

z2
Nc2

αpN qN (1+αk)

)
.

Now fN(x) ∼ pXN
(⌊x⌋), since pXN

(⌊x⌋) = fN(x(1 + ⌊x⌋−x
x

)) and ⌊x⌋−x
x

tends to

0 as N → ∞. Therefore:

lim
N→∞

pXN
(⌊µN + zNσN⌋)σN = lim

N→∞
1√

2πσN
exp

(
−1

2

z2
N c2

αpNqN (1+αk)

)
σN = ϕ(z).�

Remark. In the previous theorem we have the same limit if we use the mode

of XN instead of µN .

Corollary 6 Let p̂N be the maximum likelihood estimate of p and θ̂N = XN

n
,

with α = n
N

. For α < 1
k
, when 2 ≤ XN ≤ n− 2 then |θ̂N − p̂N | < 1

n
. Therefore

p̂N converges in probability to p.
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Proof. Consider the Polya’s probability function as a function of p:

pXN
(x; p) =

(
n
x

)B(x+ pN
k

,n−x+ N−pN
k

)

B(pN
k

, N−pN
k

)
=

=
(

n
x

)p(p+ k
N )···(p+(x−1) k

N )(1−p)(1−p+ k
N )···(1−p+(n−x−1) k

N )
(1+ k

N )···(1+(n−1) k
N )

.

Set d(p) =
∂ ln(pXN

(x;p))
∂p

=
x−1∑
i=0

1
p+i k

N

−
n−x−1∑

j=0

1
1−p+j k

N

. If 2 ≤ x ≤ n − 2 and

α < 1
k

then αk + 1 < x < n − 1 − αk. By using 1
b+at

≤ 1
b+a⌊t⌋ ≤ 1

b+a(t−1)
, for

t ≥ 0 and 0 ≤ a < b, d( x
n
− 1

n
) ≥ n

x−1∫

0

1
x−1+αkt

dt− n
n−x∫

0

1
n−x+1+αk(t−1)

dt ≥ 0 and

d( x
n

+ 1
n
) ≤ n

x∫
0

1
x+1+αk(t−1)

dt − n
n−x−1∫

0

1
n−x−1+αkt

dt ≤ 0. Hence, when XN = x,

the maximum likelihood p̂N ∈
[

x
n
− 1

n
; x

n
+ 1

n

]
and the first assertion follows.

For asymptotic normality of pXN
the probability of {XN < 2}∪{XN > n− 2}

converges to 0. Therefore |θ̂N − p̂N | → 0 in probability. Since θ̂N converges in

probability to p , then p̂N converges in probability to p.
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