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We find limit theorems regarding asymptotic distribution of density ratios. These results are applied to analyze the goodness of classical approximations. Furthermore these theorems are used in statistical inference procedures to find asymptotic distribution of likelihood ratios.

Introduction

This paper focuses on asymptotic behavior of density ratios. Two kinds of random variables {X n } are considered: absolutely continuous random variables with density function f Xn (x) and Z-valued variables with probability function p Xn (x) and density function defined as f Xn (x) = p Xn (⌊x⌋). Let µ n = E(X n ) and σ 2 n = V (X n ) be finite; the variables Z n = Xn-µn σn have density functions f Zn (z) = f Xn (µ n + zσ n )σ n . We consider sequences which locally converge to normal distribution, that is:

lim n→∞ f Zn (z) = ϕ(z), (1) 
where ϕ(z) = 1 √ 2π e -1 2 z 2 . In Section 2 we find some limit theorems, concerning asymptotic distribution and moment convergence of density ratio or probability ratio. In the following sections these results are applied to find asymptotic distribution of relative error and asymptotic distribution of likelihood ratios for not independent sampling. From the same results, we also derive explicit formulas for evaluating the goodness of the well known approximations: the Binomial-Hypergeometric approximation ( see, for example, [START_REF] Sródka | On approximations of hypergeometric distribution[END_REF][START_REF] Ord | Approximations to distribution functions which are hypergeometric series[END_REF]), Poisson-Binomial, Binomial-Hypergeometric and Poisson-Hypergeometric approximations (e. g. [START_REF] Burr | Some approximate relations between terms of the hypergeometric, binomial and Poisson distributions[END_REF], Negative Binomial -Polya's distribution. Other approaches to similar approximations can be found in [START_REF] Johnson | Univariate Discrete Distributions[END_REF]. Our work gives a unifying approach to study all these approximations and provides us with the asymptotic mean relative
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error, as already done in [START_REF] Antonelli | On the Poisson-binomial relative error[END_REF] for the Poisson-Binomial approximation. Furthermore in the Appendix we prove a theorem of local asymptotic normality for Polya's distribution.

Limit theorems

Consider two sequences {X n } and

{Y n }, with E(X n ) = µ n , E(Y n ) = μn , V (X n ) = σ 2 n and V (Y n ) = σ2 n . Let g n (z) = f Yn (µn+zσn)
f Xn (µn+zσn) and g(z) = re uniformly converges to g(z) on compact sets.

Proof. 

lim n→∞ f Yn (µ n +z n σ n )σ n = lim n→∞ f Yn (μ n +( µn-μn+znσn σn )σ n )σ n = 1 √ 2π e -1 2 z 2 r 2 ,
f Xn (µn+znσn) = lim n→∞ f Yn (µn+znσn) σn σn σn f Xn (µn+znσn)σn = re 1 2 z 2 (1-r 2 ) .
Furthermore we have the following theorem.

Theorem 2 Assume the conditions of Lemma1. Let Z n = Xn-µn σn . Then the

sequence {g n (Z n )} converges in distribution to {g(Z)}, where Z is a standard normal random variable. Moreover lim n→∞ E(g n (Z n )) = E(g(Z)).
Proof. By Lemma 1, g n (z) uniformly converges to g(z) on compact sets.

Therefore the convergence in distribution of the sequence {g n (Z n )} to g (Z)
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follows from the observation after Theorem 5.5, p. 34, in [START_REF] Billingsley | Convergence of Probability Measures[END_REF].

In fact, for the condition lim g n (z)dF n (z) is small for a sufficiently large. We have 

n→∞ f Xn (µ n + z n σ n )σ n = ϕ(z),
|z|>a g n (z)dF n (z) = |z|>a dF ′ n (z) = Prob(|Z ′ n | > a) ≤ Prob(|Z ′ n -m n | > a -|m n |),
E (g n (Z n )) = E (g (Z)) .
Remark The density function f g(Z) , with r > 0 and r = 1, can be found by using the fact that Z 2 has chi-square distribution with one degree of freedom. Thus we have:

f g(Z) (t) = r 1/(1-r 2 ) √ (1-r 2 )π ln(t/r) t -(2-r 2 )/(1-r 2 ) . For 0 < r < 1, the support is t > r, otherwise, for r > 1, the support is 0 < t < r. Fur- thermore E(g(Z)) = 1, while the variance is finite only for r > √ 2
2 and it is

V (g(Z)) = r 2 √ (2r 2 -1)
-1.

In the previous theorem no relationships between X n and Y n are considered.

By adding relationships other results can be found.
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Put V (Y n |X n ) = σn (X n ) and gn (z) = f Yn|Xn (µn+zσn|µn+zσn) f Xn (µn+zσn)
, then we have the following theorem.

Theorem 3 Assume that σn σn(Xn) converges in probability to r = 0, f Xn (µ n + z n σ n )σ n uniformly converges to a density function f (z) on compact sets and

f Yn|Xn (X n |X n )σ n (X n ) converges in probability to a real number k = 0. If Z n = Xn-µn σn , then {g n (Z n )} converges in distribution to kr f (Z)
, where Z has

density function f . Proof. Set w n (z) = f Xn (µ n + zσ n )σ n . Since lim n→∞ w n (z) = f (z)
, the sequences of variables {Z n } converges in distribution to Z, whose density function is f . Furthermore the convergence of w n (z) to f is uniform on compact sets, therefore w n (Z) converges in distribution to f (Z). On the other

hand, if v n (Z n ) = f Yn|µn+Znσn (µ n + Z n σ n |µ n + Z n σ n )σ n (µ n + Z n σ n ), v n (Z n ) and f Yn|Xn (X n |X n )σ n (X n ) are identically distributed. Therefore gn (Z n ) = vn(Zn)σn wn(Zn)σn(µn+Znσn) converges in distribution to g(Z) = kr f (Z) . Remark If f (z) = ϕ(z) and k = 1 √ 2π , then (2ln(g(Z)) -2lnr) has chi-square
distribution with one degree of freedom.

Approximation of distributions

The ratio g n (z) can be used for studying the relative error in the approximation of density or probability functions. When Y n approximate X n , the relative error at

x is | f Yn (x)-f Xn (x) f Xn (x) | = | f Yn (x) f Xn (x) -1|. Suppose {X n } and {Y n }
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are two sequences which satisfy the conditions of Lemma 1. If x is written as x(n, z) = µ n + zσ n , for a suitable real number z, the relative error can be written in terms of g n (z):

h n (z) = | f Yn (µn+zσn) f Xn (µn+zσn) -1| = |g n (z) -1|. Let h(z) = |g(z) -1|, then lim n→∞ h n (z) = h(z), for every z. Set Z n = Xn-µn σn
and suppose Z is a standard normal random variable. Since {g n (Z n )} is uniformly integrable and converges in distribution to g(Z), then also {h n (Z n )} is uniformly integrable and converges in distribution to h(Z). Therefore,

lim n→∞ E(h n (Z n )) = E(h(Z)).
In particular, the asymptotic mean relative error is:

E(h(Z)) = 4 |Φ(y 0 ) -Φ(y 0 r)| , with y 0 = -2 ln r 1 -r 2 and r = lim n→∞ σ n σn , (2) 
where Φ is the standard normal distribution function. Obviously an approximation is better when r is closer to one.

In [START_REF] Antonelli | On the Poisson-binomial relative error[END_REF] this relative error was already studied for the Poisson-binomial approximation. In that case X n is a binomial random variable with parameters n and p and Y n is a Poisson variable with parameter λ = np. Given p, these sequences satisfy the conditions of Lemma 1, with r = √ 1p (e. g. by Theorem 3 in Feller, 1950, vol. II, p. 490). In the same way we can study the goodness of the approximation of a distribution to another when both densities are asymptotically normal.

In Table 1, we report the distributions and the parameters used in well known
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approximations.

Distribution p(x) parameters

Poisson

λ x
x! e -λ λ Binomial Poisson -Negative Binomial approximation. The Negative Binomial distribution with parameters m and q may be approximated by the Poisson distribution with parameter λ = m 1-q q if q and m are large. Given q, as m tends to infinity, conditions of Lemma 1 are satisfied with r = 1 √ q .

n x p x (1 -p) n-x n, p Negative Binomial m-1+x m-1 q m (1 -q) x m, q Hypergeometric ( M x )( N-M n-x ) ( N n ) N, M, n Polya's distribution n x B(x+ M k ,n-x+ N-M k ) B( M k , N-M k ) N, M, n, k Table 1: λ > 0, 0 < p < 1, 0 < q < 1, n, m
Negative Binomial -Polya approximation. The Polya's distribution with parameters N, M = ⌊pN⌋, k and n may be approximated by the Negative Binomial distribution with parameters m = ⌊ pN k ⌋ and q = 1 1+αk , if n and N are large and p is small(see, for example, [START_REF] Feller | An Introduction to Probability Theory and Its Applications[END_REF], vol. I, p.131). Given α, p ∈ (0; 1) and k = {0, 1, 2, ...}, for every natural number N set n = ⌊αN⌋ and M = ⌊pN⌋. As N tends to infinity, the Polya's distribution tends to Normal distribution (the proof is provided in the Appendix). Polya's and Negative Binomial distributions satisfy the conditions of Lemma 1, with r = √ 1p.

The expression of r is given for each approximation in Table 2.

Approximation r

Binomial -Hypergeometric

√ 1 -α Poisson -Hypergeometric (1 -α)(1 -p) Poisson -Negative Binomial 1 √ q Negative Binomial -Polya √ 1 -p
Table 2: the expression of r for each approximation.

Formula (2) and expression of r suggest comparison among approximations.

Given a hypergeometric variable X of parameters N, M = ⌊pN⌋ and n = ⌊αN⌋ the binomial approximation with parameters n and p is better than Poisson approximation with parameter λ = αpN, since

√ 1 -α > (1 -α)(1 -p).
In particular, for α < 0.1, the mean relative error is less than 0.06(see Table 5). Since Hypergeometric distribution is unchanged by interchanging M and n, the approximation improves by using a binomial with parameters M and α when p < α. Furthermore when α and p are both close to 1, it is better to approximate n -X by using a binomial distribution with parameters

⌊min((1 -p)N; (1 -α)N)⌋ and max((1 -p); (1 -α))
, as pointed out also in Johnson at al.,pag. 258.

Numerical results concerning Poisson -binomial approximation are provided in [START_REF] Antonelli | On the Poisson-binomial relative error[END_REF]. Numerical results for the other approximations are shown in the following tables.

Binomial -Hypergeometric approximation
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Binomial Hypergeometric Relative

x n = 6 and p = 0.5 N = 60, M = 30, n = 6 error h(z) Table 7: mean relative error and asymptotic mean relative error E(h(Z)).

0
Poisson with λ = m 1-q q and Negative Binomial with m, q.

Negative Binomial -Polya approximation Negative Binomial with m = ⌊ pN k ⌋ and q = 1 1+0.3 and Polya's distribution with N, M = pN, n = 0.3N, k = 1.

p N = 50 N = 80 N = 100 E(h(Z)) 0.
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4 Likelihood ratio Theorem 3 may be used in statistical inference procedures to find the asymptotic distribution of a likelihood ratio. Suppose a sample of size n has a distribution which depends on an unknown parameter θ. Consider a sufficient statistic X n with density (or probability function) f Xn (x; θ). Let θ n be a function of X n and let Y n be a random variable whose conditional density (or probability function), given X n , is f Xn (x; θ n ). We are tempted to use the last result of Section 2 in order to find the limit distribution of the likelihood θ) . For instance, it is straightforward to check that the assumptions of Theorem 3 are verified when X n is the observation sum of independent bernoulli variables, with unknown parameter θ = p, and θ n is the maximum likelihood estimate of p, that is the sample mean. In this case Theorem 3 provides us with another proof of the well known result that 2ln( g) is asymptotically distributed as a chi-squared with one degree of freedom. But Theorems 3 may be used also when observations are not independent and identically distributed. Here, as a particular case, we shall analyze the sample observations coming from a Polya's urn scheme, with N, k, n known and unknown parameter θ = M N . The observations sum X n is a sufficient statistic for θ.

ratio g n (x) = f Xn (x; b θn) f Xn (x;
Setting θ n = Xn n , Theorem 3 may be applied, as it is proved in the following proposition.
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and q N = 1p N . Therefore the convergence is uniform on compact sets both in z and in p.

Proof. Set:

f N (x) = Γ(n+1)Γ( M k +x)Γ( N-M k +n-x)Γ( N k ) Γ(x+1)Γ(n-x+1)Γ( M k )Γ( N-M k )Γ( N k +n) , (3) 
where Γ is the gamma function. Note that if x is a natural number 

f N (x) = p X N (x). Put x = µ N + z N σ N and note that x → ∞ as N → ∞.
Γ(n + 1) = Γ(⌊αN⌋ + 1) ∼ √ 2πα n+ 1 2 N n+ 1 2 1 + ⌊αN ⌋-αN αN n+ 1 2 e -n , and 
Γ(n -x + 1) = Γ(⌊αN⌋ -αp N N -z N c √ N + 1), Γ(n -x + 1) ∼ √ 2πα n-x+ 1 2 q n-x+ 1 2 N N n-x+ 1 2 1 - z N c-⌊αN⌋-αN √ N αq N √ N n-x+ 1 2 e -n+x ,
where c = σ N √ N . Replacing all gamma functions in (3) with the analogous expressions, we get:

f N (x) ∼ 1 √ 2πσ N (1+a 0 ) b 0 (1+a 1 ) b 1 (1-a 2 ) b 2 (1-a 3 ) b 3 (1+a 4 ) b 4 (1-a 5 ) b 5 (1-a 6 ) b 6 (1-a 7 ) b 7 (1-a 8 ) b 8 , where a 0 = ⌊αN ⌋-αN αN , a 1 = z N c-1 √ N + ⌊pN⌋-p N N k √ N p N k (1+αk) √ N , a 2 = z N c+ 1 √ N + ⌊pN⌋-p N N k √ N -⌊αN⌋-αN √ N q N k (1+αk) √ N , a 3 = 1 N k , a 4 = z N c αp N √ N , a 5 = z N c- ⌊αN⌋-αN √ N αq N √ N , a 6 = 1- ⌊pN⌋-p N N k p N N k , a 7 = 1+ ⌊pN⌋-p N N k q N N k , A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT a 8 = 1-(⌊αN ⌋-αN ) N(1+αk) k
, and

b 0 = ⌊αN⌋+ 1 2 , b 1 = p N N k (1+αk)+z N c √ N + ⌊pN ⌋-p N N k - 1 2 , b 2 = q N N k (1 + αk) -z N c √ N -⌊pN ⌋-p N N k + (⌊αN⌋ -αN) -1 2 , b 3 = N k -1 2 , b 4 = αp N N + z N c √ N + 1 2 , b 5 = αq N N -z N c √ N + (⌊αN⌋ -αN) + 1 2 , b 6 = p N N k + ⌊pN ⌋-p N N k -1 2 , b 7 = q N N k -⌊pN ⌋-p N N k -1 2 , b 8 = N (1+αk) k +(⌊αN⌋-αN)-1 2 .
As N → ∞, p N tends to p, c tends to αpq(1 + αk) and a i tends to 0, for every i = 0, 1, ..., 8. It is convenient to write (1 + a i ) b i = exp(b i (ln(1 + a i ))),

for every i = 0, 1, ..., 8. Use Taylor's expansion of ln(1 + a i ), for every i:

for example b 1 (ln(1 + a 1 )) ∼ z 2 N c 2 2 p N k (1+αk) + z N c √ N + ⌊pN ⌋-p N N k -1.
After tedious algebraical calculations, we obtain the simpler formula: 1+αk) . Now f N (x) ∼ p X N (⌊x⌋), since p X N (⌊x⌋) = f N (x(1 + ⌊x⌋-x x )) and ⌊x⌋-x

f N (x) ∼ 1 √ 2πσ N exp -1 2 z 2 N c 2 αp N q N (
x tends to 0 as N → ∞. Therefore: 1+αk) σ N = ϕ(z).

lim N →∞ p X N (⌊µ N + z N σ N ⌋)σ N = lim N →∞ 1 √ 2πσ N exp -1 2 z 2 N c 2 αp N q N (
Remark. In the previous theorem we have the same limit if we use the mode of X N instead of µ N .

Corollary 6 Let p N be the maximum likelihood estimate of p and θ N = X N n , with α = n N . For α < 1 k , when 2 ≤ X N ≤ n -2 then | θ Np N | < 1 n . Therefore p N converges in probability to p.

  Moreover, for every sequence of real numbers z n converging to z, suppose lim n→∞ f Xn (µ n + z n σ n )σ n = ϕ(z) and lim n→∞ f Yn (μ n + z n σn )σ n = ϕ(z). Then lim n→∞ g n (z n ) = g(z). Therefore g n (z)

  , M, N, and k are positive integers. B is the beta function. In the examples outlined in the sequel formula (2) gives the asymptotic mean relative error, computing only r. Binomial -Hypergeometric approximation. Given α, p ∈ (0; 1), for every natural number N, set n = ⌊αN⌋ and M = ⌊pN⌋. Consider the sequence of hypergeometric variables {X N }, with parameters N, M and n, and the sequence of binomial variables {Y N }, with parameters n and p. The sequences {X N } and {Y N } satisfy the conditions of Lemma 1 as N tends to infinity, with r = √ 1α. Poisson -Hypergeometric approximation. Given α, p ∈ (0; 1), for every natural number N set n = ⌊αN⌋ and M = ⌊pN⌋. Consider the sequence of hypergeometric variables {X N }, with parameters N, M and n, and the sequence of Poisson variables {Y N } with parameter λ = αpN. The two sequences A C C E P T E D M A N U S C R I P T ACCEPTED MANUSCRIPT {X N } and {Y N } satisfy the conditions of Lemma 1 as N tends to infinity, with r = (1α)(1p).

  Binomial with n = αN, p = 0.5 and Hypergeometric with N, M = 0.5N, mean relative error and asymptotic mean relative error E(h(Z)).Poisson with λ = 0.1αN and Hypergeometric with N, M = 0.1N, n = αN.Poisson -Negative Binomial approximationq m = 50 m = 80 m = 100 E(h(Z))

  Furthermore, for every sequence of real numbers z N converging to z, 0 ≤ x ≤ n, for N sufficiently large. Writing n and M as a function of N, it follows that every gamma argument in (3) tends to infinity as N → ∞. Therefore for all gamma functions we can use the Stirling's formula Γ(ν + 1) ∼ √ 2πν ν+ 1 2 e -ν , where the notation u ν ∼ v ν stands for lim ν→∞ uν vν = 1. For example

  the sequence of variables {Z n } converges in distribution to the variable Z; moreover the function g is everywhere continuous and the sequence {g n } uniformly converges on compact sets. Now let F n be the distribution function of Z n and let F ′

			n
	be the distribution function of Z ′ n = Yn-µn σn , with E(Z ′ n ) = m n = μn-µn σn
	and V (Z ′ n ) =	σ2 n σ 2 n	. The variables g n (Z n ) are uniformly integrable: in fact,
	since g n are uniformly bounded on compact sets, it suffices to prove that
	sup		
	n |z|>a		

Table 4 :

 4 relative error and pointwise approximation h(z), with z = x-µ σ ,

		0.0156	0.0119	0.3174 0.3167
	1	0.0938	0.0854	0.0978 0.0975
	2	0.2344	0.2381	0.0157 0.0161
	3	0.3125	0.3293	0.0509 0.0513
	4	0.2344	0.2381	0.0157 0.0161
	5	0.0938	0.0854	0.0978 0.0975
	6	0.0156	0.0119	0.3174 0.3167
			µ = 3 and σ 2 = 81 59 .
		α	N = 50 N = 80 N = 100 E(h(Z))
		0.05 0.0204 0.0194	0.0256	0.0248
		0.10 0.0526 0.0515	0.0518	0.0510
		0.20 0.1095 0.1042	0.1049	0.1079

Table 5 :

 5 mean relative error and asymptotic mean relative error E(h(Z)).

Table 8 :

 8 mean relative error and asymptotic mean relative error E(h(Z)).

	05 0.2358 0.0298	0.0280	0.0248
	0.10 0.0578 0.0545	0.0525	0.0510
	0.20 0.1155 0.1095	0.1098	0.1079
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Proposition 4 Let β > 1, set X n a Polya's random variable with parameters N = βn, pN, k and n. Furthermore suppose Y n , given X n , is conditionally distributed as a Polya's random variable with parameters N, θ n N, k and n.

Then 2ln(g n ) is asymptotically distributed as a chi-squared with one degree of freedom.

Proof.

We verify all assumptions of Theorem 3. Since E( Xn n ) = p and

The density of Moreover, as proved in the Appendix, the convergence to normal density is uniform on compact sets also with respect to s. Therefore h n (0

. Hence all the assumptions of Theorem 3 are verified and the thesis follows.

Note that both θ n and the maximum likelihood estimate of θ converge in probability to θ (see Corollary 6 in the Appendix). Hence a test based on the likelihood ratio of Proposition 4 may replace the maximum likelihood ratio test.

Appendix

Normal and Polya's distribution. Polya's urn model and its extensions are widely studied in literature also from the asymptotic point of view (see, for example, [START_REF] Bai | Asymptotic in randomized urn models[END_REF], and their references). Polya's distribution is a Generalized Hypergeometric distribution studied by [START_REF] Kemp | Generalized Hypergeometric Distributions[END_REF]. [START_REF] Hida | An approximation to the generalized hypergeometric distribution[END_REF] provided a normal approximation of some type of Generalized Hypergeometric distributions, which do not include Polya's distribution.

Here we give another asymptotic result: we prove the convergence of the Polya's density to normal density, underlining that this convergence is uniform on compact sets with respect to two parameters.

Theorem 5 Given α, p ∈ (0; 1) and k = {0, 1, 2, ...}, consider Polya's probability function:

,

where n = ⌊αN⌋, M = ⌊pN⌋. Then, given two sequences of real numbers z N converging to z and p N converging to p ∈ (0; 1), the following limit holds:
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Proof. Consider the Polya's probability function as a function of p:

Hence, when X N = x, the maximum likelihood p N ∈ x n -1 n ;

x n + 1 n and the first assertion follows.

For asymptotic normality of p X N the probability of {X N < 2} ∪ {X N > n -2} converges to 0. Therefore | θ Np N | → 0 in probability. Since θ N converges in probability to p , then p N converges in probability to p.