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ON CONTACT PROBLEM OF AN ELASTIC LAMINATED HALF-PLANE WITH A 
BOUNDARY NORMAL TO LAYERING 
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Faculty of Mechanical Engineering, Białystok University of Technology, 15-351 Białystok, 

Wiejska St., 45C, Poland 

 
Abstract 

 The paper deals with the plane contact problem of an infinite long cylinder pressured 

into an elastic laminated semi-space. The nonhomogeneous body is composed of periodically 

repeated two constituent laminae and its boundary is assumed to be normal to the layering. 

The homogenized model with microlocal parameters given by Wo�niak (1987), Matysiak and 

Wo�niak (1987) is applied to find an approximate solution to the problem. The problem is 

reduced to a well-known dual integral equations and the stresses are obtained in the form of 

Fourier integrals. Numerical results, which show the influence of geometrical and mechanical 

properties of composite constituents on stress distributions are presented in figures. 

 

Keywords: laminate theory, elastic properties, stress concentration, deformation 

 

1. Introduction 

 The knowledge of stress distributions in contact to two bodies play an important role 

in many technological applications. For this reason, considerable progress has been made with 

the analysis of contact problems in the theory of elasticity (see, for example monographs 

Shtaerman (1949), Galin (1953, 1980), Gladwell (1980), Goryacheva, Dobykhin (1988), 

Johnson (1985), Mossakowskii et al. (1985), Raous et al. (1995), Rvachev, Protsenko (1977), 

Fabrikant (1989, 1991). Some contact problems of anisotropic bodies were investigated by 

Wills (1966), Hwu and Fan (1998), Rogowski (1982, 2001), W.C. Liao (2001). 

 Composite materials with periodic structures are widely utilized in building 

engineering, machine elements, and aviation structures. Some composite structural members 

are constructed to work in contact with others. The two-dimensional contact problems of 

periodically layered half-space with the layering parallel to the boundary were considered by 

Kaczy�ski, Matysiak (1988, 1993, 2001). The above-mentioned papers are based on the 

homogenized model with microlocal parameters given by Wo�niak (1987), and in the case of 
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elastic laminates by Matysiak, Wo�niak (1987). This model was derived by using the 

concepts of the nonstandard analysis combined with some postulated a priori physical 

assumptions. The governing equations of the homogenized model are expressed in terms of 

unknown macrodisplacements and certain extra unknowns called microlocal parameters and 

they replace the partial differential equations with strongly oscillating coefficients of the 

theory of elasticity. It should be emphasized that the continuity conditions on interfaces are 

fulfilled within the framework of the homogenized model. 

 This paper deals with the two-dimensional contact problem of a periodically two-

layered elastic half-space with an infinitely long, rigid cylinder. The boundary of the 

composite is assumed to be normal to the layering, and the radius of the pressured cylinder is 

much greater than the width of contact region. The considered problem will be solved within 

the framework of the homogenized model with microlocal parameters (see Wo�niak (1987), 

Matysiak and Wo�niak (1987)). Moreover, the boundary condition describing the stress 

component normal to the boundary plane, discontinuous on interfaces is replaced by some 

averaging condition. This approach allows to reduce the considered mixed boundary problem 

to dual integral equations and to determine the contact pressures, the width of contact region, 

and displacements, stresses in the composite half-space. It is not possible to get an exact, 

closed form of the solution of the contact problem, so this paper presents some approximate 

solution (the exact closed form solution within the framework of the homogenized model with 

microlocal parameters). Other approximation models are known. They were derived by using 

some averaging procedures: the classical asymptotic homogenization (cf. Bensoussan et al. 

(1978), Sanchez-Palencia (1980), Bakhalov and Panasenko (1984), Jikov et al. (1994)); the 

procedure based of the concept applied in the theory of thick plates (cf. Achenbach (1975)); 

the procedure based on the mixture theory (Bedford and Stern (1971); the procedure based on 

some physical assumptions Guz et al. (1980) or on the matrix method (Bufler (1971), (2000)) 

or on the tolerance averaged procedures proposed by Wo�niak and Wierzbicki (2000). 

However, the homogenized model with microlocal parameters seems to the useful to describe 

the contact problem, because: (1º) the model leads to two partial differential equations with 

constant coefficients in the two-dimensional case, (2º) the continuity conditions on interfaces 

are satisfied, (3º) many boundary value problems for periodically layered composites have 

been solved within the framework of the model. Moreover the substitution of the averaging 

boundary condition and the application of homogenized model with microlocal parameters 

leads to a good approximation of stresses for some problems of a semi-infinite laminated 
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layer (see R. Kulchytsky-Zhyhailo et al. (2006), where the results obtained within the 

framework of the homogenized model and the classical elasticity are compared). 

 

2. Formulation and solution of the problem 

 Let us consider a microperiodic laminated half-space, the middle cross section of 

which is shown in Fig. 1. A repeated fundamental layer (lamina) of thickness δ  is composed 

of two homogeneous isotropic elastic sublayers, with thicknesses 1δ  and 2δ . They are 

characterized by Lamé constants ,  ,  1,  2j j jλ µ = . 

δ2

δ y

x

P

p (x)

δ1

 
Fig. 1 The scheme of considered problem. 

The boundary plane of half-space is assumed to be normal to the layering. Perfect bonding 

between the layers is assumed. A Cartesian coordinate system ( , , )x y z  such that the y  axis is 

parallel to the layering and the x  axis coincides with the straight line normal to the layering is 

introduced. Restricting the considerations to the plane-strain state (independent on the 

variable z ), denote at the point ( , ,0)x y  the displacement vector by [ ( , ), ( , ),0]u x y v x y  and 

the stresses by ( ) ( ) ( ) ( ),  ,  ,  ,  1,  2j j j j
xx xy yy zz jσ σ σ σ = , (in the following, all quantities pertaining to 

the sublayers of the first kind will be denoted with the index 1j =  and of the second kind 

with 2j = ). 
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 Consider an infinitely long rigid cylinder pressured into the laminated half-space, Fig. 

1. The cross-section of punch is assumed to be in the shape of a parabola (it can be used to the 

approximation of a circular punch with large radius R ): 
2

( )
2
x

g x
R

= , const. 0.R = >  (2.1) 

 The problem of indentation of the periodically two-layered half-space is frictionless and 

has an unknown width of contact zone. 

 The basis of considerations is the homogenized model with microlocal parameters (see 

Wo�niak (1987), Matysiak and Wo�niak (1987)). Such an approach has proved to be useful 

and effective for solving a variety of boundary problems (see Matysiak (1995)). Below we 

recall below some relevant results from this theory. The homogenized model with microlocal 

parameters in the case of plane-strain state for the stratified body can be determined by 

following relations (see for example Kaczy�ski, Matysiak (1988, 1993, 2001)): 

( ) ( ) ( ) ( ), , , ( , ),xu x y U x y h x q x y U x y= + ≅  

( ) ( ) ( ) ( ), , , ( , )yv x y V x y h x q x y V x y= + ≅ , 

( ) ( , ) ( 2 ) , ( , )j
yy j j y j x j xx y V U h qσ λ µ λ≅ + + + , (2.2) 

( ) ( , ) ( 2 )( , ) ,j
xx j j x j x j yx y U h q Vσ λ µ λ≅ + + + , 

( ) ( , ) ( , , ),   1,2j
xy j y x j yx y U V h q jσ µ≅ + + = , 

where ,  U V  and ,  x yq q  are unknown functions interpreted as the macro-displacement and 

microlocal parameters, respectively, and ( )h x  is a priori given δ  - periodic function (called 

the shape function) defined as follows 

1 1

1
1 1

0.5 , 0 ,
( )

0.5 , ,
1 1

( ) ( ),

x x
h x x

x

h x h x

δ δ
δη δ δ δ

η η
δ

− ≤ ≤�
�= −� − + ≤ ≤� − −�

+ =

 (2.3) 

and 

1η δ δ= . (2.4) 

The shape function given by Eq. (2.3) is chosen in such way, that the continuity conditions for 

the stress vector on the interfaces are satisfied. The symbol ,   1,  2jh j = , denotes the 

derivative of the function ( )h x  in the j -th kind of composite component and 

1 21,   
1

h h
η

η
= = −

−
. (2.5) 
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The four equation of the homogenized model with microlocal parameters are expressed in 

terms of four unknown the macro-displacements ,  U V  and the microlocal parameters ,  x yq q . 

The microlocal parameters are determined by derivatives of the functions ,  U V  (see, for 

example Kaczy�ski, Matysiak, (1988)). So, the governing relations of the homogenized 

model given in terms of macro-displacements (after eliminating the microlocal parameters) 

can be written in the form 
2 2 2

1 2 2

2 2 2

22 2

( ) 0,

( ) 0,

U U V
A C B C

x y x y

V V U
C A B C

x y x y

∂ ∂ ∂+ + + =
∂ ∂ ∂ ∂

∂ ∂ ∂+ + + =
∂ ∂ ∂ ∂

 (2.6) 

and 

( ) ( )

( ) ( ) ( ) ( )( )

1,   

,   ,   1,  2,
2

j j
xy xx

j j j j j
yy j j zz xx yy

j j

U V U V
C A B

y x x y

U V
D E j

x y

σ σ

λ
σ σ σ σ

λ µ

� �∂ ∂ ∂ ∂= + = +� �∂ ∂ ∂ ∂	 


∂ ∂= + = + =
∂ ∂ +

 (2.7) 

where 

( )

( )

[ ] [ ]( ) [ ]

[ ] [ ] [ ]( ) [ ]

2

1 2 1 2 1 2

2

1 2 1 2 1 2

2 2

1 2

2

1

ˆ(1 ) , [ ] , ,
1

ˆ(1 ) , [ ] , ,
1

2
2 0,    2 0,ˆ ˆˆ ˆ2 2

2
0,     0,ˆ ˆˆ2
4 ( )

,      
2
j j j j

j j
j j j

A A

B C

D A E

ηλ ηλ η λ λ η λ λ λ ηλ λ
η

ηµ ηµ η µ µ η µ µ µ ηµ µ
η

λ µ λ
λ µ λ µ

λ µ λ µ
λ λ µ µ

λ µ
µλ µ

λ µ λ µ
λ µ λ

= + − = − = +
−

= + − = − = +
−

+
= + − > = + − >

+ +

+
= − > = − >

+
+

= =
+ +

�

�

� �� �

� �

,  1,  2.
2 2

j

j j j

B j
λ

µ λ µ
+ =

+

 (2.8) 

From equations (2.7) it follows that the continuity conditions on interfaces are satisfied. 
However the components of stress tensor ( ) ( ),  j j

yy zzσ σ  are discontinuous on interfaces. 

 The equations (2.6) can be separated by introducing the potentials 1 2,  Ψ Ψ  (see 

Kulchytsky-Zhyhailo et al., 2006) as follows 

1 2 1 2
1 2 ,U V

x x y y
κ κ∂Ψ ∂Ψ ∂Ψ ∂Ψ= + = +

∂ ∂ ∂ ∂
, (2.9) 

where 
2

2 j
j

A C

B C

γ
κ

−
=

+
, (2.10) 
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and 2 ,  1,  2i iγ = , are the solutions of characteristic equations 

( )4 2 2
2 1 2 12 0j jA C B BC A A ACγ γ+ + − + = . (2.11) 

Thus, we have 
2 2

2
2 2 0,  1,2.j j

j j
x y

γ
∂ Ψ ∂ Ψ

+ = =
∂ ∂

 (2.12) 

The characteristic equation (2.11) have four real roots 1 2,  γ γ± ±  in the form 

1
2 2

1 2
1

2

1
2 2

1 2
2

2

2 2 2
1 2 1 2

2
,

2

2
,

2

( 2 ) 4 0.

A A BC B
A C

A A BC B
A C

B BC A A A A C

γ

γ

� �− − − ∆= � �� �
	 


� �− − + ∆= � �� �
	 


∆ = + − − >

 (2.13) 

The considered contact problem is described by the following boundary conditions 

( )

( )

( ,0)
,   for ,

( ,0) 0,   for ,

( ,0) 0,   for  ,   1, 2.

j
yy

j
xy

V x x
x a

x R
x x a

x x j

σ

σ

∂ = − ≤
∂

= >

= ∈ =R

 (2.14) 

Keeping in mind equations (2.7) one can observe that boundary condition (2.14)2 may be 

rewritten in the form 

0,   1, 2,   ,   0.i i

U V
D E i x a y

x y
∂ ∂+ = = > =
∂ ∂

 (2.15) 

The condition (2.15) is periodic and it leads to a rather complicated boundary value problem. 

For this reason the periodic boundary condition (2.15) will be averaged. Thus, we obtain1: 

2 0,   .
U V

B A x a
x y

∂ ∂+ = >
∂ ∂

 (2.16) 

The condition (2.16) together with (2.14)1,3, and the regularity conditions of infinity 

                                                
1 It can be shown that 

1 2
1 2 1 1

1 1 2 2

(1 )
(1 )

2 2
D D D A A B

λη λ ηη η
λ µ λ µ

−= + − = + =
+ +

� , 

1 1 1 1
1 2

1 1 1 1

2 2 2 2
2

2 2 2 2

4 ( ) [ ]([ ] 2[ ]
(1 ) ˆ2 2 ˆ2

4 ( ) [ ]([ ] 2[ ]
(1 ) .ˆ2 2 ˆ2

E E E

A

µ λ µ λ λ λ µη η η λ
λ µ λ µ λ µ

µ λ µ λ λ λ µη λ
λ µ λ µ λ µ

� �� �+ += + − = + − +� �� �� �+ + +	 
	 


� �� �+ ++ − + − =� �� �� �+ + +	 
	 


��

�
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( ) ( ) ( ) 2 2, , 0  for  ,j j j
xx xy yy x yσ σ σ → + → ∞  (2.17) 

and the equations (2.6) stand for the mixed boundary value problem for a half-plane described 

approximately the considered contact problem of periodically half-plane. Denoting the 

Fourier transform of function f  with respect to the variable x  by 

1
( , ) ( , ) exp( ) ,

2
f s y f x y ixs dx

π

∞

−∞

= −��  2 1i = − , (2.18) 

using equation (2.12), (2.9) and regularity conditions (2.17) we obtain 

1 1 1 2 2 2

1 1 1 2 2 2

( ( ) exp( ) ( ) exp( )),

( ( )exp( ) ( )exp( )),

U is a s s y a s s y

V s a s s y a s s y

κ γ κ γ

γ γ γ γ

= − + −

= − − + −

�

�
 (2.19) 

where functions 1 2( ),   ( )a s a s  will be determined from boundary conditions (2.14)1,3 and 

(2.16). 

To this aim, the Fourier transforms of stress components given in (2.7) are calculated 

( )
1( , )j

xx

V
s y isAU B

y
σ ∂= +

∂

�
�� , 

( ) ( , )j
xy

U
s y C isV

y
σ

� �∂= +� �∂	 


�
�� , (2.20) 

( ) ( , )j
yy j j

V
s y isD U E

y
σ ∂= +

∂

�
�� . 

Using equations (2.20), (2.19) and assuming that 

2 ( )  for  ,
U V

B A p x x a
x y

∂ ∂+ = − <
∂ ∂

 (2.21) 

where ( )p x  is an unknown function2, we obtain the following system of linear algebraic 

equations for 1 2( ),   ( )a s a s : 

2 2 2
1 2 1 1 2 2 2 2

1 1 1 2 2 2

( )( ) ( )( ) ( )
(1 ) ( ) (1 ) ( ) 0

a s A B a s A B p s s

a s a s

γ κ γ κ
γ κ γ κ

−� − + − = −
� + + + =�

�
 (2.22) 

where  

1
( ) ( ) .

2

a
ixs

a

p s p x e ds
π

−

−

= ��  (2.23) 

The solution of equations (2.22) takes the form 

                                                
2 The function ( )p x  stands for the averaged contact pressure. 
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2
1 2 2

1 2 2 1

1
2 2 2

1 2 2 2

( )
( ) ,

( ) ( )

( )
( ) .

( ) ( )

p s B C
a s

s A B C

p s B C
a s

s A B C

γ
γ γ γ

γ
γ γ γ

+=
− +

− +=
− +

�

�
 (2.24) 

Now, from equations (2.24), (2.19) we can determine the displacement normal to the 

boundary for 0y =  in terms of the unknown function ( )p s� . Assuming that 

( ) ( ),   p x p x x a− = <  we have 

( ) ( ) ( )1

0

2
,0 cosVV x C s p s xs ds

π

∞
−= � � , (2.25) 

where  

1 2 1 2
2

1 2

( )
V

A A
C

A A B

γ γ+
=

−
. (2.26) 

To determine the function ( )p s�  we return to the boundary conditions (2.14)1, (2.16) 

(conditions (2.14)2 were satisfied in (2.22)). We obtain the following dual integral equations 

0

0

2
( )sin( )   for  0 ,

2
( )cos( ) 0  for  .

V

x
p s xs ds x a

C R

p s xs ds x a

π

π

∞

∞

= ≤ ≤

= >

�

�

�

�

 (2.27) 

The dual integral equations (2.27) are well known, see Sneddon (1951, 1966). The solution of 

equations (2.27) takes the form 

1( )
( ) ,

2 V

J asa
p s

C R s
π=�  (2.28) 

where 1( )J as  is the Bessel function of the first kind. 

The knowledge of function ( )p s�  permits to find the distribution of averaged contact pressure 

2 2

0

2 1
( ) ( )cos( ) ,   

V

p x p s xs ds a x x a
C Rπ

∞

= = − ≤� � , (2.29) 

The unknown half of the width of contact zone a can be determined by using the equilibrium 

condition 
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( ) ,
a

a

p x dx P
−

=�  (2.30) 

where P  is given the total normal force acting on the punch cross-section. 

 Substituting equation (2.28) into (2.30) we obtain 

2 2 VC RP
a

π
= . (2.31) 

Denoting the mean value of contact pressure by 

0

1
( )

2 2

a

a

P
p p x dx

a a−

= =� , (2.32) 

from (2.29) it follows that 

( )2

0

( ) 4
1 /

p x
x a

p π
= − . (2.33) 

Using (2.19), (2.20) and (2.24) we obtain that the stresses in j -th layer, being the composite 

component take the form 

( ) ( ) ( ) ( )( ) ( )

0

2
, , cosj p j

xx xxx y s y p s xs dsσ σ
π

∞

= � � �  

( ) ( ) ( ) ( ) ( ) ( )
0

2
, , cosj p j

yy yyx y s y p s xs dsσ σ
π

∞

= � � �   (2.34) 

( ) ( ) ( ) ( )( ) ( )

0

2
, , sinj p j

xy xyx y s y p s xs dsσ σ
π

∞

= � � � ,  j=1, 2. 

where 

( )
2

( ) 1 2
1

1

, ( 1) ( )exp( )p j k p
xx k k k k

k

s y B A s y Gσ γ κ γ+

=
= − − −�� , 

( )
2

( ) 1 2

1

, ( 1) ( ) exp( )p j k p
yy k j k j k k

k

s y E D s y Gσ γ κ γ+

=
= − − −�� , (2.35) 

( )
2

( )

1

, ( 1) (1 ) exp( )p j k p
xy k k k k

k

s y C G s yσ γ κ γ
=

= − + −�� , 

and 
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2
1 2

1 2 2 1( )
p B C

G
A B C

γ
γ γ γ

+=
− +

,   1
2 2

1 2 2 2( )
p B C

G
A B C

γ
γ γ γ

+=
− +

. (2.36) 

Remark 

Assuming that  

1 2 1 2,   λ λ λ µ µ µ= = = = , (2.37) 

then from (2.8) we have 

1 2

,   ,   [ ] [ ] 0,
2 ,   ,   .A A B C

λ λ µ µ λ µ
λ µ λ µ

= = = =
= = + = =

� �
 (2.38) 

From equations (2.13), (2.38) and (2.26) it follows that 

2 1
,   

2 ( ) 2( )VC
λ µ ν λν
µ λ µ µ λ µ

+ −= = =
+ +

, (2.39) 

and the contact pressure ( )p x  given in (2.29) agrees with the adequate contact pressure for 

the homogeneous, isotropic semi-space, see Timoshenko, Goodier (1934). 

3. Numerical results 

 The stresses at the point ( , )x y , which is located in the j -th component of the 

composite, are presented in the form of integrals by equations (2.34) – (2.36). The Fourier 

integrals can be calculated exactly, but the expressions of their values are rather complicated. 

For this reason some distributions of stresses will be presented in the form of graphs. Let us 

introduce the following dimensionless variables 

* */ ,   /x x a y y a= = . (3.1) 

The stress components ( ) ( ),   ,   1,  2,j j
xx xy jσ σ =  are continuous (see equations (2.7)), but the 

stress components ( ) ,   1,  2,j
yy jσ =  are discontinuous on the interfaces. The lines of constant 

values for dimensionless stresses ( )
0/j

xx pσ  are presented in Fig. 2,  
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0 0.5 1 1.5 2
0

0.5

1

1.5

2

 
 

Fig. 2 The distributions of dimensionless stresses ( )
0/j

xx pσ . 

for 0.5η = , Poisson’s ratios 1 2 0.3ν ν= =  and Young modulus ratios 1 2/ 8.E E =  The half of 

contact zone stands for the region * *0 1,   0x y≤ ≤ = . 

Observe that the dimensionless stresses ( )
0/j

xx pσ  take negative values and the zero stresses is 

far from the contact zone. 

 The lines of constant values for dimensionless stresses ( )
0/j

xy pσ  are shown Fig. 3 for 

0.5η = , 1 2 0.3ν ν= =  and the ratio of Young’s 1 2/ 8.E E =  

0 0.5 1 1.5 2
0

0.5

1

1.5

2

 
 

Fig. 3 The distributions of dimensionless stresses ( )
0/j

xy pσ . 

*x

*y

3.0  ,5.0  ,8/ 2121 ==== ννηEE

3.0  ,5.0  ,8/ 2121 ==== ννηEE
*x

*y
0

)( / pj
xyσ

0
)( / pj

xxσ
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It can be observed that the maximal values of ( )
0/j

xy pσ  are achieved in regions located under 

the ends of contact zone in some distances for the boundary of the composite half-space. 

 The stress component ( )
0/j

yy pσ  is discontinuous on the interfaces. The distributions of 

( )
0/j

yy pσ  for the depths (the distances from the boundary plane) * 0.0;  0.2;  1.0y =  are 

presented in Fig. 4. 
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Fig. 4 The distributions of dimensionless stresses ( )
0/j

yy pσ . 

From Fig.4a one can see that the component ( )j
yyσ  on the boundary for * 1,  ( )x x a> >  is 
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in (2.16) is well-founded. Figure 5 shows the dependence of stresses ( )
0/j

yy pσ  and ( )
0/j

xx pσ  

under the centre of contact zone with respect to the distance from the boundary.  
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Fig. 5 The distributions of dimensionless stresses ( )

0/j
xx pσ  and ( )

0/j
yy pσ . 

The influence of the dimensionless normal stresses on Young’s modulus ratio 1 2/E E  at the 

contact centre for 1 2 0.3ν ν= =  and 0.5η =  is presented in Fig. 6. 
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Fig. 6 The dimensionless normal stresses at the contact centre as a function of ratio 1 2/E E . 
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One can see that for 1 2/ 1E E =  (the homogeneous half-space) the normal stresses 

( ) ( )  and  j j
xx yyσ σ  take the same value. 

 From the point of view of material failure (Tresca yield criterion) it is important to 

consider the following shear intensity function in j-th kind of composite constants 

( ) ( )2 2( ) ( ) ( ) ( )( ) / 2 ,    1,  2j j j j
xx yy xy jτ σ σ σ= − + = . (3.2) 

The shear stress intensity function ( ) ,   1,  2j jτ =  is discontinuous on the interfaces, because 

the stress components ( )j
yyσ  have jumps on these surfaces. The distributions of ( )

0/j pτ  for the 

depths * 0.0;   0.1;   1.0;   2.0;y =  are presented in Fig. 7. The greatest differences between the 

functions (1) (2)
0 0/   and  /p pτ τ  are observed under contact zone *( 1)x < . 
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Fig. 7 The distributions of dimensionless shear stress intensity function ( )

0/j pτ . 
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4. Final remarks and conclusions 

 This paper contains the solution of smooth contact problem between the rigid 

cylindrical indenter and composite half-space with ply-orientation normal to the boundary. 

The homogenized model with microlocal parameters are applied to an approximate 

formulation of the problem. It gives the possibilities to find the exact solution within the 

framework of the homogenized model. The problem has reduced to the well-known dual 

integral equations. The stress distributions in the composite half space are presented in the 

form of Fourier integrals, what permits to analyze the influence of mechanical and 

geometrical properties of composite constituents on the stress behavior. Moreover, the 

averaged contact pressure and the width of contact zone are determined. It should be 

emphasized that the obtained results under assumption 2121   and  µµλλ ==  agree with the 

adequate solution for homogeneous half-space. Moreover the stress )( j
yyσ  has jumps on the 

interfaces, what it cannot be obtained within the description by the anisotropic body but it is 

in a good agreement with the formulation of contact problem within the framework of the 

classical elasticity. 
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