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Mechanical behavior of unidirectional

fiber-reinforced polymers under transverse

compression: microsocopic mechanisms and

modeling

Carlos González and Javier LLorca ∗

Departamento de Ciencia de Materiales, Universidad Politécnica de Madrid &
IMDEA-Materiales

E. T. S. de Ingenieros de Caminos. 28040 -Madrid, Spain.

Abstract

The mechanical behavior of polymer-matrix composites unidirectionally rein-
forced with carbon or glass fibers subjected to compression perpendicular to the
fibers was studied using computational micromechanics. The stress-strain curve was
determined by the finite element analysis of a representative volume element of the
microstructure idealized as a random dispersion of parallel fibers embedded in the
polymeric matrix. The dominant damage mechanisms experimentally observed —
interface decohesion and matrix plastic deformation — were included in the simu-
lations, and a parametrical study was carried out to assess the influence of matrix
and interface properties on the stress-strain curve, compressive strength, ductility
and the corresponding failure modes. It was found that the composite properties
under transverse compression were mainly controlled by interface strength and the
matrix yield strength in uniaxial compression. Two different fracture modes were
identified, depending on whether failure was controlled by the nucleation of inter-
face cracks or by the formation of matrix shear bands. Other parameters, such as
matrix friction angle, interface fracture energy or thermo-elastic residual stresses,
played a secondary role in the composite mechanical behavior.

1 Introduction

Unidirectional fiber-reinforced polymers show outstanding specific stiffness
and strength along the fiber direction and this has led to a wide range of
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 applications as structural materials. Moreover, the fiber and matrix behavior

follows very closely the isostrain approximation until the onset of failure and
it was possible to develop analytical models to accurately predict the tensile
(1; 2; 3) and compressive (4; 5) strength in the fiber direction. Conversely,
the mechanical behavior under transverse loading cannot be represented by
simplified isostrain or isostress approaches, and micromechanical models ca-
pable of predicting failure strength as a function of the constituent properties,
volume fraction, shape and spatial distribution are not available. This is an
important limitation because the experimental characterization of the lam-
ina properties in the transverse direction is subjected to more uncertainties
than in the longitudinal one and, in fact, experimental data are more scarce.
In addition, the longitudinal compressive strength is severely affected by the
transverse behavior (5; 6), and the development of robust failure criteria for
laminates which include the interaction between longitudinal and transverse
stresses have to rely on a precise knowledge of the lamina behavior under
transverse loading until failure.

Computational micromechanics is emerging as an accurate tool to study the
mechanical behavior of composites due to the sophistication of the modelling
tools and to the ever-increasing power of digital computers. Within this frame-
work, the macroscopic properties of a composite lamina can be obtained by
means of the numerical simulation of the deformation and failure of a rep-
resentative volume element of the microstructure (7; 8; 9; 10). As compared
with the classic homogenization techniques, computational micromechanics
presents two important advantages. Firstly, the influence of the geometry and
spatial distribution of the phases (i.e. size, shape, clustering, connectivity, etc.)
can be accurately taken into account. Secondly, the details of the stress and
strain microfields throughout the microstructure are resolved, which leads to
precise estimations of the onset and propagation of damage, and to accurate
predictions of the failure strength. Recent advances in this area include the
analysis of the effect of particle shape (11), particle clustering (12; 13) and the
influence of damage (14; 15) on the mechanical behavior of particle-reinforced
composites, the prediction of the mechanical behavior of foams and compos-
ites whose microstructure was obtained by means of X-ray computer-assisted
tomography (16; 17), or the computer simulation of ”virtual fracture tests” in
fiber-reinforced composites (18; 19).

This strategy is applied in this investigation to analyze the mechanical behav-
ior of a unidirectional fiber-reinforced polymer composite subjected to trans-
verse compression. The composite microstructure was idealized by a random
and homogeneous dispersion of parallel, circular elastic fibers embedded in the
continuous polymeric matrix. The main deformation and failure mechanisms
reported in the literature (namely matrix nonlinear behavior and interface
failure) as well as the effect of thermal residual stresses were taken into ac-
count in the simulations and a parametrical study was carried out to assess

2



ACCEPTED MANUSCRIPT 
 the influence of these parameters on the stress-strain curve, failure strength,

ductility and the corresponding failure modes.

2 Experimental background and simulation strategy

The experimental evidence shows that lamina of polymer-matrix composites
unidirectionally reinforced with carbon or glass fibers fail under transverse
compression along planes parallel to the fibers (20; 21; 22). The angle α formed
between the failure plane and the through-thickness (or perpendicular to the
in-plane loading) direction is slightly above 45◦ and typical values reported
are in the range 50◦ - 56◦ (23; 21; 24). Significant non-linear deformation was
often observed before the maximum load (25; 26), and this behavior was asso-
ciated to the plastic deformation of the polymeric matrix. This is supported
by our observations on the lateral surfaces of a Hexcel 8552 epoxy matrix uni-
axially reinforced with 57 vol. % AS4 carbon fibers loaded under transverse
compression. Bands of intense plastic deformation in the matrix, inclined at
an angle of 56◦ with respect to the plane perpendicular to the loading axis,
appeared before the maximum load was attained (Fig. 1). Damage by inter-
face decohesion developed afterwards around these bands (Fig. 2a) and final
fracture occurred by the failure of the matrix in shear, as evidenced by the
numerous hackles in the matrix fracture surfaces (Fig. 2b).

These results show that the strength of fiber-reinforced polymers under trans-
verse compression is controlled by two dominant mechanisms, namely the lo-
calization of the matrix plastic strain along shear bands and the development
of damage by interface decohesion. Both processes (and their interaction) can
be taken into account within the framework of computational micromechanics
in which composite behavior is analyzed by means of the finite element sim-
ulation of a two-dimensional representative volume element (RVE) of the mi-
crostructure. The matrix was represented by an isotropic, elasto-plastic solid
following the Mohr-Coulomb yield criterion, which assumes that yielding is
induced by the shear stresses and that yield stress depends on the normal
stress. This model has often been used to describe plastic deformation and
failure of polymers (27) and of polymeric matrices in composites (28; 23; 21)
as it explains the asymmetry between tensile and compressive yielding and
failure in compression along planes forming an angle of ≈ 50◦ - 56◦ with re-
spect to the plane perpendicular to the loading axis. Fiber/matrix decohesion
was introduced by means of interface elements whose behavior is controlled by
a cohesive crack model, a standard technique in the computational microme-
chanics of composites (29; 30; 31; 32).
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Fig. 1. Scanning electron micrograph of the lateral surface of an AS4/epoxy spec-
imen loaded under transverse compression showing bands of intense plastic defor-
mation in the matrix before the maximum load (24).

3 Computational model

3.1 RVE generation and discretization

A square RVE, which contains a random and homogeneous dispersion of cir-
cular fibers embedded in the polymeric matrix, was selected to determine
the behavior of the composite under transverse loading, following to Brocken-
brough et al. (33). An important issue in the simulations is the minimum size
of the RVE, which should contain all the necessary information about the sta-
tistical description of the microstructure and its size should be large enough so
that the average properties of this volume element are independent of its size
and position within the material. Of course, the critical RVE size depends on
the phase and interface properties and spatial distribution, and no estimates
were available for our particular problem. It is also known that the accuracy
provided by RVEs of a given size can be improved if the results of various
realizations are averaged (34). Thus, the compressive strength and ductility
for each set of matrix and interface properties was given by the average value
of the results obtained from six different fiber distributions in a RVE which
included 30 fibers. They were compared in selected cases with those obtained
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Fig. 2. Scanning electron micrographs of an AS4/epoxy composite loaded under
transverse compression (24). (a) Damage by interface decohesion around the matrix
shear bands. The loading axis is horizontal. (b) Fracture surface. The presence of
numerous hackles in the matrix is indicative of failure by shear.
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Fig. 3. Fiber distribution and finite element discretization of a representative volume
element of the composite with 30 fibers.

with RVEs containing over 70 fibers to ensure that the size of the RVE did
not influence significantly the model predictions.

Random and homogeneous dispersions of monosized fibers of radius R = 5
µm were generated in square RVEs of dimensions L0 × L0 using the modified
random sequential adsortion algorithm of Segurado and LLorca (9). It was
assumed that the microstructure of the composite was given by a indefinite
translation of the RVE along the two coordinate axes and thus the fiber po-
sitions within the RVE should keep this periodicity condition. Fiber centers
were generated randomly and sequentially, and each new fiber was accepted
if the distance between neighboring fiber surfaces was > 0.07R to ensure an
adequate discretization of this region. In addition, the distance between the
fiber surface and the RVE edges should be > 0.1R to avoid distorted finite
elements during meshing. Fibers intersecting the RVE edges were split into
an appropriate number of parts and copied to the opposite sides of the square
RVE to create a periodic microstructure. New fibers were added until the
desired volume fraction of 50 % was reached. An example of the fiber distri-
bution an RVE with 30 fibers is shown in Fig. 3. The RVE was automatically
meshed using 6-node isoparametric modified triangles (CPE6M in Abaqus
Standard(35)) with integration at three Gauss points and hourglass control.
Special care was taken to obtain a very fine and homogeneous discretization
throughout the RVE to resolve the plastic shear bands in the matrix during
deformation (Fig. 3).
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 Table 1

Thermo-elastic constants of the fibers and the matrix (38)

Ef νf αf Em νm αm

(GPa) (10−6K−1) (GPa) (10−6K−1)

40 0.25 10 4 0.35 50

3.2 Finite element and material models

Periodic boundary conditions were applied to the edges of the RVE because
the continuity between neighboring RVEs (which deform like jigsaw puzzles)
is maintained and, in addition, because the effective behavior derived under
these conditions is always bounded by those obtained under imposed forces
or displacements (36; 37). Let X1 and X2 stand as the Cartesian coordinate
axes parallel to the RVE edges and with origin at one corner of the RVE. The
periodic boundary conditions can be expressed in terms of the displacement
vectors ~U1 and ~U2 which relate the displacements between opposite edges
according to

~u(0, X2)− ~u(L0, X2) = ~U1 (1)

~u(X1, 0)− ~u(X1, L0) = ~U2. (2)

Uniaxial compression along the X2 axis is imposed with ~U2 = (0,−δ) and
~U1 = (u1, 0). δ stands for the imposed displacement in the loading direction
and u1 is computed from the condition that the average stresses on the edges
perpendicular to the loading axis should be 0. Mathematically,

∫ L

0

~t dX2 = 0 on X1 = 0 (3)

where the integral stands for the resultant forces acting on the edge X1 = 0
due to the traction vector ~t. The logarithmic strain along the loading axis was
given as ε = ln(1 + δ/L0) and the corresponding true stress on the edge was
computed as the resultant force divided by the actual cross-section.

Simulations were carried out with Abaqus/Standard (35) under plane strain
conditions and within the framework of the finite deformations theory with the
initial unstressed state as reference. Fibers were modeled as linear, thermo-
elastic and isotropic solids. The thermo-elastic constants given in Table 1 are
intermediate between those of glass and C fibers in the plane perpendicular to
the fiber axis. The polymeric matrix was assumed to behave as an isotropic,
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 thermo-elasto-plastic solid, and the thermo-elastic constants (typical of an

epoxy matrix) are also given in Table 1. Plastic deformation was governed by
the Mohr-Coulumb criterion and the total matrix strain was given by the addi-
tion of the thermo-elastic and plastic strain components. The Mohr-Coulomb
criterion assumes that yielding takes place when the shear stress acting on a
specific plane, τ , reaches a critical value, which depends on the normal stress
σ acting on that plane. This can be expressed as

τ = c− σ tan φ (4)

where c and φ stand, respectively, for the cohesion and the friction angle,
two materials parameters which control the plastic behavior of the material.
Physically, the cohesion c represents the yield stress under pure shear while
the friction angle takes into account the effect of the hydrostatic stresses.
φ =0 reduces the Mohr-Coulomb model to the pressure-independent Tresca
model while φ = 90◦ leads to ”tension cut-off” Rankine model. The value of
both parameters for an epoxy can be assessed from its tensile and compressive
strengths, σmt and σmc, according to

σmt = 2c
cos φ

1 + sin φ
and σmc = 2c

cos φ

1− sin φ
(5)

The fracture surface of a solid which follows the Mohr-Coulomb criterion and it
is subjected to uniaxial compression forms an angle α with plane perpendicular
to the loading axis, which is related to the friction angle φ by

α = 45◦ + φ/2 (6)

Typically 50◦ < α < 60◦ in epoxy matrices (23; 21; 24), and thus φ is in the
range 10◦- 30◦. Once φ was fixed for a given simulation, the corresponding
cohesion c was computed from equation (5) assuming that the matrix tensile
strength was 60 MPa (38). If not indicated otherwise, the simulations pre-
sented in this paper used φ = 15◦ to represent the matrix behavior, which
corresponds to a cohesion c of 39.1 MPa. The corresponding values on the
matrix tensile and compressive strength are, respectively, 60 MPa and 101.9
MPa.

The yield surface of the Mohr-Coulomb model, written in terms of the maxi-
mum and minimum principal stresses (σI and σIII), is given by

F (σI , σIII) = (σI − σIII) + (σI + σIII) sin φ− 2c cos φ = 0 (7)
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 and it was assumed that c and φ were constant and independent of the accu-

mulated plastic strain. A non-associative flow rule was used to compute the
directions of plastic flow in the stress space and the corresponding potential
flow G was expressed as

G =
4(1− e2) cos2 Θ + (2e− 1)2

2(1− e2) cos Θ + (2e− 1)
√

4(1− e2) cos2 Θ + 5e2 − 4e)

3− sin φ

6 cos φ
(8)

in which e = (3− sin φ)/(3 + sin φ) and Θ is obtained from

Θ =
1

3
arccos

{
J3

J2

}3

(9)

where J2 and J3 are, respectively, the second and the third invariants of the
deviatoric stress tensor. More details about the numerical implementation of
the Mohr-Coulomb model can be found in (39; 40).

The progressive interface decohesion upon loading was simulated by 4-node
isoparametric linear interface elements (COH2D4 in (35)) inserted at the
fiber/matrix interface. The mechanical behavior of these elements was ex-
pressed in terms of a traction-separation law which relates the displacement
jump across the interface with the traction vector acting upon it. The initial re-
sponse was linear in absence of damage and, therefore, the traction-separation
law can be written as

tn = Kδn and ts = Kδs (10)

where tn, ts, δn and δs stand for the normal and tangential tractions and
displacement jumps across the interface respectively. An elastic stiffness of K
= 108 GPa/m was selected for the interface, which was large enough to ensure
the displacement continuity at the interface and to avoid any modification
of the stress fields around the fibers in the absence of damage. The linear
behavior ends at the onset of damage, which is dictated by a maximum stress
criterion expressed mathematically as

max{< tn >

N
,
ts
S
} = 1 (11)

in which <> stand for the Macaulay brackets, which return the argument
if positive and zero otherwise, to impede the development of damage when

9
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 the interface is under compression, and N and S are the normal and tangen-

tial interfacial strengths which were assumed to be the equal for simplicity
(N = S). Once the damage begins, the stress transferred through the crack is
reduced depending on the interface damage parameter d, which evolves from 0
(in the absence of damage) to 1 (no stresses transmitted across the interface),
as shown in Fig. 4. The corresponding traction-separation law is expressed by

tn = (1− d)Kδn if δn > 0

tn = Kδn if δn ≤ 0 (12)

ts = (1− d)Kδs

The evolution of the damage parameter is controlled by an effective displace-
ment, δ̄, defined as the norm of the displacement jump vector across the in-
terface as

δ̄ =
√

< δn >2 +δ2
s , (13)

and d depends on the maximum effective displacement at the interface attained
during the loading history at each material integration point δ̄max according
to

d =
δ̄f (δ̄max − δ̄0)

δ̄max(δ̄f − δ̄0)
(14)

where δ̄0 and δ̄f stand for the effective displacement at the onset of damage
(d = 0) and when the interface has failed completely (d = 1), respectively. In
this cohesive model, the energy necessary to completely break the interface
is always equal to Γ, the interface fracture energy, regardless of the loading
path. If not indicated otherwise, the interface fracture energy in the simula-
tions presented below was 100 J/m2, a reasonable value for C and glass fibers
embedded in a polymeric matrix (41).

10
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δ
δ0 δ max δf

tn
N

ts
S
,

1

1

K

1
(1-d)K

Fig. 4. Schematic of the traction-separation law which governs the behavior of the
interface elements.

4 Results

4.1 Validation of the RVE size

Most of the results presented in this paper were obtained by the numerical
simulation of RVEs containing 30 fibers. The influence of the actual position
of the fibers within the RVE on the mechanical response was analyzed by com-
paring the results obtained with six different fiber realizations for the typical
values of the matrix and fiber properties given previously and two sets of inter-
face properties corresponding to very weak (N= 0.1c) and perfect interfaces,
respectively. The corresponding (compression) stress-strain curves are plotted
in Fig. 5, together with those computed with an RVE which included 70 fibers.
All the simulations were practically superposed in the elastic regime; diver-
gences arose at the onset of matrix plastic deformation and increased in the
composite with weak interfaces beyond the maximum load. These results are in
agreement with previous numerical studies, which showed that the minimum
size of the RVE increases with the mismatch between the phase properties
(e.g. at the elasto-plastic transition) and especially with the localization of
the deformation due to plastic flow and/or damage (42; 10). Nevertheless, the
dispersion among the stress-strain curves was limited and the curve obtained
by averaging the six simulations was very close to that computed with an RVE
with 70 fibers for both sets of material properties.
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Fig. 5. Compressive stress-strain curves for six different fiber realizations in RVEs
with 30 fibers (broken line) and one fiber realization in an RVE with 70 fibers (solid
line). The two sets of curves are representative of materials with very strong (= ∞)
or very weak (= 0.1c) fiber/matrix interfaces.

4.2 Influence of the interface strength

The stress-strain curve under transverse compression is plotted in Fig. 6 for
composite materials whose interface strength varied from N = 0.1c to infin-
ity. The matrix friction angle was 15◦ (c = 39.1 MPa) and the interfacial
fracture energy was 100 J/m2 in all cases. Each curve is the average of six
different realizations with an RVE with 30 fibers and the error bars stand for
the standard deviation of the simulations, which was negligible up to the max-
imum load and remained small afterwards. The initial composite stiffness was
not affected by the interface strength but the composites with low interfacial
strength (N < c) departed early from the linear behavior due to the nucle-
ation of interface cracks. In isolated fibers, the cracks nucleated at the points
equidistant from the poles and the equator (latitudes 45◦N and 45◦S), where
the interfacial shear stress was maximum. They propagated towards the equa-
tor and merged. The stress concentrations at the tip of the interface cracks
induced the formation of very short shear bands in the matrix linking up inter-
face cracks in neighboring fibers, and the maximum strength was attained at
this point (Fig. 7a). Further deformation led to formation of interfacial voids
and to the localization of the strain in the matrix in shear bands whose path
was dictated by the position of the voids which grew from the interface cracks
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Fig. 6. Influence of the interface strength N on the mechanical response under
transverse compression. The error bars stands for the standard deviation of six
simulations. The figure next to each curve stands for the interface strength. The
broken horizontal line represents the compressive strength of the epoxy matrix.

(Fig. 7b).

On the contrary, composites without interface decohesion presented a linear
behavior up to compressive stresses very close to the strength of the epoxy
matrix in uniaxial compression, σmc. This linear regime was followed by a
plastic response with very little hardening as the localization of the plastic
strain in the matrix led to the formation of shear bands which percolated the
entire RVE (Fig. 8). It is worth noting that the angle between the shear bands
and the plane perpendicular to the loading axis was very close to 45◦ +φ/2 =
52.5◦, the theoretical one for the matrix alone, regardless of the actual fiber
distribution, and this indicates that the composite strength was determined
by the propensity of the matrix to form shear bands.

The behavior of the composite with an intermediate interfacial strength (N =
c) was initially similar to that of the materials with high interfacial strength,
and the pattern of plastic deformation in the matrix at the point of maximum
stress showed the incipient development of shear bands oriented at 52.5◦ (Fig.
9a). However, final fracture occurred by the development of a single shear
band, slightly misoriented with respect to the theoretical angle, whose orien-
tation was dictated by the linking up of interface cracks in adjacent fibers
(Fig. 9b). This fracture pattern is very similar to that observed in Fig. 2(a),
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Fig. 7. Contour plot of the accumulated plastic strain in the matrix in the com-
posite with low interfacial strength (N = 0.1c). (a) ε = -1.7% corresponding to the
maximum strength. (b) ε = -4%. The loading axis is horizontal. Notice that the
strain values in legend (b) are ten times higher than in (a).
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Fig. 8. Contour plot of the accumulated plastic strain in the matrix in the composite
without interface decohesion (N = ∞) at ε = -7% . The loading axis is horizontal.

in which the matrix shear band is surrounded by interface cracks and points
to a failure process in three steps: incipient development of shear bands in the
matrix channels between the fibers, nucleation of interface cracks, and final
localization of the deformation in the matrix in one dominant shear band.

The transverse compressive strength, YC , is given by the maximum of each
curve in Fig. 6, and the overall effect of interface strength in the transverse
compressive strength, YC , is plotted in Fig. 10. Failure is controlled by the
matrix plastic deformation if N/c ≥ 2 and the reinforcing effect of the stiff
fibers increased the composite strength approximately 10% over the matrix
flow stress in compression. The composite strength decreases rapidly with
the interfacial strength as the stress concentrations associated with interface
cracks favor the onset of plastic deformation in the matrix and the nucleation
of shear bands at lower stresses. It is interesting to note that predictions of
the micromechanics simulations are in good agreement with experimental re-
sults for epoxy-matrix composites reinforced with either glass or carbon fibers
(Fig. 10). Experimental values of the matrix and composite properties under
transverse compression were obtained from (38); information of the interface
strength for both composite systems was not available in this reference and
the experimental data in (43) for C/epoxy and in (44) for glass/epoxy were
used. Thus, although the actual interface strength is not known, it is evident
that the model predictions for the transverse compressive strength and the
failure micromechanisms (Figs. 1 and 2) support the validity of the current
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Fig. 9. Contour plot of the accumulated plastic strain in the matrix in the composite
with intermediate interfacial strength (N =c). (a) ε = -1.7 % corresponding to the
maximum strength. (b) ε = -2.5%. The loading axis is horizontal. Notice that the
strain values in legend (b) are ten times higher than in (a).
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Fig. 10. Influence of the interface strength (normalized by the cohesion of the matrix
c) in the transverse compressive strength, YC (normalized by the yield strength of
the matrix in compression, σmc) and in the ductility, represented by the strain at
YC . The error bars stand for the standard deviation of the six simulations with
different RVEs.

approach to simulate the mechanical behavior of unidirectional PMC.

The data in Fig. 10 also include the influence of the interface properties in the
strain at YC , which stands for a rough approximation of the composite ductility
under transverse compression. The ductility values presented more scatter
(particularly for large interface strengths, in which the stress-strain curve is
very flat near YC) but they clearly show the differences between interface-
and matrix-dominated fracture. The former occurred when N < c and it was
characterized by a brittle behavior, while the latter was dominant if N ≥
2c and led to much higher strain to failure (4-6%) controlled by the plastic
deformation of the matrix.

4.3 Influence of the interface fracture energy

The influence of the interface fracture energy on the mechanical behavior
in transverse compression is plotted in Fig. 11. Simulations were performed
with the same RVE (whose behavior was very similar to the average of six
simulations with different RVEs) and three interface fracture energies: 100
J/m2 (the baseline value), 10 J/m2 and 1000 J/m2, while the interface strength

17



ACCEPTED MANUSCRIPT 
 

0

20

40

60

80

100

120

0 0.01 0.02 0.03 0.04 0.05

100 N/m
10 N/m

C
om

pr
es

si
ve

 s
tr

es
s 

(M
P

a)

Compressive strain

0.1c

2c

0.5c

c

interface 
fracture energy

Fig. 11. Influence of the interface fracture energy on the stress-strain curve under
transverse compression for different values of the interface strength.

was systematically varied from 0.1c up to 2c. For a given value of the interface
strength, the variations in the fracture energy modified the effective interface
displacement at failure, δ̄f (Fig. 4), leading to more brittle or more ductile
behaviors. The rest of the fiber and matrix properties were those indicated
in section 3. The stress-strain curves of the materials with interface fracture
energies of 10 and 100 J/m2 are plotted in Fig. 11. The curves corresponding
to the materials with interface fracture energies of 1000 J/m2 were practically
superposed to those with 100 J/m2 up to the maximum stress in all cases,
even though the fracture energies differed in one order of magnitude, and the
differences beyond that point were minimum. They are not plotted in Fig. 10
for sake of clarity. Brittle fiber/matrix interfaces (which are represented by the
curves obtained with Γ = 10 J/m2 in Fig. 11) did not change significantly the
compressive strength, although the reduction in load after the maximum was
faster as a result of the easy propagation of the cracks along particle/matrix
interface. Thus, it can be concluded that the effect of the interface fracture
energy on the transverse compressive strength of fiber-reinforced polymers is
negligible, as compared with the influence of the interface strength.
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 4.4 Influence of the matrix friction angle

The stress-strain curves under transverse compression of one RVE are plotted
in Figs. 12(a), 12(b) and 12(c) for three composites with matrix friction angles
of 0◦, 15◦ and 30◦, respectively. As the matrix tensile strength was assumed
to be constant and equal to 60 MPa, changes in the friction angle modified
the yield strength of the matrix in compression — as given in equation (13)
— which increased from 60 MPa (φ = 0◦) up to 180 MPa (φ = 30◦). So the
stresses in Fig. 12 were normalized by the corresponding yield strength of the
matrix in compression to compare the composite behavior on the same basis.
The curves in Fig. 12(a) (φ = 0◦) are representative of a metallic matrix, which
follows the Tresca yield criterion, while those in Figs. 11(b) and (c) stand for
the behavior of polymeric matrices which tend to form shear bands oriented
at an angle of 45◦ + φ/2 with the plane perpendicular to the compression
axis. In the absence of interface decohesion, the matrix with φ = 0◦ provided
the highest compressive strength (relative to the σmc), and YC/σmc decreased
progressively with the friction angle. This behavior is the result of the trend
to localize the deformation in shear bands between the fibers, which increases
with the friction angle. This effect was more marked in presence of interface
decohesion, because matrix shear bands were triggered at lower strains by
the stress concentrations around the interface cracks (Fig. 9a). Obviously, this
mechanism is more efficient if the matrix friction angle is high, and thus the
degradation of the composite properties was faster as the interfacial strength
decreased.

4.5 Influence of the thermal residual stresses

Residual stresses develop in PMC upon cooling at ambient temperature after
curing as a result of the thermal expansion mismatch between the matrix and
fibers. As the thermal expansion coefficient of the epoxy matrix is much higher
than that of the fibers, tensile stress appears in the matrix and compressive in
the fibers, and their influence on the behavior under transverse compression
can be taken into account in the micromechanical model by simulating the
composite behavior in two steps. In the first step, the RVE was subjected to a
homogeneous temperature change of -100◦C from the stress-free temperature
down to ambient temperature (38). The computational model and the fiber
and matrix properties were those given in section 3 but the analyses were
carried out under generalized plane strain conditions, instead of plane strain.
The thickness of the model (perpendicular to the X1 - X2) is constant in plane
strain simulations, and this leads to unrealistic values of the thermal residual
stresses along the X3 axis. Conversely, the generalized plane strain theory
assumes that the model lies between two parallel planes which can move with
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Fig. 12. Influence of the matrix friction angle on the stress-strain curve under trans-
verse compression. (a) φ = 0◦. (b) φ = 15◦. (c) φ = 30◦. The stresses are normalized
by the respective strength of the matrix in compression.

respect to each other and can accommodate the thermal strain induced by the
temperature change. Once the residual stresses were generated, the thickness
along the X3 axis was held constant and the RVE was deformed under uniaxial
compression. The stress-strain curves with and without residual stresses of one
RVE are plotted in Fig. 13 for different values of the interface strength. The
matrix and fiber properties correspond to those of the materials in Fig. 6.
The non-linear deformation started at lower strains in the presence of residual
stresses, but the compressive strength was not affected because the thermo-
elastic residual stresses were rapidly smoothed out during deformation by the
intense plastic deformation in the matrix and the interface cracks.
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5 Conclusions

The compressive strength under transverse loading of fiber-reinforced poly-
mers was studied by means of computational micromechanics. In this mod-
eling strategy, the stress-strain curve was computed by means of the finite
element analysis of an RVE of the composite microstructure. The simulations
showed the role played by the two dominant damage mechanisms (decohesion
at the interface and shear band formation in the matrix) in controlling the
composite strength. On the one hand, if decohesion is inhibited, failure took
place by the development of shear bands in the matrix, which propagated
through the microstructure at an angle of ±(45◦ + φ/2) with respect to the
plane perpendicular to the compression axis. The compressive strength was
slightly higher than the matrix strength under uniaxial compression due to
the additional strengthening provided by the stiff fibers. On the other hand,
interface cracks were nucleated at very low stresses in composites with weak
interfaces, while the matrix was still in the elastic regime. The stress con-
centrations at the interface crack tips nucleated plastic shear bands between
neighboring cracks, and led to the evolution of the cracks into large interfa-
cial voids. Final fracture occurred by the development of bands of localized
deformation formed by interfacial voids linked by matrix shear bands, the
orientation of these bands being controlled by the particular distribution of
the fibers in the RVE. When the interface strength was similar to the matrix
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 flow stress in compression (N ≈ c), the numerical simulation showed that the

maximum strength was mainly controlled by the matrix, and coincided with
the formation of an incipient pattern of shear bands in the matrix, inclined at
±(45◦+φ/2) with respect to the plane perpendicular to the compression axis.
Final fracture took place thereafter by the propagation of a dominant shear
band, slightly misoriented with respect to the theoretical angle, whose path
was dictated by the linking up of interface cracks in adjacent fibers.

Parametrical studies showed that other factors (such as the matrix friction
angle, the interface fracture energy and the thermo-elastic residual stresses)
exerted a secondary influence on the compressive strength of PMC under
transverse compression. The matrix was more susceptible to the formation
of shear bands as the friction angle increased, and they developed earlier, but
this effect was offset by the higher matrix flow stress in compression. Ther-
mal residual stress reduced the stress for the onset of nonlinear deformation
but they were rapidly smoothed out by the intense plastic deformation in the
matrix and did not modify the compressive strength. Finally, changes in the
interface fracture energy by two orders of magnitude did not modify signifi-
cantly the compressive strength either.

It is finally worth noting the potential of computational micromechanics to as-
sess the mechanical behavior of engineering composites. By using the appropri-
ate constitutive equations for the fiber, matrix and interfaces, this simulation
tool can provide a detailed picture of deformation and fracture mechanisms
at microscopic level, including the effect of all non-linear processes and of the
interaction among them. This information can be used to develop more accu-
rate and reliable failure criteria at the lamina level, which in turn can be used
to predict the mechanical performance of laminates and composite structures.
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