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Abstract—While medical imaging typically provides massive
amounts of data, the automatic extraction of relevant informa-
tion in a given applicative context remains a difficult challenge
in general. With functional MRI (fMRI), the data provide an
indirect measurement of brain activity, that can be related
to behavioral information. It is now standard to formulate
this relation as a machine learning problem where the signal
from the entire brain is used to predict a target, typically a
behavioral variable. In order to cope with the high dimension-
ality of the data, the learning method requires a regularization
procedure. Among other alternatives, ℓ1 regularization achieves
simultaneously a selection of the most predictive features. One
limitation of the latter method, also referred to as Lasso in the
case of regression, is that the spatial structure of the image is
not taken into account, so that the extracted features are often
hard to interpret. To obtain more informative and interpretable
results, we propose to use the ℓ1 norm of the image gradient,
a.k.a., the Total Variation (TV), as regularization. TV extracts
few predictive regions with piecewise constant weights over the
whole brain, and is thus more consistent with traditional brain
mapping. We show on real fMRI data that this method yields
more accurate predictions in inter-subject analysis compared to
voxel-based reference methods, such as Elastic net or Support
Vector Regression.

Keywords-fMRI; regression; regularization; Total Variation;
spatial structure

I. INTRODUCTION

Inferring behavioral information or cognitive states

from brain activation images such as those obtained with

functional magnetic resonance imaging (fMRI) is a recent

neuroimaging data analysis paradigm ? that can provide

more sensitive analyzes than standard statistical parametric

mapping procedures ?. This approach can be used to

assess the involvement of one or several brain regions in

certain cognitive or perceptual functions, by evaluating

the accuracy of the prediction of a behavioral variable

of interest (the target). This inference generally uses a

prediction function whose accuracy depends on its ability

to use the relevant variables, i.e., the correct brain regions.

Importantly, inference methods should simultaneously lead

to good prediction performance and provide an interpretable

model: the predictive function learned from the data should

be as explicit as standard statistical mapping results. This

objective is addressed by the TV regression presented in

this contribution.

Many methods have been tested for classification or

regression of fMRI activation images (Linear Discriminant

Analysis, Support/Relevance Vector Machines, Lasso,

Elastic net regression and many others), but in this problem

the major bottleneck remains the extraction of predictive

information within the brain volume (see ? for a review).

In practice, feature selection is important to achieve

accurate prediction: when the number of features (voxels)

is much larger than the numbers of samples (images), the

prediction method overfits the training set, and thus does

not generalize well. Besides, feature selection drastically

reduces the spatial support of predictive regions, and thus

potentially provides a simpler spatial distribution of the

predictive features than whole-brain maps.

To date, the most widely used method for feature selection

is voxel-based Anova (Analysis of Variance), that evaluates

each voxel independently. This is often combined with a

Support Vector Machines approach as prediction function.

However, it is suboptimal to perform feature selection and

parameter estimation procedures separately, and there is a

lot of interest in regularization methods that perform both

simultaneously.

Let us introduce the following regression model:

y = X w + ǫ (1)

where y represents the target data (y ∈ R
n) and w the

parameters to be estimated. The vector w ∈ R
m can be seen

as an image; m is the number of features (or voxels). The

matrix X ∈ R
n×m is the design matrix. Each row is an m-

dimensional sample. The crucial issue here is that n ≪ m,

so that estimating w is an ill-posed problem. The estimation

requires therefore adapted regularization.

A standard approach to perform the estimation of w with

regularization uses penalization of the maximum likelihood

estimator. This leads to the following minimization problem:

ŵ = arg minw ‖y − Xw‖2 + J(w) (2)

where J(w) is the penalization term.

The reference method is Elastic net (see ?), which is a

combined ℓ1 and ℓ2 penalization J(w) = λ1‖w‖1
1+λ2‖w‖2

2.

Elastic net has two limit cases: λ2 = 0 is the Lasso ?

which yields an extreme sparsity in the selected features,

and λ1 = 0 corresponds to Ridge regression.



However, such a penalization does not take into account the

underlying structure of w, i.e., a spatial 3-dimensional grid

in the case of brain images. The main motivation for using

this spatial structure is that the predictive information is

organized in regions, and not randomly spread across voxels.

In this article, we develop an approach for regularized

regression based on Total Variation (TV), that we call TV

regression. TV ends up providing an estimate ŵ of w with

a sparse block structure, from which the regions involved

in the cognitive task can be extracted.

Mathematically TV, which has been widely used in image

denoising ?, is defined as the ℓ1 norm of the gradient of the

image:

TV (w) =

∫

ω∈Ω

√

▽xw(ω)2 + ▽yw(ω)2 + ▽zw(ω)2dω

In this contribution, the mathematical and implementation

details of TV regression are first detailed. It is then applied to

an fMRI paradigm that studies object size characterization.

Results show that TV outperforms other reference methods,

as it yields better prediction performance while providing

weights ŵ with an interpretable spatial structure.

II. METHODS

A. Total Variation regression

The computational procedure used for TV regression is

based on the gradients of the ℓ2 data fidelity term in Eq. (2)

and the computation of the proximity operator associated

with the TV penalty.

Definition (Proximity operator). Let J : R
m → R be

a lower semi-continuous, convex function. The proximity

operator associated with J and λ ∈ R+ denoted by

proxλJ : R
m → R

m is given by

proxλJ(w) = arg min
v∈Rm

1

2
‖v − w‖2

2 + λJ(v) .

In the particular case of TV, the proximity operator is

known as the ROF problem ? and recent results ? have

shown that it could be solved efficiently with first order

iterative procedures. The pseudo code is provided in Al-

gorithm 1. For details and proof of convergence of the

algorithm see ?. In practice, the stopping condition for

the iterative computation of the TV proximity operator is

based on the computation of a duality gap. This guarantees

the optimality of the solution (it sets the P variable). The

number of iterations N is fixed to 500 as it turns out to lead

to an acceptable convergence using the fMRI data presented

here. A difficulty specific to fMRI data is the computation

of the gradient and divergence over a mask of the brain with

correct border conditions. Moreover, with such an irregular

domain, the Lipschitz constant L also needs to be estimated

on each input data. To do this we use a power method

classically used to estimate the spectral norm of a linear

operator.

Algorithm 1 Pseudo-code for solving the TV regression

Ensure: Let λ > 0 and X be the design matrix. Let Ω
denote the image domain. Let grad : Ω → R

3 be a

gradient operator and div : Ω3 → R be the associated

adjoint divergence operator. Let K be the convex set

defined by: K = {g : Ω3 s.t. for all ω ∈ Ω, ‖g(ω)‖ =
√

g1(ω)2 + g2(ω)2 + g3(ω)2 ≤ 1} and ΠK be the pro-

jection operator onto the set K.

Require: Set maximum number of iterations N and P .

Compute the spectral norm ‖XT X‖ and set µ s.t. 0 <
µ < 2‖XT X‖−1. Initialize a ∈ Ω3 with zeros. Compute

an upper bound L of the Lipschitz constant of the operator

div(grad(·)).
for n = 1 to N do

# Gradient step of the ℓ2 term

v = w + µXT (y − Xw)
# Then compute the TV proximity operator

b = a, t = 1
for p = 1 to P do

aold = a
a = b − 1

µλL
grad(v − µλdiv(b))

a = ΠK(a)
told = t
t = t+

√
1+4t2

2

b = a + told−1

t
(a − aold)

end for

w = v − λdiv(a)
end for

return w

B. Performance evaluation

Our method is evaluated with a cross-validation procedure

that splits the available data into training and validation

sets (here we use a leave-one-subject-out procedure). In the

following, (X l, yl) are a learning set, (Xt, yt) a test set

and ŷt = Xtŵ refers to the predicted target, where ŵ is

estimated from the training set. The performance of the

different regression models is evaluated using ζ, the ratio

of explained variance (or R2 coefficient):

ζ(X l, yl, Xt, yt) =
var(yt) − var (yt − ŷt)

var(yt)
This is the amount of variability in the response that can

be explained by the model (perfect prediction yields ζ = 1,

while ζ < 0 if prediction is worse than chance).

C. Competing methods

The TV regression is compared to different reference

methods :

• Elastic Net regression, that requires a double opti-

mization, for the two parameters λ1 and λ2. A cross-

validation procedure within the training set is used

to optimize these parameters. Here, we use λ1 ∈



{0.2λ̃, 0.1λ̃, 0.05λ̃, 0.01λ̃}, where λ̃ = ‖XT y‖∞, and

λ2 ∈ {0.1, 0.5, 1., 10., 100.}.

• Support Vector Regression ( SVR) with a linear kernel

(see ?), which is the reference method in neuroimag-

ing, due to its robustness in large dimension. The C
parameter is optimized by cross-validation in the range

10−3 to 101 in multiplicative steps of 10.

Both of these methods are used jointly after an Anova-based

feature selection as this maximizes their performance. This

selection is performed on the training set of each fold in

the cross-validation loop, and the optimal number of voxels

is selected within the range {50, 100, 250, 500}. The three

methods are developed in Python. Both Elastic Net and SVR

are freely available in the Scikit-learn package ?.

III. EXPERIMENTS AND RESULTS

A. Experiments on Real Data

We used a real fMRI dataset related to an experiment on

the representation of objects, as detailed in ?. During the

experiment, ten healthy volunteers viewed objects of three

different sizes and four different shapes, with 4 repetitions

of each stimulus in each one of 6 sessions. Functional

images were acquired on a 3-T MR system with eight-

channel head coil (Siemens Trio, Erlangen, Germany) as

T2*-weighted echo-planar image (EPI) volumes. Twenty

transverse slices were obtained with a repetition time of 2 s

(echo time, 30 ms; flip angle, 70◦; 2 × 2 × 2-mm voxels;

0.5-mm gap). Realignment, normalization to MNI space, and

General Linear Model (GLM) fit were performed with the

SPM5 software. In the present work we used the resulting

session-wise parameter estimate images. The four different

shapes of objects are pooled across the three sizes, and we

are interested in discrimination between sizes. This can be

handled as a regression problem, where we aim at predicting

the size of an object corresponding to a new fMRI scan.

We perform an inter-subjects analysis that relies on subject-

specific fixed-effects activations (across repetitions). This

yields a total of 12 images by subject, with 4 images for each

3 sizes of object. Thus, the dimensions of the real data set are

m ∼ 7× 104 and n = 120 (divided in 3 sizes). We evaluate

the performance of the method by cross-validation (leave-

one-subject-out), which yields an average rate of explained

variance across subjects. This analysis is launched on the

whole brain volume.

The parameters of the reference methods are optimized with

a leave-one-subject-out cross-validation within the training

set, using a three-way grid search in the ranges given before.

In the TV regression procedure, the λ parameter is set via

the definition of an auxiliary variable α = λ/n where n
is the number of images. This scaling makes the setting of

the regularization parameter easier and more stable between

different datasets.

B. Results on Real Data

The results found by the three methods are given in Ta-

ble I. TV regression outperforms the two alternative methods,

yielding an average explained variance of 81%. Moreover,

the predictions of TV regression are more stable than the

ones of the two reference methods, with a standard deviation

of the explained variance two times smaller than the SVR.

The weight maps found for different values of the regular-

ization parameter λ are shown in Fig.1. It can be seen that,

when λ increases, the spatial support of these maps tends

to be aggregated in very few clusters within the occipital

cortex, and that they have a nearly constant value on these

clusters. When λ decreases, the TV regression algorithm is

able to create small informative clusters within the occipital

cortex, that are comparable to standard activation maps,

but where most of the brain regions are shrunk toward 0.

By contrast, both reference methods yield uninterpretable

maps, with a few informative voxels spread out in the

whole occipital cortex, so that it is very difficult to identify

meaningful brain structures from these maps.

Table I
SCORES OF EXPLAINED VARIANCE FOR THE DIFFERENT METHODS

Methods mean ζ std ζ max ζ min ζ Time (s)

SVR 0.7 0.17 0.92 0.4 151
Elastic net 0.75 0.14 0.96 0.48 2428
TV 0.81 0.08 0.97 0.7 241

All three methods have also been tested in an intra-subject

analysis using the same dataset. In that case, they lead to

very similar results in terms of performance, although the

SVR yields slightly better accuracy than TV regression . This

is due to the fact that the voxel-to-voxel correspondence

between images is valid in an intra-subject analysis com-

pared to an inter-subject analysis. However, the voxel-based

approaches still suffer from the limitation that the maps

obtained are very hard to interpret.

IV. DISCUSSION

Regularization of voxels loadings significantly increases

the generalization ability in regression problems. However,

regularization is commonly performed without using the spa-

tial structure of the images. The proposed approach performs

an adaptive and efficient regularization, while creating in-

terpretable weighted maps with regions of constant weights.

Thus, the TV regression method fulfills the two requirements

that make it suitable for neuroimaging: a good prediction

accuracy (equal to or better than the reference methods),

and a set of interpretable features, i.e., clusters of similarly

tuned voxels. Especially, in the case of a multi-subject study,

considering extended regions is expected to compensate for

spatial misalignment between individual datasets, hence can

better generalize than voxel-based methods. Another asset of

the TV regression is that it allows to consider the whole brain

in the analysis, without requiring any prior feature selection.

Finally, an important feature of our implementation is that it



reduces computation time to a reasonable amount, so that it

is not significantly more costly than SVR or Elastic Net in

practical settings (i.e., including the cross-validation loops,

see Table I).

From a neuroscientific point of view, the selected regions

from a whole brain analysis are concentrated in the early

visual cortex. This is consistent with the fact that early visual

cortex yields highly reliable signals that are discriminative of

feature/shape differences between object exemplars, which

holds as long as no high-level generalization across images

is required (see e.g. ? and ?). Finally, the spatial pattern

of this information is stable enough across subjects to be

extracted and used to make reliable predictions.

V. CONCLUSION

In this paper we proposed to adapt TV regression for

extracting information from brain images. The feature se-

lection and model estimation are performed jointly and

capture the predictive information present in the data better

than alternative methods. A particularly important property

of this approach is its ability to create spatially coherent

regions with similar weights, yielding interpretable and still

informative sets of features. Experimental results show that

this algorithm performs particularly well on real data in a

multi-subject analysis. These observations demonstrate that

TV regression is a powerful tool for understanding brain

activity.
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Figure 1. Maps of weights found by TV regression for different values
of the regularization parameter α. When it decreases, the TV regression

algorithm creates different clusters of weights with constant values. These
clusters are more easily interpretable than voxel-based map (see bellow).
Moreover, the clusters are found in the visual cortex, as expected, and
show an interesting spatial structure which seems symmetrical: clusters
with negative weights are more lateral than clusters with positive weights,
and less ventral. The TV regression algorithm is stable for different values
of α in the range [0.01, 0.1], has shown by the explained variance ζ.
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Figure 2. Maps of weights found by the SVR (up) and Elastic net (bottom)
methods. The optimal number of voxels selected by Anova is 500, but
Elastic net further reduces this set to 21 voxels. These voxel-based methods
yield features that are difficult to interpret (especially when compared to
TV regression ), which is related to the fact that they do not consider the
spatial structure of the image


