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Abstract

It is a standard approach to consider that images en-

code some information such as face expression or biomark-

ers in medical images; decoding this information is partic-

ularly challenging in the case of medical imaging, because

the whole image domain has to be considered a priori to

avoid biasing image-based prediction and image interpre-

tation. Feature selection is thus needed, but is often per-

formed using mass-univariate procedures, that handle nei-

ther the spatial structure of the images, nor the multivari-

ate nature of the signal. Here we propose a solution that

computes a reduced set of high-level features which com-

press the image information while retaining its informative

parts: first, we introduce a hierarchical clustering of the

research domain that incorporates spatial connectivity con-

straints and reduces the complexity of the possible spatial

configurations to a single tree of nested regions. Then we

prune the tree in order to produce a parcellation (division

of the image domain) such that parcel-based signal aver-

ages optimally predict the target information. We show the

power of this approach with respect to reference techniques

on simulated data and apply it to enhance the prediction

of the subject’s behaviour during functional Magnetic Res-

onance Imaging (fMRI) scanning sessions. Besides its su-

perior performance, the method provides an interpretable

weighting of the regions involved in the regression or clas-

sification task.

1. Introduction

Inferring behavioral information or cognitive states from

activation brain images such as those obtained with func-

tional magnetic resonance imaging (fMRI) is a recent ap-

proach in neuroimaging [1] that can provide more sensi-

tive analyses than standard statistical parametric mapping

procedures [7]. Specifically, it can be used to assess the

involvement of some brain regions in certain cognitive or

perceptual functions, by evaluating the accuracy of the pre-

diction of a behavioral variable of interest (the target) when

the classifier is instantiated on these brain regions.

This inference generally uses a prediction function such as

a classifier that relates the image data to relevant variables.

Many methods have been tested for classification or regres-

sion of activation images (Linear Discriminant Analysis,
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Support/Relevance Vector Machines, Lasso, elastic net re-

gression and many others), but in this problem the major

bottleneck remains the extraction of predictive information

within the brain volume (see [6] for a review). Feature se-

lection is important both to achieve accurate prediction (by

alleviating the curse of dimensionality) and to understand

the spatial distribution of the informative features. In partic-

ular, when the number of features (voxels, regions) is much

larger than the numbers of samples (images), the prediction

method overfits the training set, and thus does not general-

ize well.

Multivariate feature reduction is an NP-hard problem,

that can only be solved approximately. To date, the most

widely used method for feature selection is voxel-based

Anova (Analysis of Variance), that evaluates each brain

voxel independently. In that case, spatial information is not

used, and selected features can be redundant. By contrast,

an algorithm for extracting information from image-based

datasets can be specified as follows:

(i) A multivariate model: The information of interest

can be distributed over distant brain regions. Feature

selection should be able to account for combinations of

signals over these different brain sites, hence it should be

a multivariate approach. For instance, [10] shows how

crucial multivariate pattern analysis is to make accurate

predictions.

(ii) Taking into account the spatial structure of the

data: Due to the spatial structure of fMRI data, there is

a local redundancy of the predictive information, which

should be considered in the feature building procedure, e.g.

by replacing voxel-based signals by local averages. For

instance, the searchlight approach [9], takes into account

the local information in the image, but it cannot handle

long-range interactions in the information coding.

(iii) A multi-scale approach: Given that the investi-

gated regions are wide if there is little prior information,

while the truly informative regions can be relatively tiny,

we need an approach that focuses on compact subregions

of the search volume: a multi-scale approach might thus

be useful to optimize the definition of predictive regions.

Unlike purely geometrical clustering approaches such as

[8], procedures that use the signal for clustering might

better respect the underlying data structure.

In this article, we develop spatial models that rely on

hierarchical clustering to improve fMRI-based decod-

ing. It has already been shown [4, 5] that a hierarchical

multi-scale parcellation is pertinent for understanding brain

network structure; here we develop this idea in the case of

supervised classification. We call parcellation a division

of the image domain into spatially connected units. Using

parcel-based averages of fMRI signals to fit the target

naturally reduces the number of features, hence allows

tractable computations and accurate modeling. This raises

the new challenge of optimizing the parcellation of the

brain volume for the particular prediction task.

To address it, we first construct a hierarchical subdivision

of the search domain. As the resulting nested parcel sets

is isomorphic to a tree, we identify any tree cut with a

given parcellation of the domain, and thus to a reduction

of the available signal into parcel-based averages. We

optimize the cut in order to maximize prediction accuracy

by using a greedy approach and internal cross-validation.

This is presented in Section 2. Importantly, this approach

can focus on strongly informative, though spatially tiny

regions, while leaving large uninformative regions of the

search volume unsegmented. It is important to note that

the cut definition takes into account the joint distribution of

the data (across clusters), so that the final predictive model

deals effectively with the feature covariance structure and

is thus expected to be accurate – though global optimality

cannot be guaranteed. We show in Section 3 that our

method can recover the true spatial support of a discrimi-

native pattern embedded in an image: as a consequence, it

achieves higher prediction performances. Finally, we apply

our approach to a real fMRI experiment, where we analyze

brain activations associated with the mental processing of

quantities. With the proposed approach, we achieve very

significant fit of processing differences associated with

the quantities involved, both within and across subjects.

Moreover, our results on high-dimensional, but structured

data such as brain activation images suggest that our

approach can be applied to any type of data, where spatial

structure is important, such as medical images.

2. Methods

After introducing the notations, we present the regres-

sion method that is used in this work, then we turn to our

new feature selection method.

2.1. Introduction and notations

It is assumed that a set of activation images related to the

presentation of different stimuli has been pre-computed, so

that the image data can be viewed as a Np × Nv matrix

X , where Nv the number of voxels and Np the number of

samples (images). Typically, Nv ∼ 103 to 105 (for a whole

volume), while Np ∼ 10 to 102. In the sequel, we reduce

the number of features to a certain number Nf ≪ Nv .

Note that the target Y is real-valued, and is thus fit through

regression techniques.

Inverse inference is based on a framework that includes a



feature selection step to extract the informative features,

a prediction method to infer the relationship between the

fMRI signal X and the target Y to be predicted, and a

cross-validation scheme that splits the available data into

training and validation sets (here we use a leave-one-out

procedure). See the flowchart in Fig. 2 for an overview of

the whole procedure. Let X l, Y l be a learning set, Xt, Y t

a test set and Xi refer to the ith feature.

We use elastic net regression (see [13]) to predict the

target Y from a subset of features that we still denote X .

These features can be the signal in a voxel or the mean sig-

nal within a parcel. We thus have:

Y =

Nf
∑

i=1

Xiβi + ǫ (1)

Estimation of the parameters (βi)i=1..Nf
requires a regular-

ization since Np ≪ Nf . Elastic net criterion is defined as

L(λ1, λ2, β)X,Y = ‖Y − Xβ‖2 + λ2‖β‖
2
2 + λ1‖β‖1, and

predictions Ŷ on the test set are computed as:

Ŷ t(X l, Y l, Xt) =

Nf
∑

i=1

Xt
i β̂i(X

l, Y l), (2)

where β̂(X l, Y l) = (1 + λ2)argminβ

(

L(λ1, λ2, β)Xl,Y l

)

.

The conventional parameterization for elastic net is speci-

fied by λ2 (that we denote λ) and s = λ1

λ1+λ2

, the fraction

of the L1 norm.

The performance of a regression model is evaluated

using ζ, the ratio of explained variance (or R2 coefficient):

ζ(X l, Y l, Xt, Y t) =
var(Y t) − var

(

Y t − Ŷ t(X l, Y l, Xt)
)

var(Y t)
(3)

This is the amount of variability in the response that can be

explained by the model (perfect prediction yields ζ = 1,

while we might have ζ < 0 if the prediction error is high).

In the following, this value will be referred to as the fit cri-

terion.

Next, we introduce spatial models in order to build a re-

duced number of fMRI features to fit the target data.

2.2. Features definition and selection

Construction of the hierarchical parcellation

To break the complexity of the problem, we first perform

a hierarchical clustering of the voxel-based signals, under

connectivity constraints, so that only spatially connected

clusters are created. At that stage, we ignore the target

information, but use the variance-minimizing approach of

Ward’s algorithm [12] in order to ensure that cluster-based

averages provide a fair representation of the signal within

each cluster. Only adjacent clusters can be merged together.

The purpose of this procedure is to use the hierarchical par-

cellation to guide the search of informative regions within

the volume of interest. Thus, at a given level in the hier-

archy, the data is reduced to NC cluster-based averages,

which significantly decreases the computational complex-

ity compared to a voxel-based approach with Nv ≫ NC

voxels.

Pruning of the tree

The hierarchical subdivision of the brain volume (by suc-

cessive inclusions) is naturally identified as a tree; choosing

a parcellation adapted to the regression problem means op-

timizing a cut of the tree, where the sub-trees created by

the cut represent a region whose average signal is used for

regression. As no optimal solution is currently available to

solve that problem, we consider two approaches to perform

such a cut (see Fig.1) :

• The first one consists in using the inertia criterion from

Ward’s algorithm: the cut consists in a subdivision of

Ward’s tree into its Nf main branches. As this does

not take into account target information Y , we call it

unsupervised cut.

• The second solution consists in initializing the cut to

the highest level of the hierarchy and then successively

finding the new subtree cut that maximizes the fit cri-

terion. As in a greedy approach, successive cuts it-

eratively create a finer parcellation of the search vol-

ume. More specifically, one parcel is split at each step,

where the choice of the split is driven by the prediction

problem. After ∆ such steps of exploration, the brain

is divided into ∆ + 1 parcels. This procedure, that we

call supervised cut is detailed in the algorithm 1.

Selection of the optimal subtree

In both cases, a set of nested parcellations is produced, and

the optimal model among the available cuts still has to be

chosen. This is done by computing a cross-validated gener-

alization score within the training set, i.e. by averaging the

values of ζ within a k-fold cross-validation on the training

set. We select the subtree that yields the highest score.

Validation of the method

These procedures are performed on a learning dataset,

which is split into train and test sets to optimize Nf . After

learning, the validation dataset is subject to the same par-

cellation, and results are given in terms of cross-validated

explained variance.



Figure 1. Illustration of two possible approaches to perform the

pruning of the tree in order to obtain a given number of parcels

(here 5). In the unsupervised cut approach (a), Ward’s tree is di-

vided into 5 parcels through a horizontal cut (red). The size of the

parcels are similar. In the supervised cut approach (b), by choos-

ing the cut (blue) in the tree that optimizes the prediction score,

we are able to let large regions unsegmented, and to focus on some

specific regions of the tree that are more informative.

Computational considerations

Our algorithm can be used to search informative regions in

very high-dimensional data, where other algorithms such

as elastic net do not scale well. At the current iteration

δ ∈ [1,∆], δ + 1 possible features are considered in the re-

gression model, and the regression function is fit Np(δ + 1)
times, each call having a complexity O(δ3) when no partic-

ular optimization of the fit is performed. The overall cost

complexity of all the procedure is thus O(Np∆
5). In gen-

eral ∆ ≪ Nf , and the cost remains affordable as long as

∆ < 103, which was the case in all our experiments. Higher

values for ∆ might also be used, but in that case, some op-

timizations of Elastic Net should be used (early stopping,

see [13]). Lasso could also be a cheaper alternative in such

cases.

3. Experiments and results

We compare the results of the supervised clustering on

different experiments with the results of the unsupervised

cut algorithm and a univariate feature selection based on

an F-test. The reference algorithms are optimized within a

wide range of values for their respective parameters.

• This univariate selection is used with an elastic net re-

gression (called Enet), with an optimized number of

voxels found by cross-validation within the training

set, in the range 50 to 250 in steps of 50 (only 50 to 150
for the simulated data). In the inter-subject study, the

parameter of the elastic net are cross-validated within

✬

✫

✩

✪
Figure 2. Global Flowchart for the supervised cut procedure.

Algorithm 1 Pseudo-code for the supervised cut algorithm.

Ensure: Let T be the tree constructed from the fMRI

dataset X by Ward’s algorithm. Let Pδ be the set of

parcels defined at the current iteration δ and Xδ the aver-

age signal per parcel obtained from Pδ .

Require: Set a number of exploration steps ∆. Let P0 =
{P1}, the top parcel of the tree.

for δ = 1 to ∆ do

for all Pi ∈ Pδ−1 do

- split Pi → (P 1
i , P 2

i ) according to T.

- set Pδ−1,i = Pδ−1 − {Pi} ∪ {P 1
i , P 2

i }.

- compute the corresponding parcel-average signals

Xδ−1,i.

- estimate:

SCi = ζ(X l
δ−1,i, Y

l, X l
δ−1,i, Y

l)

end for

- perform the split i⋆ with the highest score SCi⋆ →
new set of parcels : Pδ = Pδ−1,i⋆ .

- compute the cross-validated regression score V Cδ of

this new set of parcels using a leave-one-out procedure.

V Cδ = meanj∈l

(

ζ(X
l−{j}
δ , Y l−{j}, X

{j}
δ , Y {j})

)

end for

return Retain the parcellation P
δ̂

with the highest score

V C
δ̂
.

the training set, in the range 10−3 to 103 in multiplica-

tive steps of 10 for λ, and in the range 0.1 to 1 in steps

of 0.1 for s.

• Moreover, we use linear Support Vector Regression



(called SVR), the C parameter being optimized by

cross-validation in the range 10−4 to 104 in multi-

plicative steps of 10; the number of voxels selected by

the univariate feature selection is optimized by cross-

validation within the training set in the range 100 to

2000 in steps of 100 (only 50 to 150 for the simulated

data). Support Vector methods are reference methods

for fMRI data-based prediction, see e.g. [1].

3.1. Simulated data

We test our algorithm on a simulated data set X of Np

images with a set R of three square Regions of Interest

(ROIs). We note b the background (i.e. outside the ROIs).

The signal in the (i, j) voxel of the kth image is simulated

as:

Xi,j,k =
∑

r∈R

Ir(i, j)αr,kui,j,k + Ib(i, j)ui,j,k + ǫi,j,k (4)

where ui,j,k is a random value from an uniformed distri-

bution in [0, 1], ǫi,j,k a random value from a Gaussian dis-

tribution N (0, 1) smoothed with a parameter of 2 voxels

to mimic the correlation structure observed in real fMRI

datasets, αr,k ∼ U [0, 1] for ROI r and image k. We have

Ir(i, j) = 1 (resp. Ib) if the (i, j) voxel is in r (resp. b), and

Ir(i, j) = 0 (resp. Ib) elsewhere. We simulate the target Y

as: Yk =
∑

r∈R αr,k

We generate the tree and derive the optimal parcellation

using a learning dataset of 40 images, then we validate on

60 other images simulated according to (4). The images

have a size of 60 × 60, with three non-overlapping ROIs of

width 5, 6, 7 pixels. We test the supervised cut algorithm

with a number of exploration steps set to ∆ = 60, and the

elastic net parameters s = 0.2 and λ = 0.5.

In the simulation, the leave-one-out cross-validation for the

selection step has been replaced by a 5-folds validation.

3.2. Results on simulated data

We compare the different methods on twenty sets of sim-

ulated data. See the results in Fig.3: both parcel-based ap-

proaches are able to extract the simulated discriminative re-

gions (a), but the supervised cut approach has the additional

ability to leave very wide regions of the background vir-

tually unsegmented, so that the parcels created by the cut

are much larger in the noisy background than when using

the unsupervised approach (b). As a consequence, the su-

pervised cut approach generalizes better, though both ap-

proaches clearly outperform voxel-based elastic net predic-

tions. Only the supervised approach outperforms SVR.

3.3. Real data

We use a part of a real dataset on the mental process-

ing of quantities. During the experiment, ten healthy volun-

teers (6 males and 4 females, mean age 21.2 +/- 3.0 years)

(a)

(b)

Subjects SVR Enet Super. Unsuper.

Mean ζ 0.14 0.07 0.17 0.07

Std ζ 0.1 0.19 0.14 0.08

(c)

Figure 3. Results of the simulation experiment. (a) Standard-

ized Elastic net coefficients for the two parcellation techniques:

the supervised cut (left) and the unsupervised cut (right) meth-

ods. These results are averaged across 20 simulations and show

that both methods recover the simulated active regions (outlined

by yellow squares), although the supervised cut method yields a

spatially more specific pattern. (b) Average size of the parcels

that include each voxel, for the supervised (left) and unsupervised

cut (right) methods: the supervised cut creates larger parcels than

the unsupervised cut far from the informative spots (outlined by

green squares), and smaller parcels in the informative regions. (c)

Ratio and Standard deviation of the explained variance for differ-

ent methods averaged on 20 simulations. Parcel-based techniques

outperform voxel-based analyses that use elastic net, and the su-

pervised cut algorithm performs best.

viewed dot patterns with different quantities of dots (ν = 2,

4, 6 and 8; we take Y = log(ν)) with 4 repetitions of each

stimulus in each one of 8 sessions : so that we have a total

of Np = 32 images per subject. We aimed at predicting the

values of Y from the fMRI data through regression.

Functional images were acquired on a 3 Tesla MR sys-

tem with 12-channel head coil (Siemens Trio TIM) as T2*

weighted echo-planar image (EPI) volumes using a high-

resolution EPI-sequence. 26 oblique-transverse slices cov-

ering parietal and superior parts of frontal lobes were ob-

tained in interleaved acquisition order with a TR of 2.5 s

(FOV 192 mm, fat suppression, TE 30 ms, flip angle 78◦ ,

1.5 × 1.5 × 1.5 mm voxels). Standard pre-processings and

the fit of the general linear model were performed with the

SPM5 software. We used images of parameter estimates,

one per condition and repetition.



We use the parameters of elastic net s = 0.2, λ = 0.5,

∆ = 100 exploration steps, for the supervised clustering.

We have performed two series of analyses:

• In a first analysis, we launch our algorithm and the ref-

erence methods in each subject’s dataset in parallel, on

the whole parietal lobe, using one-repetition-out cross-

validation (8 repetitions by subjects), and compute the

average of the method performance (ζ) in this sample

of 10 subjects.

• In a second analysis, we run the procedure in a multi-

subjects analysis. For each subject, we first compute

a fixed-effects activation image that represents the av-

erage effect of each stimulus, one for each condition

(then, we have 4 images by subjects in 10 subjects).

We evaluate the performance of the method by cross-

validation (leave-one-subject-out), which yields an av-

erage rate of explained variance across subjects. This

analysis in launched on the whole brain volume.

3.4. Results on real data

In the intra-subject analysis, we obtain the results given

in Tab.1. The parcel-based methods yield the same pre-

diction accuracy as the voxel-based methods, despite the

fact that they use fewer features. Thus, the parcels seem

to be a good way to compress the information within the

whole brain, without loss of performance. Both parcel-

based methods yield the same results which may be due

to the fact that the information is already well segregated

within the tree of parcels, so that a supervised exploration

does not improve data representation.

The results of the multi-subjects analysis are given in Tab.2.

The fact that a significant proportion of the stimulus vari-

ance can be fit using brain activation across subjects means

that the spatial layout of the information is relatively stable

across subjects. However, this results is probably related to

the fact that for small numbers of dots as used here (but not

for larger numerosities or symbolic numbers [3]) paramet-

ric activity increases can be observed in relatively extended

and contiguous parietal regions, see also [11]. Whether

these reflect special mechanisms for processing small num-

bers of objects, or secondary factors not related to numer-

ical representation per se (e.g., increased effort when at-

tempting to count), is currently not clear. The supervised

cut method outperforms the other approaches. In particu-

lar, the explained variance is 19% higher than with the SVR

method (p < 0.004), and 12% higher than with elastic net

(p < 0.04). Moreover, the parcel-based methods allow us to

access interpretable maps, as shown in Fig.4(b), compared

to voxel-based methods (Fig.4 (a)).

SVR Enet Super. Unsuper.

Mean ζ 0.47 0.46 0.46 0.47

Std ζ 0.22 0.25 0.25 0.25

Nb. of features 242.5 158.7 71.0 70.6

Table 1. Results obtained in the intra-subject analysis. Average

ratio and corresponding standard deviation of the explained vari-

ance, and average number of features (voxels or parcels) across 10

subjects. We can see that all the methods perform equally well, al-

though they use a different number of features. The parcel-based

algorithms use far less features than the voxel-based ones, i.e. they

create a more compact representation of the data.

SVR Enet Super. Unsuper.

Mean ζ 0.42 0.49 0.61 0.52

Std ζ 0.13 0.23 0.2 0.28

Table 2. Results on real data, in a multi subjects analysis: aver-

age and the standard deviation of ζ for the different methods. The

supervised cut algorithm yields the best performance in leave-one-

subject-out cross-validation, and is significantly better than the

two voxel-based methods (SVR and elastic net).

4. Discussion

Given that an fMRI brain image typically comprises 104

to 105 voxels, it is perfectly reasonable to use intermedi-

ate structures such as parcels, to reduce the information in

prediction experiments. Our simulations show that our pro-

cedure for parcel definition allows the detection of the most

informative regions for the prediction task. Moreover, in the

case of a multi-subjects study, parcellations are expected

to compensate for spatial misalignment between individ-

ual datasets, hence can better generalize than voxel-based

methods. The present study confirms that this indeed in-

creases the generalization capability of the trained classifier

or regression estimator. Note that it is important to define

the parcellation on the training database only to avoid data

overfit. This entails the technical difficulty of optimizing

the parcellation with respect to the spatial organization of

the information within the image. To break the combinato-

rial complexity of the problem, we have defined a recursive

parcellation of the volume using Ward’s algorithm, which is

furthermore constrained to yield spatially connected clus-

ters. The merit of Ward’s clustering is to yield minimal

variance parcels at each step, so that it makes sense indeed

to use parcel-based signal averages. The sets of possible

volume parcellations is then reduced to a tree, so that the

problem boils down to finding the optimal cut of the tree.

To define such a cut, we can either use Ward’s inertia

criteria, which means that the tree is cut horizontally, into

subtrees with a comparable amount of variance. Model se-

lection then boils down to finding at which level the tree

should be cut. The method is relatively powerful, but clearly



(a)

(b)

Figure 4. Results obtained with real data in the inter-subject exper-

iment. The functional information is superimposed on the anatom-

ical image of one particular subject: (a) Sum of the absolute values

of the weights for the voxels used in the SVR (an optimal number

of 2000 voxels have been found by cross-validation). The vox-

els are spread all over the brain, without any emerging coherence.

(b) Coefficients of elastic net for the parcels found when using the

supervised cut algorithm. We can see that these parcels are em-

bedded along the intra-parietal sulcus, which was expected, see

e.g. [2]. Starting from a whole-brain analysis, very few parcels

have a non-null weights.

suboptimal with respect to the prediction task. By contrast,

the supervised cut approach attempts to optimize the cut

with respect to the prediction task. Although finding an

optimal solution is infeasible, we adopt a greedy strategy

that recursively finds the splits that most improve the pre-

diction score. An important characteristic is that this is a

multivariate approach, which always takes into account the

joint distribution of the available features. However, there is

still no guarantee that the optimal cut might be reached with

this strategy. Model selection is then performed a posteriori

by considering the best-generalizing parcellations among

the available models. We have shown on simulations and

real data that this approach has the particular capability to

highlight regions of interest, while leaving uninformative

regions unsegmented. In that sense it can be viewed as a

multi-scale approach. The benefits of parcellation come at a

cost regarding CPU time, the parcel definition raising CPU

time to 15 minutes on real datasets (with a non optimized

python implementation though). Nevertheless, all this re-

mains perfectly affordable for standard neuroimaging data

analyses, especially by using fast implementation of elas-

tic net, such as coordinate descent, which yields an average

time for the whole analysis (exploration of the tree, selec-

tion of the best sub-tree) of 20s on a 1.6 Ghz CPU.

The proposed methods yield the same results as the ref-

erence method SVR in the intra-subject study, but they yield

better results for the inter-subjects study. Our interpretation

is that in the intra-subject case there is a straightforward

voxel-to-voxel correspondence across the images, so that

SVR works optimally. However in the inter-subjects study,

voxel-based methods are weakened by the inter-subject

spatial variability and their performances are relatively

lower; parcel-based models compensate for that effect.

Additionally, as our parcellation approach works in the

feature space, it can easily incorporate more priors such

as anatomical boundaries between brain structures. Our

parcellation scheme is further useful to accurately locate

contiguous predictive regions, especially in the supervised

version, as shown in the comparison with voxel-based

methods.

Conclusion In this paper we proposed a new feature

building method for extracting information from brain

images. This includes the construction of an adapted spatial

model that captures the predictive information present in

the data better than general feature selection heuristics.

A particularly important property of this approach is its

ability to focus on relatively small but informative regions

while leaving vast but noisy areas unsegmented. This

algorithm performs well on real data, and especially in

the multi-subjects analysis. Indeed, the spatial averaging

of the signal induced by the parcellation seems to be a

powerful way to deal with the inter-subject variability.

Moreover, this method is not restricted to brain images, and

might be used in any dataset where multi-scale structure is

considered as important (e.g. medical or satellite images).
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