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Bio-inspired visual sequences classification1

Mauricio Cerda and Bernard Girau2

Abstract The capacity to perceive and interpret highly complex visual patterns such3

as body movements and face gestures, is remarkably efficientin humans and many4

other species. Among others tasks, the classification of visual sequences without5

context is one key problem to understand both the coding and the retrieval of spatial-6

temporal patterns in the human brain. In this work we presenta model able to per-7

form classification of synthetic. Our model takes into account current knowledge8

in experimental psychophysics and physiology. The presented model shows that9

sparse spatial coding of spatial-temporal sequences couldbe sufficient to explain10

both: classification with partial information and tolerance to time-warping. We are11

also able to code temporal sequences with single populations of units, without the12

need of explicit “snapshots” at each time instant.13

1 Introduction14

The understanding of the different principles and mechanism that exist in the brain15

to perform perceptive and cognitive tasks, are since long time being studied by bi-16

ologist. Yet, only in the last decades there is an increasinginterest in the application17

of these ideas in fields such as computer vision and robotics,the “bio-inspired”18

methods.19

There is a wide variety of questions in vision starting from what information to20

process?, then how to analyze this data? and how to operate innatural conditions?21

just to give a few examples. In this work, we are interested inthe problem of rec-22
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ognize spatial-temporal sequences, such as walking, jumping and running persons,23

see Figure 3. The applications are not necessary to human activities, but it is the24

problem motivates this work.25

The work we present deals with the problem of how to code and differentiate26

spatial-temporal sequences, taking into account know properties of the human brain27

that we describe in 2.1. Some of the key ideas we consider are that classification can28

be performed using only a few points (see Figure 1) that can beextracted from the29

movement in the sequence, and a2D coding of the sequence is the most likely, even30

if the movement is3D. Here, we propose a single neural mechanism to model these31

ideas.32

To test our model, we perform several simulations over the case of single tra-33

jectories that could then describe other more complex spatial-temporal sequences.34

We show that we can retrieve other properties such as speed-invariance (time warp-35

ing 1) and partial responses in time (to answer before the sequence is completely36

presented) [1].37

We also compare our work to artificial vision techniques, to gain understand in38

the difference that could possibly have neural mechanisms and the current state-39

of-the-art techniques. The main difference is the extensive use of body models in40

computer vision (despite the fact that this is still in discussion among biologist)41

and the use of complete sequence to classify. Our model couldexplain both things:42

classification of sequences can be performed without an explicit model and it is43

possible to give classification answers since very early in the sequence.44

The next section 2, presents and overview of experiments in biology and tech-45

niques in computer vision, to locate this work in both fields.Section 3 describes46

our model and the Results & Discussion presents the results of our simulations, and47

comparison against other model. Finally we presents the conclusion of this work48

in 5.49

Fig. 1 Some example human
movements (walking, fighting
and waving). In these se-
quences there are locations (in
white) that are more relevant
in terms of the information
they can contribute to be
differentiated from other se-
quences.

1 Commonly associated to temporal sequences, when the same sequence is delayed or com-
pressed/dilated in time. Perceptive phenomena such as speed recognition can tolerate this kind
of variation.
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2 Overview50

In this section, we present some experimental evidence in primates (humans) and51

available techniques in computer vision, to characterize the classification of visual52

patterns.53

2.1 Biological overview54

There is abundant experimental evidence related to the classification of spatial-55

temporal patterns in humans and primates. Most of these experiences come from56

experimental psychology as the classification task is associated to higher areas of57

the brain. More recently, different works have used medicalimaging techniques to58

identify different zones of activation/inactivation. Despite these efforts questions59

such as: what is exactly the input to perform classification?and how exactly the60

coding and retrieval is perform?, are still in discussion [2]. To overview some rel-61

evant works, we summarize observed properties and the protocol used to support62

each one.63

• Robustness. Even though visual signals can be severely diminish, stimuli as sim-64

ple as PL [3]2 or even random PL [4] are sufficient to allow good pattern classifi-65

cation. Hence, a few points are sufficient to distinguish between several stimuli.66

• View dependent. Recognition of visual patterns depends in the angle of view of67

the observer. Evidence show that the same subject decrease performance when68

the presented pattern is rotated, but experience can improve this performance.69

The normal tolerance is about 20 degrees [5, 6].70

• 2D coding. Experiments by [7] indicates that at least for thePL stimuli, a 2D71

representation is sufficient to explain brain coding schemes for body actions.72

This remain in discussion, because 3D representation couldstill exist with an73

intermediate 2D projection (top-down).74

• Foveal processing. Several works show that peripheral areas of the visual [2], are75

significantly less sensitive to human action. We interpret this as an other possible76

simplification, one single area of interest can be process atthe same time within77

a visual scene.78

• Feature extraction. Different works [8, 4] indicate that the most relevant feature79

to perform classification of human sequences is the local motion (probably pro-80

cessed in areas V1/V5/MST, see Figure 2). This was tested using variations of81

the PL stimuli with occlusions. However, other work [9] showthat static features82

could be also be used, movement information seems then to be the more relavant83

to classify, not the only one.84

• Temporal sensitivity. Despite the robustness of the feature extraction, pattern85

matching in the brain seems to be extremely sensitive to temporal correlation86

2 Point-Light stimuli. Experiment proposed originally by G.Johansson in the 70’, where only the
joints of an actor were enlighten.
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[2, 6]. Taking the PL stimuli as an example, it is possible to remove or even to87

change a few points but not to change the relative speed between these points.88

• Code reading. Evidence exist [10] that single neurons in areas as EBA or FBA89

(see Figure 2) are sensitive to human actions such as walking, running, etc. Also90

evidence exist about areas sensitive to static features such as body posture, face91

expression, hands in the ventral pathway. However, body posture activation based92

in motion information only (dorsal pathway), is yet to be proved [6].93
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Fig. 2 Schematic view of some of the different visual areas involver in the recognition of human
motion perception.

2.2 Computer vision94

In the field of Computer Vision, a wide variety of algorithms [11] exists and have95

been applied to process video, and to perform pattern classification for this kind of96

signals. Although this large diversity of algorithms exist, the process can be divided97

in stages, to point out the different sub-tasks related to the problem. The stages98

we considered are feature extraction and pattern classification (pose estimation and99

recognition in [11] ). Other stages such as initialization and tracking are in practical100

implementations absolutely necessary, but in this work there is no context to inter-101

pret or distractors to avoid; the target is already located,and there are no distractors102

in the scene.103

Feature Extraction Feature extraction is about what information do we use to104

classify. One of the simplest features is pixel intensity, but others such as edges,105

silhouettes, color or combination of all of them can be used.More elaborated fea-106

tures also exist, such as PCA, ICA, SOM, VQ [13], that take into account statistical107
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information, to define the space where is more relevant to perform pattern classifi-108

cation. Even tough it is difficult to generalize due to the large number of techniques,109

silhouettes of the body are largely used [11].110

Pattern Classification Pattern classification have been performed with techniques111

such as distances in some features space, HMM building states for each configu-112

ration, RBF with pattern prototypes, etc.. The available techniques are again quite113

large, but it is important to notice that most of the techniques use a a-priori model of114

the body and require a full movement to classify. However, there are “model free”115

techniques, and systems capable to answers in a few frames [1], but it is not a large116

percentage of the techniques as pointed out in [11].117

3 Model description118

To summarize, there is evidence in biology that local movement information is suf-119

ficient to perform classification, that the coding is more likely “2D”, but still with120

partial rotation-invariance. Also, highly robust to speedvariations and capable to121

give answers before the full stimuli is presented, yet extremely sensitive to temporal122

variations (see Figure 3).123

Since the features could be considered as several relevant trajectories in time124

(taking the idea of the PL stimuli), we start considering we are able to know the125

position of these points in time, and we want to differentiate trajectories in time. For126

that we use Continuum Neural Field Theory (CNFT) [14], wherethe visual visual127

is mapped to a populations of units or neurons (2D).128
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Fig. 3 Schematic view of the model we present.
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3.1 Pattern classification (Asymmetric CNFT or ACNFT )129

We build a classification system with the Eq. 1 for the activity m of each unit, where130

we use onem for each pattern we want to classify (see Figure 3), extending the work131

of [14]:132

∂m(x, t)
∂ t

+ τm(x, t) =
[

∫ x f

0
w(x′,x)m(x′, t)dx′+ I(x, t)

]+

(1)

herew determines the selectivity of the system and[]+ is the maximum with 0. For133

the simple trajectory (line) we are considering, we use a periodic function and one134

Gaussian function along the trajectory axis.135

w(x,p) = α exp(−
(y− py)

2

2σ
)(J0+ J1cos(2π(px − x)/l−β )) (2)

The main parameters are the asymmetryβ , the spatial size of the kernelσ and136

the total length of the pathl. This function of the current unit positionp giving a137

weigthw for each positionx in the trajectory, being zero elsewhere.138

Fig. 4 Kernel functionw at
one positionp = (10,10) for
all possible locationsx.
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Looking at the Figure 4, the values for the functionw far from the actual pattern139

trajectory are very close to zero. To give the final score for each input, we perform140

a temporally smoothed average as in [6]:141

∂ s(t)
∂ t

+ τs(t)/2=

∫

m(x′, t)dx′ (3)

the decay term is written asτ/2 to show that this equations dynamics should be142

slower thanm, i.e. smaller thanτ.143
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4 Results & Discussion144

The simulations we performed were all for the single straight line trajectory, because145

is the most simple pattern we can consider, still useful to decompose more complex146

sequences. The objective in this simulation is to make the difference between the147

same trajectory in difference directions, controlling varying other variables.148

4.1 Synthetic data149

The data we generate to classify within two categories is left-to-right and right-150

to-left motion. The justification for this choose other thanthe simplicity is the use151

of this paradigm in experimental psychology [4], where one commonly used task152

is to difference left or right walking using the point-light-stimuli [3] in different153

conditions. The input we are using is defined as:154

I(x, t) = exp(−
(x− vt)2+(y− y0)

2

2σ2 )+N (0,Σ) (4)

wherex = (x,y), v is the input speed,y0 is the location in they axis,σ the input155

size. Finally we use additive Gaussian noise of mean 0 and varianceΣ to modify156

the noise level.157
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(b) Input (t = 2.9).

Fig. 5 Input sequence at two difference times,Σ = 0.005

Using directly this input (no feature extraction), we perform variations in three158

parameters:Σ (noise level),y0 andv (input speed), considering 50 trials for each159

case. Usingv = 5,Σ = 0.005,y0 = l/2,y0 = l/2, tau= .15,J0=−9.8,J1 =−13.5,160

β = 2, σ = .001,l = 20 if not otherwise indicated. The method we use to simulate161

Eq. 1 is Runge-Kutta (4th order) withdt = .1. Extensive analysis of the parameters162

for the sinusoidal function can be found in [14].163
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4.2 ACNFT Simulation164

Test A, time-warping. In this experiment, the input speedv in Eq. 4 was varied.165

The ACNFT was configured to recognize a given speedV . The input moves at speed166

v or−v with v in [V −ε,V +ε]. The model it says to correctly classify if it can make167

the difference between this two inputs. Several trials (50)were performed to average168

the effect of noise.169

Fig. 6 Classification perfor-
mance for different speed’s
with 50 trials. Level noise is
Σ = 0.005.
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ACNFT

The ACNFT could tolerate larger variations in speed using one trajectory as in-170

put. It is important to remember that the model was configuredfor speeds around171

v = 5, and as speed increased the absolute difference betweenv and−v also in-172

creases.173

Test B, temporal responce.In this experiment, there is no variation of noise, show-174

ing the temporal evolution of the classification. The ACNFT was configured to rec-175

ognize a given speedV . The input moves at precisely speedV or−V . The model it176

says to correctly classify if it can make the difference between this two inputs. Sev-177

eral trials (50) were performed to average the effect of noise (Σ ), that in that case178

takes three values 0, 0.05, .1, where we know from the Test C, the ACNFT drops179

performance as function of noise.180

The ACNFT starts with a very poor performance, but very quickly it reaches a181

stable classification performance. it is important to notice that the full cycle happens182

at t = 40 andt = 80, but even before the performance reach the peak, temporally183

dropping at the transition point (t = 40,80).184
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Fig. 7 Classification perfor-
mance as function of time
with 50 trials. Level noise (Σ )
is 0, 0.05 and 0.1.
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4.3 Comparison between ACNFT & STC185

To gain further understanding we introduce a simpler spatial correlation mechanism.186

This mechanism keeps record of full snapshots for each timet.187

4.3.1 Spatio-temporal correlation (STC)188

To compare we choose a simple and more direct model, where at each timet we189

have a complete template of the input. The temporal sequenceis build using also190

Eq. 3. This is a very naive approach to perform spatio-temporal classification, but191

it has the minimal required properties, to know: higher answer for a spatially well192

located input, higher answer for the right temporal order.193

We can resume this system as:194

C(t) = ∑ I(x, t)T (x, t) (5)

∂S(t)
∂ t

+ τS(t)/2=C(t) (6)

T is the template. The Eq. 6, use the same kind of mechanism for sequentiality as195

the ACNFT model, smoothing out the spatial correlation overtime.196

Test C, noise tolerance.In this experiment, the noise levelΣ in Eq. 4 was varied.197

Both classification systems: ACNFT and STC were configured torecognize a given198

input at speedV . The input moves at speedV or−V . One model it says to correctly199

classify if it can make the difference between this two inputs. Several trials (50)200

were performed to average the effect of noise.201

At low noise level, STC and ACNFT give identical performance, as the noise202

level increase the ACNFT decrease its performance, until reaching the 50% (best203

than chance probability) aroundΣ = .15, see Figure 8. These results are function of204
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Fig. 8 Classification perfor-
mance for different levels of
noise using 50 trials. Input
speed in all trials isv = 5.
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w, if σ increases or if the kernel is not zero close the trajectory (wider trajectories),205

the tolerance to this kind of noise can be modified.206

Test D, position-invariance. In this experiment, the location in the axe perpendic-207

ular to the trajectoryy0 in Eq. 4 was varied. Both classification systems: ACNFT208

and STC were configured to recognize a given speedV at one particulary0. The209

input moves at speedV or−V but this time at differenty0. One model it says to cor-210

rectly classify if it can make the difference between this two inputs. Several trials211

(50) were performed to average the effect of noise.212

Fig. 9 Classification perfor-
mance for differenty0 with 50
trials. Input speed in all trials
is v = 5 and the level noise is
Σ = 0.005.
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The STC mechanism is very sensitive to this kind of variationby construction,213

the correlation is not invariant to spatial variation, dropping performance very fast.214

The ACNFT show similar properties, also quickly dropping performance. This can215

be explained by the definition of w, where the input does not requires to be exactly216

in the template position to activate the mechanism, but is limited by the size of the217

kernelσ , see Figure 4.218
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5 Conclusions219

In this set of experiments we have show that the ACNFT model could perform220

classification of spatiotemporal sequences under different variations of the input.221

The presented model is also capable to answer with partial data, classifying even222

before the full temporal sequence is presented and to maintain performance for large223

variation of the speed for the same spatial pattern. We have also compare against the224

naive STC scheme, showing that the ACNFT model has basicallysimilar spatial225

properties, dropping performance as function of noise and showing small spatial226

invariance.227

These results show that the ACNFT exhibit several properties similar to how the228

human brain performs the classification of visual patterns:speed invariance (partial)229

and “on-line” classification. We also propose that experiences such as variations of230

the relative distance between PL stimuli and measurements of the temporal evo-231

lution of the response, could give further insides about themechanism behind the232

brain processing of human motion sequences.233

It still remains to show how to code more complex consequences, where multiple234

trajectories are necessary and the input is obtained by processing a real signal.235
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