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Bio-inspired visual sequences classification

Mauricio Cerda and Bernard Girau

Abstract The capacity to perceive and interpret highly complex dipa#&terns such

as body movements and face gestures, is remarkably effiniGnimans and many
other species. Among others tasks, the classification efalisequences without
contextis one key problem to understand both the codingtencktrieval of spatial-

temporal patterns in the human brain. In this work we preaenbdel able to per-
form classification of synthetic. Our model takes into actaturrent knowledge
in experimental psychophysics and physiology. The presentodel shows that
sparse spatial coding of spatial-temporal sequences dmukufficient to explain

both: classification with partial information and tolerarto time-warping. We are
also able to code temporal sequences with single poputatibanits, without the

need of explicit “snapshots” at each time instant.

1 Introduction

The understanding of the different principles and mechanisat exist in the brain
to perform perceptive and cognitive tasks, are since lang theing studied by bi-
ologist. Yet, only in the last decades there is an increasitegest in the application
of these ideas in fields such as computer vision and robdties;bio-inspired”
methods.

There is a wide variety of questions in vision starting frotmatvinformation to
process?, then how to analyze this data? and how to operagtural conditions?
just to give a few examples. In this work, we are interesteth@problem of rec-

Mauricio Cerda
INRIA-Loria Nancy Grand Est, Equipe Cortex - Bat. C040, 5@5@ndoeuvre-les-Nancy, France
e-mail:cerdavim@oria. fr

Bernard Girau
INRIA-Loria Nancy Grand Est, Equipe Cortex - B.P. 239, 545G&doeuvre-les-Nancy, France
e-mail:bernard. girau@oria.fr



23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

2 Mauricio Cerda and Bernard Girau

ognize spatial-temporal sequences, such as walking, juyrgoid running persons,
see Figure 3. The applications are not necessary to humaitiast but it is the
problem motivates this work.

The work we present deals with the problem of how to code affdrdntiate
spatial-temporal sequences, taking into account knowsstigs of the human brain
that we describe in 2.1. Some of the key ideas we considehatelassification can
be performed using only a few points (see Figure 1) that caexbacted from the
movementin the sequence, analacoding of the sequence is the most likely, even
if the movement i8D. Here, we propose a single neural mechanism to model these
ideas.

To test our model, we perform several simulations over tse @ single tra-
jectories that could then describe other more complex @p@imporal sequences.
We show that we can retrieve other properties such as spead&nce (time warp-
ing 1) and partial responses in time (to answer before the sequsrmmpletely
presented) [1].

We also compare our work to artificial vision techniques, amginderstand in
the difference that could possibly have neural mechanismstlae current state-
of-the-art techniques. The main difference is the extengse of body models in
computer vision (despite the fact that this is still in dission among biologist)
and the use of complete sequence to classify. Our model expldin both things:
classification of sequences can be performed without ariciixpiodel and it is
possible to give classification answers since very earliésequence.

The next section 2, presents and overview of experimentsiody and tech-
nigues in computer vision, to locate this work in both fiel8gction 3 describes
our model and the Results & Discussion presents the redudts simulations, and
comparison against other model. Finally we presents thelagsion of this work
in 5.

Fig. 1 Some example human
movements (walking, fighting
and waving). In these se-
guences there are locations (in
white) that are more relevant
in terms of the information
they can contribute to be
differentiated from other se-
guences.

1 Commonly associated to temporal sequences, when the sajense is delayed or com-
pressed/dilated in time. Perceptive phenomena such as speegnition can tolerate this kind
of variation.
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Sequence classification 3

2 Overview

In this section, we present some experimental evidenceimapes (humans) and
available techniques in computer vision, to charactetheectassification of visual
patterns.

2.1 Biological overview

There is abundant experimental evidence related to thaifitadion of spatial-
temporal patterns in humans and primates. Most of theseriexjges come from
experimental psychology as the classification task is @t®atto higher areas of
the brain. More recently, different works have used medialging techniques to
identify different zones of activation/inactivation. pite these efforts questions
such as: what is exactly the input to perform classificatian@ how exactly the
coding and retrieval is perform?, are still in discussioh T overview some rel-
evant works, we summarize observed properties and theqmiatsed to support
each one.

e Robustness. Even though visual signals can be severelpidimitimuli as sim-
ple as PL [3} or even random PL [4] are sufficient to allow good patternsifas
cation. Hence, a few points are sufficient to distinguisiveen several stimuli.

e View dependent. Recognition of visual patterns dependsaranhgle of view of
the observer. Evidence show that the same subject decregsenpance when
the presented pattern is rotated, but experience can ireghis performance.
The normal tolerance is about 20 degrees [5, 6].

e 2D coding. Experiments by [7] indicates that at least for Bhestimuli, a 2D
representation is sufficient to explain brain coding scheifioe body actions.
This remain in discussion, because 3D representation iililégxist with an
intermediate 2D projection (top-down).

e Foveal processing. Several works show that peripherasarfghe visual [2], are
significantly less sensitive to human action. We intergristas an other possible
simplification, one single area of interest can be proceiseadame time within
a visual scene.

e Feature extraction. Different works [8, 4] indicate thag thost relevant feature
to perform classification of human sequences is the localom@probably pro-
cessed in areas V1/V5/MST, see Figure 2). This was tested) wsiriations of
the PL stimuli with occlusions. However, other work [9] shthat static features
could be also be used, movement information seems then teebedre relavant
to classify, not the only one.

e Temporal sensitivity. Despite the robustness of the feagxtraction, pattern
matching in the brain seems to be extremely sensitive to ¢eahgorrelation

2 Point-Light stimuli. Experiment proposed originally by Ghansson in the 70’, where only the
joints of an actor were enlighten.
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4 Mauricio Cerda and Bernard Girau

[2, 6]. Taking the PL stimuli as an example, it is possiblegmove or even to
change a few points but not to change the relative speed bpetthese points.

e Code reading. Evidence exist [10] that single neurons iasaess EBA or FBA
(see Figure 2) are sensitive to human actions such as walkinging, etc. Also
evidence exist about areas sensitive to static featurdsasibody posture, face
expression, hands in the ventral pathway. However, bodiyipmactivation based
in motion information only (dorsal pathway), is yet to beyed [6].

STS/
EBA/FBA

A

Pattern e B Parietal lobe
classification

MST

V5(MT) 4

Retina

Receptive field size
-

Vi Feature
Y extraction

Retina

Input

Fig. 2 Schematic view of some of the different visual areas invoimehe recognition of human
motion perception.

2.2 Computer vision

In the field of Computer Vision, a wide variety of algorithnisl] exists and have
been applied to process video, and to perform pattern fitzg&in for this kind of
signals. Although this large diversity of algorithms extbe process can be divided
in stages, to point out the different sub-tasks related ¢optoblem. The stages
we considered are feature extraction and pattern claggificgpose estimation and
recognition in [11] ). Other stages such as initialization g&racking are in practical
implementations absolutely necessary, but in this worketlieeno context to inter-
pret or distractors to avoid; the target is already located,there are no distractors
in the scene.

Feature Extraction Feature extraction is about what information do we use to
classify. One of the simplest features is pixel intensityt, dthers such as edges,
silhouettes, color or combination of all of them can be uséadie elaborated fea-
tures also exist, such as PCA, ICA, SOM, VQ [13], that take axtcount statistical
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Sequence classification 5

information, to define the space where is more relevant ttoparpattern classifi-
cation. Even tough it is difficult to generalize due to thganumber of techniques,
silhouettes of the body are largely used [11].

Pattern Classification Pattern classification have been performed with techniques
such as distances in some features space, HMM buildingsstateesach configu-
ration, RBF with pattern prototypes, etc.. The availabtdhtéques are again quite
large, but it is important to notice that most of the techeigjuse a a-priori model of
the body and require a full movement to classify. Howevesrehare “model free”
techniques, and systems capable to answers in a few frafé&si{lt is not a large
percentage of the techniques as pointed out in [11].

3 Model description

To summarize, there is evidence in biology that local movarimgormation is suf-
ficient to perform classification, that the coding is morelk“2D”, but still with
partial rotation-invariance. Also, highly robust to speediations and capable to
give answers before the full stimuli is presented, yet enérly sensitive to temporal
variations (see Figure 3).

Since the features could be considered as several releettories in time
(taking the idea of the PL stimuli), we start considering we able to know the
position of these points in time, and we want to differestiadjectories in time. For
that we use Continuum Neural Field Theory (CNFT) [14], whitne visual visual
is mapped to a populations of units or neurons (2D).

Pattern 1 | -.-| Patternn

Pattern
A classification

A

[0}
N
2
ke] Local pattern
£ detection
[
=
53 Motion
5 detection
[ Feature
extraction
Video
Input

Fig. 3 Schematic view of the model we present.
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6 Mauricio Cerda and Bernard Girau

3.1 Pattern classification (Asymmetric CNFT or ACNFT )

We build a classification system with the Eq. 1 for the agtiwitof each unit, where
we use onenfor each pattern we want to classify (see Figure 3), extegithie work
of [14]:

+

omx,t) | Tm(x,t) = Uon w(x',x)m(x’, t)dx’ +1(x,t) (1)

ot
herew determines the selectivity of the system dpdis the maximum with 0. For

the simple trajectory (line) we are considering, we use @garfunction and one
Gaussian function along the trajectory axis.

_ 2
wix.p) = aexp~ Y0 oy s cogonpx-B) @

The main parameters are the asymmgryhe spatial size of the kernel and
the total length of the path This function of the current unit positigm giving a
weigthw for each positiorx in the trajectory, being zero elsewhere.

wat (10,10)

0
-0.5
-1
-15
-2
2 4 6 8 10 12 14 16 18 20
X

Looking at the Figure 4, the values for the functieifar from the actual pattern
trajectory are very close to zero. To give the final score &mheinput, we perform
a temporally smoothed average as in [6]:

Fig. 4 Kernel functionw at
one positiorp = (10, 10) for
all possible locations.

03_(:)_”5('[)/2: /m(x’,t)dx’ 3)

the decay term is written as/2 to show that this equations dynamics should be
slower tharm, i.e. smaller tharr.
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Sequence classification 7

4 Results & Discussion

The simulations we performed were all for the single straligle trajectory, because
is the most simple pattern we can consider, still useful tmdgose more complex
sequences. The objective in this simulation is to make tfferdnce between the
same trajectory in difference directions, controllingyiag other variables.

4.1 Synthetic data

The data we generate to classify within two categories istéefight and right-

to-left motion. The justification for this choose other ththe simplicity is the use
of this paradigm in experimental psychology [4], where oammonly used task
is to difference left or right walking using the point-lightimuli [3] in different

conditions. The input we are using is defined as:

(X=V)*+ (y—Y0)*
| = —

(x,t) = exp( 552
wherex = (x,y), v is the input speedyy is the location in they axis, o the input
size. Finally we use additive Gaussian noise of mean 0 aridn@@> to modify
the noise level.

)+:4(0,2) (4)

(a) Input ¢ = 2.4). (b) Input ¢ = 2.9).

Fig. 5 Input sequence at two difference times= 0.005

Using directly this input (no feature extraction), we penfiovariations in three
parametersZ (noise level)yo andv (input speed), considering 50 trials for each
case. Using =5, =0.005,y0=1/2,y0=1/2,tau=.15,J0= —9.8,J; = —135,

B =2,0=.001,I = 20 if not otherwise indicated. The method we use to simulate
Eq. 1 is Runge-Kutta (4th order) witlt = .1. Extensive analysis of the parameters
for the sinusoidal function can be found in [14].
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4.2 ACNFT Simulation

Test A, time-warping. In this experiment, the input spe&dn Eq. 4 was varied.
The ACNFT was configured to recognize a given spéetihe input moves at speed
vor —vwithvin [V — ¢,V + ¢]. The model it says to correctly classify if it can make
the difference between this two inputs. Several trials {&)e performed to average
the effect of noise.

T T
. ACNFT

S

Fig. 6 Classification perfor-
mance for different speed’s ‘ ‘ ‘ ‘ ‘
with 50 trials. Level noise is ST R e W
> =0.005.

The ACNFT could tolerate larger variations in speed using tbajectory as in-
put. It is important to remember that the model was configfioedpeeds around
v =15, and as speed increased the absolute difference betnwaet—v also in-
creases.

Test B, temporal responce. In this experiment, there is no variation of noise, show-
ing the temporal evolution of the classification. The ACNFasveonfigured to rec-
ognize a given speead. The input moves at precisely speéar —V. The model it
says to correctly classify if it can make the difference ewthis two inputs. Sev-
eral trials (50) were performed to average the effect ofe@ig, that in that case
takes three values 0,@b, .1, where we know from the Test C, the ACNFT drops
performance as function of noise.

The ACNFT starts with a very poor performance, but very gyigkreaches a
stable classification performance. it is important to reti@t the full cycle happens
att = 40 andt = 80, but even before the performance reach the peak, temyporal
dropping at the transition point £ 40, 80).
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Classification as function of time
110 T T

100

9|,

I

N 7
701 ST N
60
501

40H

Classification % (100 is no error)

30

20H

Fig. 7 Classification perfor-
mance as function of time 1on
with 50 trials. Level noiseX) 0
is 0, 005 and 01.

. . . . . . .
0 10 20 30 40 50 60 70 80 % 100
Time (s)

4.3 Comparison between ACNFT & STC

To gain further understanding we introduce a simpler spatiaelation mechanism.
This mechanism keeps record of full snapshots for eachttime

4.3.1 Spatio-temporal correlation (STC)

To compare we choose a simple and more direct model, wherachtteanet we
have a complete template of the input. The temporal sequerugld using also
Eq. 3. This is a very naive approach to perform spatio-terdpdassification, but
it has the minimal required properties, to know: higher agrstor a spatially well
located input, higher answer for the right temporal order.

We can resume this system as:

C(t) = T 1x.)T(x.t) 5)
%—HS{I)/Z:C(U 6)

T is the template. The Eq. 6, use the same kind of mechanisnefpresitiality as
the ACNFT model, smoothing out the spatial correlation divee.

Test C, noise tolerance.In this experiment, the noise levElin Eq. 4 was varied.
Both classification systems: ACNFT and STC were configureddognize a given
input at speed . The input moves at spe&tlor —V. One model it says to correctly
classify if it can make the difference between this two ispBeveral trials (50)
were performed to average the effect of noise.

At low noise level, STC and ACNFT give identical performanas the noise
level increase the ACNFT decrease its performance, urddhiag the 50% (best
than chance probability) arourkd= .15, see Figure 8. These results are function of
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Fig. 8 Classification perfor-

mance for different levels of
noise using 50 trials. Input

speed in all trials i¥ = 5.

w, if o increases or if the kernel is not zero close the trajectoigigntrajectories),
the tolerance to this kind of noise can be modified.

Test D, position-invariance. In this experiment, the location in the axe perpendic-
ular to the trajectory in Eq. 4 was varied. Both classification systems: ACNFT
and STC were configured to recognize a given spéed one particulayy. The
input moves at speed or —V but this time at differenyg. One model it says to cor-
rectly classify if it can make the difference between this twputs. Several trials
(50) were performed to average the effect of noise.

Fig. 9 Classification perfor-
mance for differenyg with 50
trials. Input speed in all trials
isv =5 and the level noise is
> =0.005.

The STC mechanism is very sensitive to this kind of variabgrconstruction,
the correlation is not invariant to spatial variation, dsoym performance very fast.
The ACNFT show similar properties, also quickly droppingfpemance. This can
be explained by the definition of w, where the input does ngutires to be exactly
in the template position to activate the mechanism, bumgeid by the size of the
kernelo, see Figure 4.
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5 Conclusions

In this set of experiments we have show that the ACNFT modaldcperform
classification of spatiotemporal sequences under diffaranations of the input.
The presented model is also capable to answer with partial dissifying even
before the full temporal sequence is presented and to niajpeaformance for large
variation of the speed for the same spatial pattern. We Haeeeampare against the
naive STC scheme, showing that the ACNFT model has basisatijlar spatial
properties, dropping performance as function of noise dmving small spatial
invariance.

These results show that the ACNFT exhibit several propesimilar to how the
human brain performs the classification of visual pattespsed invariance (partial)
and “on-line” classification. We also propose that experésrsuch as variations of
the relative distance between PL stimuli and measureméntseaemporal evo-
lution of the response, could give further insides aboutniegehanism behind the
brain processing of human motion sequences.

It still remains to show how to code more complex consequevaeere multiple
trajectories are necessary and the input is obtained byepsotg a real signal.
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