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ABSTRACT 

The present work focuses on investigating ways to 

enhance the energetic performance of buildings i.e. 

on proposing control strategies for managing energy 

in buildings. Therefore, control algorithms were 

tested using a prototype, composed of a building 

mock-up, a monitoring system and a data post-

treatment software. The data acquisition system 

allows recording both mock-up indoor/outdoor 

temperatures and energy consumption. Two resistors 

serve as renewable and fossil fuel energy sources 

respectively. The aim of this work is controlling the 

mock-up indoor temperature subject to outdoor 

disturbances by means of the power supply applied to 

the two resistors, while minimizing fossil energy 

consumption. 

INTRODUCTION 

The starting point in developing control strategies 

allowing efficiently managing energy in buildings is 

understanding the way the current French legal 

documentation promotes energy efficiency. Its study 

reveals the use of a global energy indicator,    

kWh.m
-2

.year
-1

, with the aim of quantifying energy 

consumption and classifying buildings. Both 

“Réglementation thermique 2005” (French 

Republique, 2006b) and “Diagnostic de Performance 

Energétique” (French Republique, 2006c) 

documentations explain how calculating this 

indicator and limit the energy consumption for 

buildings. However, ways to reach the above-

mentioned objective using renewable energy, 

measuring the real energy consumption and finally 

controlling energy facilities are missing. 

Consequently, three control schemes, the standard 

Proportional Integral Derivate (PID), the Model 

Predictive Control (MPC) and finally the Fuzzy 

Logic Control (FLC), have been tested with the 

objective of completing the legal documentation and 

enhancing both energy savings and renewable energy 

contribution, using the global energy indicator. 

Another observation leading to the present work is 

the state of the art about energy management in 

buildings (Dounis et al., 2008). Mathews et al. 

(2008), Levermore et al. (1992), Bernard et al. 

(1982), Kolokotsa et al. (2005), Ben-Nakhi et al. 

(2001), Kalogirou et al. (2000) and Gonzalez et al. 

(2005) mainly worked on both energy management 

strategies through cost reduction and energy 

consumption forecast, while Chen et al. (2006), 

Calvino et al. (2004), Kummert et al. (2001), Morel 

et al. (2000), Nygard (1990), Lute et al. (2000), 

Liang et al. (2005) and Argiriou et al. (2001) worked 

on controlling thermal conditions in buildings. 

However, considering many energy sources and 

relating energy management and performance criteria 

are not recurrent themes. That is why defining new 

criteria allowing qualifying energy management in 

buildings and comparing the previously mentioned 

control schemes was of great interest. These criteria 

are the following ones: the share of consumed energy 

being fossil energy ( ) (to be minimized) and both 

comfort ( ) and performance ( ) criteria (to be 

maximized). Because of its impact on energy 

consumption in buildings, heating is the key-point. 

Finally, and because being able to instrument real 

buildings with a set of sensors and implementing 

control schemes for managing energy is not easy, a 

building mock-up has been built then modelised to 

test the proposed controllers using Matlab 

simulations. A real one-floor house of approximately 

120 m
2
 has been used as reference for designing the 

mock-up. The scale is 1:27 and materials remain the 

same as for the real house: polystyrene for insulation 

and tiling for the floor. 

The first section of the current paper focuses on the 

mock-up model, the second one presents all the used 

control schemes while the last one is dedicated to the 

obtained control results. 

SIMULATION MOCK-UP MODEL 

Building mock-up and experimental data 

After performing preliminary studies focusing on the 

development of a theoretical model based on the heat 

equation (Paris et al., 2008b), heating control 

strategies were tested using an experimental data 

model.  

Collecting data from real buildings being really 

difficult, a building mock-up has been built and 

instrumented (Paris et al., 2008c). It allows flexibility 

concerning both sensors and heat sources 

localizations. The lack of thermal inertia favors 

reactivity and avoids energy waste; a small amount 

of electricity is being consumed for heating the 
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mock-up. Instrumentation for acquiring experimental 

data consists of eight temperature sensors (one 

outdoor sensor and seven indoor sensors) and two 

resistors serving as heat sources. Temperature and 

heat power datasets being useful to model the 

building mock-up, several tests have been carried out 

according to different both resistor powers and 

periods. Figure 1 depicts examples of temperature 

acquisition during these tests (for about twenty days). 
 

 
Figure 1. Mock-up temperatures acquisition. 

 

Modelling and identification 

The study of the thermal behaviour of the mock-up, 

corresponding to several heat powers, leads to the 

following model structure: 

 
(1) 

Each temperature sensor is identified with the 

different parameters seen in Equation 1, using an 

iterative method of error minimization (Equation 2): 

 

 

 

(2) 

 

For each temperature, the fit between experimental 

and modelled data is compute with Equation 3. With 

a mean of similarity above at 90%, the identification 

results are very significant. 
 

 (3) 

Identification results 

Table 1 shows the different results of identification 

and table 2 shows the different parameters of 

identified building mock-up model. 

Table 1 

Fit results for each temperature 

 

Modelled variables  

 93.12 

 92.41 

 92.76 

 92.59 

 91.40 

 88.07 

 92.00 

 

Table 2 

Parameters of the mock-up model 

 

       

 0.981 0.0193 0.0209 0.516 0.0329 0.501 

 0.981 0.0192 0.0327 0.478 0.0188 0.540 

 0.982 0.0179 0.00859 0.573 0.0530 0.447 

 0.984 0.0161 0.0314 0.443 0.0107 0.467 

 0.984 0.0160 0.0248 0.480 0.0170 0.513 

 0.984 0.0163 0.0150 0.489 0.0267 0.460 

 0.979 0.0209 0.0408 0.485 0.0516 0.461 

 

Figure 2 shows the South West temperatures. 
 

 
Figure 2. Comparison of experimental and model 

data for South West temperatures. 
 

Then, the seven equations are afterwards used in 

simulation, to estimate the average indoor 

temperature of the mock-up. 

Outdoor temperature data 

After the dynamic model definitions, outdoor 

temperature data set is required with the aim of 

performing simulations. That is why outdoor 

temperature has been recorded during one week, at 

the University office. 

HEATING CONTROL 

Heating systems control 

The chosen control methods, for the mean 

temperature, are, first, the PID control, a generic 

control loop feedback mechanism widely used in 



buildings engineering, secondly, the Model 

Predictive Control (MPC) and, finally, the fuzzy-PID 

control. Both MPC and fuzzy-PID control are 

advanced methods of process control. These controls 

are described in details in the following sections. 

Simulation: set-points and models 

For simulations, a temperature set point based on 

legal documentation and the function of office 

buildings was defined (French Republique, 2006a). 

The choice to work with this temperature instruction 

is explained by the aim of testing the robustness of 

ours different controllers in a concrete way. Figure 3 

depicts the temperature instruction used with the 

mock-up model. Eight days of set-point temperature 

have been compressed in 24 hours to ensure a good 

ratio between transitory and stationary phases 

representative of a real building. Indeed the inertia of 

the mock-up is very short due to its small size. 
 

 
Figure 3. Temperature set-points for office buildings. 
 

Control criteria 

Tools are needed for comparing the controllers’ 

performance. The global energy performance 

indicator is only able of expressing the amount of 

energy consumption but without any explanation. It 

does not dissociate the various energy consumptions 

components in buildings and does not explain how 

energy is consumed. That is why additional criteria, 

the share of consumed energy being fossil energy 

(criterion to be minimized) and both comfort ( ) and 

performance ( ) criteria (criteria to be maximized), 

were developed. These criteria incorporate the way 

energy is in-time used and controlled. Let us note 

that common criteria for human feeling in heated 

rooms or buildings such as both "Predictive Mean 

Vote" and "Percentage of Dissatisfied" criteria (ISO 

7730, 1983), are found in the literature but do not 

match with objectives. First, the  criterion is the 

percentage of the fossil energy consumed compared 

with the total energy used: 
 

 (4) 

Then, the  comfort criterion represents the mean 

relative error of the temperature set-point follow up: 

 

 (5) 

 

Finally, the  criterion focuses on the performance 

of the controller comparing the two other criteria: 
 

 (6) 

Heating power repartition 

Simulations for evaluating and testing heating 

controls using developed model are based on a 

unique set of outdoor temperatures and allows 

computing the above-mentioned energy performance 

indicators thanks to the consumptions of the two 

warmers and the set-point tracking. Let’s remember 

that the developed model incorporate two heat 

sources, (i) a renewable energy warmer ( ) and 

(ii) a fossil energy warmer ( ). Respective powers 

are 80 W and 34 W. 

Moreover, and with the aim of being in agreement 

with common behaviors, in any case, the renewable 

energy warmer is used until power saturation is 

reached. At this point, the fossil energy warmer starts 

working.  and  are the heat power of  and 

 respectively,  is the unsaturated total heat 

power computed by the feedback controller, while  

is the time index: 
 

 
 

  

 
 

 

 
 

  

 

As a consequence, renewable energy is firstly used. 

Moreover, all the controllers’ parameters can be 

optimized to maximize the  criterion. In the same 

way, a constraint (explained later) have been 

considered with the aim of adjusting the advanced 

controllers (MPC) as required for taking into account 

the different uses of buildings. 

Proportional Integral Derivate 

Figure 4 shows the reference control structure. 

Standard PID controller is a generic heating control 

mechanism widely used in buildings engineering. 

Thus, it’s the reference. Let’s just remind its structure 

for discrete time control with anti-windup 

considerations (Equation 8). 
 

(7) 



 
Figure 4. PID control framework. 

 

 
((8)

) 

 

With the aim of optimizing the performance criterion 

, Equation 9 allows finding the most accurate 

coefficients of the PID controller. 
 

 

 

 

(9) 

Model predictive control and PID 

The model predictive controller (MPC) (García et al., 

1989) is a model based and discrete controller 

allowing calculating an optimal command sequence. 

To elaborate this sequence, one needs a linear model 

and a working point of the system to be controlled. 

Knowing the future setpoint and predicting external 

disturbances allows anticipating setpoint changes and 

considering the consequences of these disturbances. 

The MPC controller estimates the way the 

temperature is evolving on a prediction horizon  

and computes optimal increments on a command 

horizon  (shorter than ). So, a new optimization 

is carried out for each time step. 
 

 

Figure 5. MPC control framework. 

The heating control strategy is defined according to 

the following guidelines: the PID controller estimates 

the power of the  ( ), while the MPC 

specifies the optimal sequence to be applied to the 

 ( ) and if the power of the  needs to be 

adjusted  (Paris et al., 2008a). Figure 5 shows 

this heating control struture. 

Being a model based controller is one of the main 

drawbacks of the MPC, jointly to its extensive on-

line computational effort, but, in the other hand, it 

can inherently handle constraints. Equation 10 

describes both the objective function used for 

optimizing  and how constraints are applied to 

fossil energy. 
 

  
 

 

(10) 

 

The result depends of the fossil energy minimization 

regarding the temperature setpoint follow-up, using 

several values of . 

To obtain the optimal  maximising the  criterion, 

the resolution of the following optimization problem 

is needed (Equation 11). 
 

 

 

 

(11) 

Fuzzy logic control and PID 

The last heating control scheme used is the fuzzy 

logic control (FLC) (Fraisse et al., 1997). Fuzzy logic 

is a well-known problem-solving methodology with 

many applications in both control and information 

processing. It provides a remarkably simple way to 

draw definite conclusions from vague, ambiguous, 

imprecise, noisy or missing information. Fuzzy logic 

incorporates a simple and rule-based approach to a 

solving control problem rather than attempting to 

model a system mathematically (Zadeh, 1965, Huang 

et al., 2008). Both the structure of the control tool 

and the heating control strategy remain the same as 

when using MPC and PID controllers (Figure 6). 

From the difference between the setpoint temperature 

and the current mean indoor temperature ( ), the PID 

controller estimates the power of the  ( ) 

while a first fuzzy module determines if this power 

needs (or not) to be corrected ( ). From both  

and , a second fuzzy module evaluates the power 

of the  ( ).  



 

Figure 6. FLC control framework. 
 

Because of thermal inertia, heat transfer and heating 

dimensioning, indoor temperatures in buildings ( ) 

may be in the 0°C-30°C range. Moreover, and 

according to the “Règlementation thermique” 

documentation, temperature setpoints ( ) may be 

in the 7°C-22°C range. As a result, values for the 

difference between the setpoint temperature and the 

current mean indoor temperature range between -

24°C and +24°C ( ). Values of 

 and  are normalized between -1 and +1 

( ) and 0 and +1 ( ) 

respectively then denormalized using the  and 

 gains. Finally,  being saturated at 80W,  

variations are defined as . Based 

on these considerations, one needs, first, to 

characterize all the above-mentioned parameters and 

their respective “universes of discourse” using fuzzy 

sets and membership functions (Figures 7-10) and, 

secondly, to define an  appropriate base of fuzzy 

rules that maps inputs to outputs, with the aim of 

maximizing the global performance indicator. 
 

 
 

Figure 7. Fuzzification of . 

 

 
 

Figure 8. Fuzzification of . 

 

  
 

Figure 9. Fuzzification of normalized . 

 
Figure 10. Fuzzification of normalized . 

 

Equation 12 describes the way this indicator can be 

maximized i.e. optimizing the various controllers’ 

gains. 
 

 

 

 

(12) 

DISCUSSION AND RESULT ANALYSIS 

Comparative results 

Table 3 presents the best results obtained using the 

PID, MPC and FLC schemes. 
 

Table 3 

Office simulation results for mock-up model 

 

 
 

 

 

 

 

 

 

 

 

 

Office temperature set-point 

PID 7494 521 6.5 72.0 65.5 

MPC 7339 381 4.9 73.6 68.7 

FLC 7731 470 5.7 72.4 66.7 
 

Whatever the considered criteria, the optimal PID 

controller obtains the worst results over the other 

control schemes. On the other hand, the model 

predictive controller is the best performer:  and  

criteria are respectively 4.9% and 2.2% higher than 

when using the PID controller. Concerning energy 

consumption, savings of fossil energy using the MPC 

are about 26.9%. This represents 140 Wh.m
-2

. 

However, developing a MPC is harder and longer 

than developing a classical PID controller and as 

previously mentioned requires an accurate linear 

model of the building. Furthermore, implementing 

this kind of advanced controller needs an embedded 

numerical optimizer and a fast microprocessor. 

Finally, taking a look at the FLC performance, one 

can conclude that this controller is more efficient 

than the PID controller but not as good as the MPC. 

 and  criteria are respectively 1.8% and 0.6% 

higher than when using the PID controller. Savings 

of fossil energy are about 9.8% (51 Wh.m
-2

). 



Implementing a FLC on an embedded control system 

is nearly as easy as a PID controller. Figure 11 

presents the results of the indoor mean temperature 

control. 
 

 
Figure 11. Simulation of indoor temperature. 

 

MPC application 
 

Figure 12. Influence of the constraint applied to 

. 
 

As previously mentioned, the MPC can inherently 

handle constraints. This is a real advantage in heating 

control. So, the present subsection of the paper 

focuses on applying a constraint ( ) on  with the 

aim of limiting the use of fossil energy (Equation 10) 

and on quantifying its influence on the various 

considered indices. One can confirm that a weak ω 

favours comfort while a strong  promotes fossil 

energy savings. However, the use of a building 

determines which constraint can be applied: for 

example, a bad comfort index is not suitable for 

hospitals while a scholar building can promote 

energy savings during holidays.  

Figure 12 depicts the influence of the constraint 

applied to  on the previously-defined indices. As 

an important result, one can notice that  = 0.05 

leads to the best compromise between comfort and 

fossil energy use, the performance index being 

maximal. 

CONCLUSION 

Following a strong European will, the present paper 

focuses on investigating ways for improving the 

energetic performance of buildings. That is why 

various heating control strategies are proposed and 

tested with the aim of reducing the fossil energy 

consumption and enhancing the renewable energy 

contribution. Thinking about and proposing a global 

performance criterion for comparing the controllers’ 

efficiency was the starting point of the work. As a 

more in-depth approach and because only 

considering a global performance does not allow 

dissociating the various energy consumptions 

components in buildings and does not explain how 

energy is consumed, criteria such as the share of 

consumed energy being fossil energy ( ) and both 

comfort ( ) and performance ( ) criteria were 

added. Because being able to instrument real 

buildings with a set of sensors and implementing 

control schemes for managing energy is not easy, a 

building mock-up has been built and instrumented 

then modelised, using experimental data, with the 

aim of testing the proposed control schemes.  

The first and referent controller used is a classical 

PID controller. Despite some limitations due to 

specific features, it is widely used in industrial 

control systems and commonly used for heating 

control in buildings. A fast and easy development is 

the main advantage of this controller. Its performance 

is the worst over the other control tools. 

Using the MPC for heating control proved that an 

optimal and predictive control is able to improve the 

performance of the controlled system and to save an 

important part of fossil energy in comparison to a 

classical PID controller. The MPC allows focusing 

on a specific performance i.e. favouring fossil energy 

savings or temperature setpoint tracking or adapting 

to specific buildings, periods of the year or building 

residents. However, and because the MPC is a linear 

model based controller which on-line computational 

effort is extensive, developing and implementing this 

kind of controller is a quite hard task. This explains 

why MPC is not commonly used for heating control 

of buildings but generally used for controlling 

complex and costly industrial processes. 

Finally, the FLC proved that also fuzzy logic is 

suitable for enhancing the performance of PID 

controllers, although the way of building a complete 

rule base with the aim of improving performance is 

not always straightforward. While the best 

performance remains MPC’s, the FLC is a good 

compromise between the easy to develop but not 

very efficient PID and the efficient but hard to 

develop MPC.  

Let us note that the three developed and implemented 

controllers were tested in simulation and need now to 

be tested in real experimental environment as well 

(mock-up and real buildings). 
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NOMENCLATURE 

 Fossil energy [kWh.m
-2

.year
-1

] 

 Renewable energy [kWh.m
-2

.year
-1

] 

 Total energy [kWh.m
-2

.year
-1

] 

 Fossil energy warmer [-] 

 Renewable energy warmer [-] 

 Heat power of  [W] 

 Heat power of  [W] 

  computed by the PID controller [W] 

  computed by the PID controller [W] 

  computed by the MPC controller [W] 

  computed by the MPC controller [W] 

  computed by the FLC controller [W] 

  computed by the FLC controller [W] 

 Experimental temperature data [°C] 

 Model temperature data [°C] 

 Indoor model mean temperature [°C] 

 Temperature set point [°C] 

 Current mean indoor temperature [°C] 

 Unsaturated total heat power computed by 

 the feedback controller [W] 

 Unsaturated total heat power computed by 

 the PID controller [W] 

 Saturated total heat power computed by the 

 PID controller [W] 

 Command increment on FE and RE [W] 

 Maximum total heat power [W] 

 Maximum heat power of  [W] 

 Maximum heat power of  [W] 

 Denormalization gain of   [-] 

 Denormalization gain of  [-] 

 Difference between the setpoint temperature 

 and  [°C]  

 Constraint applied on  [W] 

 Share of consumed energy being fossil 

 energy [%] 

 Comfort criterion [%] 

 Performance criterion [%] 

  sensor [-] 

 Direct heat power [-] 

 Temperature inertia [-] 

 Outdoor temperature influence [-] 

 Time index [-] 

 Time sampling (60s) [s] 

 Outdoor temperature [°C] 

 Heat power exponent [-] 

 Cost error criterion [-] 

 Sample number [-] 

 Proportional gain [-] 

 Integral gain [-] 

 Derivate gain [-] 

 Predictive value for associated variable at 

 time using  time value [-] 

 MPC prediction horizon [s] 

 MPC command horizon [s] 

 PID integral state [-] 

 PID derivate state [-] 

 PID anti-windup time constant [s] 
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