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1. Introduction

Many interesting mechanical phenomena occur in porous media when the saturating fluid flows under the
action of pressure and the solid matrix is deformable. Modeling these phenomena represents an important
challenge for engineering sciences.

The aim of this paper is to use the principle of virtual work –when dissipative and inertial effects cannot
be neglected– for deducing a set of evolution equations and coherent boundary conditions valid at a fluid-
permeable interface between dissimilar fluid-filled porous matrices.

The spirit of the approach adopted here for modeling porous systems is very similar to the one used to
develop models for two fluid mixtures by Gavrilyuk et al. (1997); Gavrilyuk et al. (1998); Gavrilyuk and
Perepechko (1998); Gouin and Gavrilyuk (1998); Gavrilyuk and Gouin (1999); Gouin (1990). It also has
some similarities with the treatment used to describe fluid saturated porous media by Dormieux and Stolz
(1992); Dormieux et al. (1991) and Coussy et al. (1998).

To frame the results presented here and to compare them with those available in the literature it is
necessary to detail some of the features of the model we develop. Slightly modifying the conceptual scheme
used by e.g. Dormieux et al. (1991) we conceive a kinematical description which seems suitable to model
porous systems which are open with respect to the fluid constituent: i.e. systems in which the fluid can freely
leave or enter the porous solid matrix through which it flows. Indeed, while we still use as a basic kinematical
descriptor the solid-matrix macroscopic placement field χs we replace the fluid macroscopic placement field
χf with a macroscopic field φs defined in the homogenized macroscopic solid reference configuration. The
field φs maps any solid material particle Xs into a precise particle Xf in the fluid reference configuration:
it is the fluid material particle which occupies, at the given instant, the same spatial position as Xs. The
adjective “macroscopic” in the previous sentences is intended to remind to the reader that the model which
is used here does not attempt to describe in a detailed way how the complex geometrical structure of the
pores varies in the deformation process (see infra for a discussion of this point). Obviously the placement
field χf can be easily recovered as it equals

(

χs ◦ φ
−1
s

)

.
The introduced kinematical description is adapted to describe the evolution of porous systems in which

the solid matrix is open to fluid filtration (as it happens in consolidation problems, see e.g. Mandel (1953),
Cryer (1963), Madeo et al. (2008)). For such open systems, it is necessary to follow the placement of a solid
matrix when an unknown amount of fluid, taken from a given reservoir and free to enter or leave the solid
matrix, is saturating its pores and flowing through its interconnection canals.

It has to be remarked explicitly that our approach is “purely macroscopic” and “variational”.
The approach is purely “macroscopic” because the kinematical descriptors for the solid matrix and sat-

urating fluid can be regarded as “averaged” placement fields obtained from corresponding “microscopic”
ones (see infra). Moreover, in the scheme we use, all “microscopic” descriptors which may be relevant are
assumed to be given by constitutive equations depending on the two previously introduced basic “macro-
scopic” placements χs and φs. Here, differently to what done for instance in Dormieux and Stolz (1992), we
do not attempt to deduce any “macroscopic” constitutive equations from those valid at “microscopic” level.

The approach is “variational” because the evolution equations for the kinematical fields are deduced
by paralleling the Hamilton-Rayleigh approach. The variational approach has been successfully adapted to
continuous systems in different contexts: see e.g. Seliger and Whitham (1968); Germain (1973); Houlsbya
and Puzrin (2002); Sonnet et al. (2004) for (dissipative or non-dissipative) Cauchy continua, Bedford and
Drumheller (1979) for porous media, Bedford and Drumheller (1978) for immiscible mixtures, Bedford and
Drumheller (1983) for structured mixtures and in Mobbs (1982) for viscous fluids. In all these papers, the
evolution equations of a mechanical system are obtained by assuming the variational principle as a primitive
concept. This means that the equations of motions are obtained as a consequence of the variational principle
itself. On the other hand, there also exists other approaches to variational principles which does not consider
it as a primitive concept. Indeed, if one can obtain the equations of motion for a mechanical system in
alternative ways, in order to check consistency of these equations, it is possible to look for a variational
principle which is compatible with these equations (see e.g., Altay and Dokmeci (2006)). We decide to
adopt the first approach to variational principles and consequently we obtain equations of motions and
jump conditions which are intrinsically consistent with the variational principle.
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In this paper we construct an action functional accounting for all conservative phenomena occurring in
the system and a Rayleigh dissipation function (i.e. a dissipation given in terms of a quadratic pseudo-
potential). When formulating the principle of virtual work, we assume that the work done by inertial and
internal conservative forces can be expressed as the first variation of the action functional and that the work
done by dissipative actions can be expressed in terms of the Rayleigh dissipation function (see e.g. Biot
(1970) for the discrete formulation of this approach).

The action-based postulation scheme is well posed as the introduced kinematical fields χs and φs are
both functions defined on the solid matrix reference configuration. To be able to deal with systems in which
surface solid material discontinuities are present we allow χs and φs to present gradient discontinuities
concentrated on surfaces. In our analysis we generalize some results found in Batra et al. (1986).

We recover the bulk evolution equations, already available in the literature, which are valid in the
regularity points of the kinematical fields. Moreover, we obtain the boundary conditions valid at solid
material discontinuity surfaces which are open to fluid flow. These boundary conditions may be interpreted
as a “surface balance of force” and a “surface continuity of chemical potential”. An Eulerian form of the
first of these conditions (including inertial terms) has been obtained in Dormieux et al. (1991) where the
principle of virtual work was applied to multiphase systems.

Several authors (see e.g. Ochoa-Tapia and Whitaker (1995a), Jager and Mikelic (2000); Ochoa-Tapia
and Whitaker (1995b); Hassanizadeh and Gray (1989)) formulated different boundary conditions to be
used at solid material interfaces separating porous media and pure fluid. The main part of their efforts
was directed to the justification and discussion of the boundary conditions originally proposed by Beavers
and Joseph (1967), and Saffman (1971) for describing dissipation phenomena at the external interface of a
porous systems. Some authors also focused on the deduction of such conditions by means of a micro-macro
identification method: see e.g. Burridge and Keller (1981); Prat (1988); Chateau and Dormieux (1998);
Marle (1982); Chandesris and Jamet (2006), Chandesris and Jamet (2007), Ochoa-Tapia and Whitaker
(1995b) or Valdés-Paradaa et al. (2006) and references there cited. On the other hand, in Deresiewicz
(1963) a set of boundary conditions valid at interfaces between dissimilar fluid-filled porous media are
proposed which assure uniqueness of the solution of field equations proposed by Biot (1956a).

The boundary condition stating the “surface continuity of chemical potential” obtained in the present
paper include an inertial term which, to our knowledge, is not deduced in the literature. It generalizes the
condition found e.g. in Baek and Srinivasa (2004) (the spirit of which is very similar to the one adopted
here). Several versions of “surface balance of force” or “kinematical boundary conditions” can be found in
Deresiewicz (1963); Cieszko and Kubik (1998); Cieszko and Kubik (1999); Debergue et al.(1999); Goyeau
et al. (2003); Haber and Mauri (1983); Kuznetsov (1997); Le Bars and Grae Worster (2006); Levy and
Sanchez-Palencia (1975); Rajagopal et al. (1986); Sharma (2008); Ochoa-Tapia and Whitaker (1998).

Our boundary conditions seem suitable to describe (macroscopically) the behavior of solid material
interfaces open to fluid flow. They are deduced without introducing any “small perturbation” assumption,
so that they seem suitable also when the assumptions of small deformations of the solid matrix and linearized
Stokes fluid flow cannot be accepted. However our results are subject to all the limitations implicit in any
Rayleigh-like description of dissipative phenomena based on the introduction of a pseudopotential.

The newly found boundary conditions are effectively Galilean invariant. To check this statement we revis-
ited Reynolds Transport Theorem and Hadamard Conditions to derive some kinematical formulas implicitly
used already by Gavrilyuk et al. (1998) and Gavrilyuk et al. (1997). In these papers these formulas were
needed to show that some evolution equations and boundary conditions assume the form of conservation
laws.

We explicit warn the reader that: i) we decided to introduce an explicit notation for distinguish fields de-
fined on the solid-reference configuration from those defined on the spatial or fluid-reference configuration, ii)
we found more convenient to deduce all kinematical formulas using a space-time (Galilean) four-dimensional
formalism, iii) we did separate all kinematical deductions and properties from those which are more physical
in nature.

Concerning point i) we start remarking that when studying one constituent continua it is possible to
proceed in presence of an abuse of notation in which fields defined in different configurations (and therefore
corresponding to different mathematical functions) are denoted with the same symbol. This does not seem
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careful enough when multicomponent continua are considered. Indeed such an abuse of notation is, in this
case, even more risky than usual, as one is dealing with models where it is necessary to introduce many
different placement fields and where discontinuity surfaces for at least one of these fields may be present.
In fluid-saturated porous media at least three configurations, and therefore domains of definitions for all
considered fields, need to be considered. Therefore, we use a notation which is more precise than the usual
one, as it allows us to specify clearly for every considered tensor field in which spatial or material domain it
is defined. Should the reader be disturbed by the notation which we introduced he is invited to recover the
standard one simply ignoring all the circled superscripts.

Concerning point ii) we remark that it is simpler and more convenient to consider (as done for in-
stance by Gavrilyuk and Gouin (1999)) the four-dimensional Galilean space-time as domain for all handled
kinematical fields. In this way: a) any moving bi-dimensional surfaces in the physical space becomes a
fixed co-dimension one surface in four dimensional space-time, b) piecewise regular spatial fields depending
on time when regarded as fields with domain in four-dimentional space-time suffer discontinuities across
fixed surfaces, c) space and time differentiation, space gradients and time derivatives, deformation gradients
and velocities are dealt with in a more compact and unified manner, d) Hadamard jump conditions and
Reynolds transport theorems assume a very simple form, e) as a consequence, some useful –but involved–
kinematical relationships are easily seen to stem from elementary differential geometric ones. Indeed, the
four-dimensional Galilean space-time is the suitable setting to be used in order to deduce from some well-
known results in differential geometry many properties of piecewise differentiable tensor fields. Even if it
seems possible to consider weaker regularity conditions (see e.g. Savaré and Tomarelli (1998)) we try to
render the presentation the simplest possible still choosing the admissible kinematical fields to be general
enough to describe the phenomena we have in mind.

Concerning point iii): in our deduction it was necessary to deal with some important topics in differential
geometry, concerning the mathematical properties of tensor fields which can be expressed as gradients of
other tensor fields. In the four-dimensional setting we have chosen, this is equivalent to study kinematical
properties of multicomponent continua. Sometimes this kinematical study is presented together with topics
the nature of which is more specifically mechanical, i.e. related to the postulation scheme -based on phe-
nomenological considerations- which is assumed in a specific modeling situation. We have chosen to keep
separate all kinematical considerations. The abuse of notation mentioned at point i) is even more misleading
when kinematical assumptions for placement fields are mixed with the phenomenological ones characterizing
either the solid or the fluid constituent behavior. The conjunction of all these confusing choices may loose
the reader in an indistinct list of properties the origin of which is unclear.

Referring to de Boer (1996); de Boer (2000); de Boer (2005); Rajagopal and Tao (1995); Dormieux et
al. (2006) for an exaustive and clear review of the development of porous media theory we limit ourselves
to recall the pioneering works of Fillunger (1936) (which were made available to the engineers community
by Terzaghi (1943) and Biot (1941)).

The stream of research efforts which were thus originated produced several different families of mathe-
matical models differing in the detail in which they aim to describe the reference and current configurations
of solid and fluid constituents.

Indeed, the solid matrix, when displacing from its reference configuration, occupies a different spatial
region which delineates a different empty pore region left to the fluid constituent. Such a region can have a
very complex time-variable shape: therefore the complete description of its evolution is correspondingly very
difficult. Depending on the detail which is required in such a description one can introduce a macroscopic
or a microscopic model.

In the context of the theory of porous solids a “purely microscopic model” is one in which the kinematical
description allows for the complete characterization of the shapes of all matrix internal pores and of fluid
density and velocity at any point inside these pores.

In the present paper, instead, we consider a mathematical model for the description of saturating-
fluid flow in a porous matrix (having enough interconnected pores so to allow such flow) which is purely
macroscopic in nature.

In purely macroscopic models the “internal” shape of the porous solid matrix, i.e. the shape of its internal
pores, is not described by any kinematical field and therefore the solid matrix kinematical description is
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limited to the introduction of a “homogenized” or “macroscopic” placement field χs. This field is defined
on a “homogenized” reference configuration for the solid matrix in which a solid material particle represents
a cluster of pores together with that part of solid matrix which is delineating them (for a discussion of
the mentioned homogenization procedure see e.g. Marle (1982); de Buhan et al. (1998a); de Buhan et
al. (1998b); Hornung(1997)). The placement of such a macroscopic particle represents the spatial region
occupied by the quoted cluster of pores: clearly the Eulerian mass density related to it is related to the solid
mass effectively placed in the given Eulerian volume. Thus an “apparent” solid mass density, differing from
the mass density of the material constituting the solid matrix, is associated to the introduced macroscopic
solid placement field. Similarly the description of the kinematics of the fluid constituent flowing through
the pores, delineated by the solid matrix, is obtained in a purely macroscopic model by means of the
“homogenized” placement function χf defined on a “homogenized” fluid reference configuration. The velocity
and apparent mass density related to such a macroscopic placement field do not account for the variations
of the “microscopic” fluid velocity and mass density fields which occur inside the pores. Recall that in the
present paper we prefer to consider the field φs instead of χf : this is more convenient as φs is defined in the
same domain as χs.

One particular aspect of purely macroscopic models has been sometimes regarded as their main conceptual
weakness. It concerns the physical interpretation which has to be associated to their basic kinematical
descriptors, i.e. the “homogenized” placement fields: indeed a “homogenized” solid particle occupies, at
a given instant, the same place as a “homogenized” fluid particle. Nevertheless, this circumstance is not
surprising if one carefully considers the conceptual modeling assumptions underlying purely macroscopic
models. The intuitive interpretation we just came to give to purely macroscopic theories for fluid saturated
porous solids gains merit once grounded from a mathematical point of view by the so called “Theory
of Homogenization” i.e. the mathematical theory aiming to rigorously deduce macroscopic models from
microscopic ones (see e.g. Hornung(1997) with the references there cited, Chateau and Dormieux (1995).

The importance of the Theory of Homogenization cannot be denied. However, it is always possible and
very useful to formulate “directly” a macroscopic theory without being forced to deduce it from a “purely
microscopic” one. Moreover, up to now very few results are available about the rigorous deduction of the
macroscopic theory of Darcy flow through a deformable porous medium.

Indeed, it is always possible (and often suitable) to develop a macroscopic model independently from any
microscopic one. Recall that Cauchy continuum mechanical models for one constituent bodies are formulated
in a “direct” way without any reference to “atomistic” or “molecular” models and that very few practical
models are rigorously justified by means of homogeneization procedures. In general, a mathematically coher-
ent macroscopic model can be always formulated and supplies a useful guidance to the deduction procedure
which starts from microscopic models. These procedures are often used to supply effective macroscopic con-
stitutive equations in terms of the relevant microscopic properties of considered systems (see Allaire (1989a);
Allaire (1989b); Allaire (1991a); Allaire (1991b); Allaire (1991c); for deduction of rigorous results concerning
Darcy flow and to Pan and Horne (2001); Lee (2004); Kaasschieter and Frijns (2003) and references there
cited for those concerning deformable matrices).

One can call “microscopic models” those intermediate models in which the macroscopic kinematical
description is refined enough to describe in a more or less detailed way the shapes of the spatial regions
separately occupied by solid and fluid constituents and some aspects of the motion of the material occupying
these regions. The more detailed is the description of the shape of the solid porous matrix, the more
“microscopic” is the formulated model. It is clear that different microscopic features of the pore shapes may
be retained in the kinematical description: in some descriptions one could decide to account only for the ratio
of volumes of the regions occupied respectively by solid and fluid constituents (thus introducing the solid
volume fraction kinematical field) or for the shape of the canals interconnecting the pore (thus introducing
a tortuosity tensor field) or for some geometrical features of the pores (thus introducing, for instance, the
ratio between two characteristic lengths of the pore). Adding more and more kinematical descriptors one
can more and more precisely approximate the purely microscopic theory. The choice of an “approximating”
or “intermediate” microscopic theory results from a compromise between the need of a precise description
of complex phenomena and the (computational or analytical) difficulties encountered.

We conclude remarking that the aforementioned modeling efforts respond to a strong demand from
5
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applications. Innumerable engineering problems require the design and the control of complex systems in
which the flow of a fluid occurs in a region partially occupied by a deformable solid matrix, the pores of
which are interconnected.

Soil mechanics, geotechnical engineering and geology must supply the theoretical tools for controlling
consolidation and subsidence phenomena, which are often influenced by related fluid filtration or flow phe-
nomena (see e.g. Mandel (1953), Terzaghi (1943)) or the phenomena involved in earthquakes (see e.g. Yang
(1999)) or in the bradyseism and in the related micro-earthquakes in the Phlegraean Fields - Campi Flegrei
region (South Italy) (see dell’Isola et al. (1998), Casertano et al. (1976); Orsi et al. (1999)).

In biomechanics some phenomena related to the flow of fluids in a deformable porous matrix are also of
interest: bone tissues are porous and several different fluids filtrate or flow through those pores which are
interconnected. Indeed, it seems now evident that bone tissue growth is regulated by a feed-back control
system in which the effect of tissue deformation on fluid flow plays a central role (see e.g. Cowin (2001)).

Underground engineering (e.g. when designing or maintaining underground cavities for stocking nuclear
wastes or gas) also has to face relevant problems involving phenomena of fluid filtration and flow in a porous
matrix coupled to cracks growth and related increase of pore volume fraction and cracks inteconnection (see
e.g. dell’Isola et al. (2000); dell’Isola et al. (2003) and references there quoted).

Our model is suitable to be applied to all the aforementioned cases both under the hypotheses of small
and large deformations of the considered porous medium. In fact, there are practical problems in which
the hypothesis of small deformations is acceptable and then a linearized model is refined enough to describe
the physical phenomena of interest. Nevertheless, there are physical problems in which the hypothesis of
small deformation is no longer acceptable and a more general model is unavoidable. This is the case e.g.
when dealing with rubbers, when they can be considered as permeable porous matrices if traversed by fluid
solvents as toluene. An interesting application in this sense is given in Baek and Srinivasa (2004) where
the filtration of toluene through a gum rubber membrane is investigated. The equations and boundary
conditions used can be deduced from ours when inertia terms are negligible. Of great interest would be the
study of phenomena in which the inertia terms can not be neglected and we will address further investigations
in this sense.

2. Notations and Basic Properties of Piecewise Smooth Functions

In this section we recall some basic properties of the gradients of piecewise differentiable vector fields both
in their regular and singular points. These properties are necessary to accurately model the macroscopic
motion of a porous system with a moving surface discontinuity.

If XX is an homeomorphism from Ba onto Bb, given two tensor fields tt and zz defined on Ba and Bb

respectively, we denote
tt
©b := tt ◦ XX−1, zz

©a := zz ◦ XX , (1)

in order to distinguish fields defined in different domains. It is usual practice in mathematical physics, when
transporting tensor fields by means of changes of variables, to use the same notation for the different tensor
fields. This leads to some difficulties which are overcome when dealing with a one-constituent medium by
introducing the adapted notations of material and Eulerian space-time derivatives. Such abuse of notation
can be very misleading in the case of multi-constituents media where several diffeomorphisms are present.
This is why we introduce this more precise notation which, although burdening, seems to be unavoidable in
this context.

We denote the usual gradient and divergence of a k-th order tensor field tt defined on Rn by ∇∇ tt and
DIV tt which are tensors of order k + 1 and k − 1 respectively (see appendix A for details).

Let us now assume that XX is a C2-diffeomorphism and denote F := ∇∇XX and J := det F. Using these
notations the chain rule gives

∇∇zz
©a = (∇∇zz)©a · F and ∇∇tt

©b = (∇∇tt)©b ·
(

F−1
)©b
, (2)
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and the well-known change of variables formula reads

∫

Bb

zz dBb =

∫

Ba

zz
©a J dBa, or

∫

Ba

tt dBa =

∫

Bb

tt
©b

(

J−1
)©b

dBb,

where dBa and dBb denote the volume measures on Ba and Bb respectively and will be omitted in the sequel
as no confusion can arise.
It is easy to check (see appendix A) that, given a differentiable tensor field zz (of order ≥ 1) defined on Bb,

DIV
(

J zz
©a · F−T

)

= J (DIV zz )©a , (3)

and
DIV

(

JF−T
)

= 0. (4)

Finally, if U is a C1 vector field defined in Bb and Na and Nb are the outward unit normal vectors to
∂Ba and ∂Bb respectively, it can be proven that (see appendix A)

∫

∂Bb

U · Nb =

∫

∂Ba

U©a ·
(

J F−T · Na

)

.

If Sa is a smooth hypersurface in Ba ⊂ Rn, we denote by Ti (x) , i = 1, 2, ..., n− 1, a family of vectors
spanning the tangent space Tx (Sa) of Sa at x and by Na (x) the unit normal vector to Sa at x.

Let tt be a tensor field defined on Ba. We say that tt is piecewise differentiable (or briefly C1
pw) if it

is continuous in Ba and if its gradient ∇∇tt is continuous except on a smooth hypersurface Sa. We denote
[|∇∇tt |] its jump through Sa and we say that Sa is the singularity surface of tt (see appendix B for more
precise definitions). The well-known Hadamard property (see e.g. Kosiński (1986)) states that the jump of
the gradient of a C1

pw tensor field tt is a rank-one matrix field in the form

[|∇∇tt |] = [|∇∇tt |] · Na ⊗ Na =
(

(∇tt)+ · Na − (∇tt)− · Na

)

⊗ Na =

[∣

∣

∣

∣

∂tt

∂Na

∣

∣

∣

∣

]

⊗ Na (5)

where (∇∇tt )
+

and (∇∇tt )
−

are the traces of ∇∇tt on both sides of Sa. In other words, for any T ∈ Tx (Sa)

[|∇∇tt (x) · T |] = 0. (6)

Given a map XX from Ba onto Bb which is a piecewise differentiable diffeomorphism with singularity
surface Sa ⊂ Ba , it can be proven (see Appendix B) that the surface Sb := XX (Sa) is a smooth surface in

Bb with tangent vectors (F · Ti)
©b
, i ∈ {1, 2, ..., n− 1}. Moreover, for any normal vector field Mb to Sb, the

following jump condition holds on Sa
[∣

∣J−1FT
∣

∣

]

· M
©a
b = 0, (7)

where the quantity J−1FT · M©a
b , which is continuous through the surface, is orthogonal to Sa.

3. Kinematics of a Continuum with a Moving Surface Singularity

3.1. Bulk Kinematical Identities and Hadamard Conditions at Moving Boundaries

Let χ : Ba := Ba × (0, T ) → R3 be the placement map of a three dimensional continuum; the fixed
domain Ba ⊂ R3 is usually called the reference configuration and the moving volume Bb(t) := χ(Ba, t) is
called the current configuration. We assume that, at any instant t, χ(·, t) is a C1

pw diffeomorphism with
singularity surface Sa(t). We denote Sb(t) := χ(Sa(t), t) the corresponding surface in Bb(t).

We also denote F := ∇χ and v := ∂χ/∂t, the usual 3D space gradient of the map χ in the domain Ba

and the usual velocity field in Ba. Moreover we denote τi, i = 1, 2 a basis of the tangent space to Sa and by
Na the unit normal vector to Sa.
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Some kinematical conditions are sometimes derived in an intricate way and are not distinguished from
phenomenological assumptions. Let us show that they are simple consequences of the general properties
recalled in the previous section. We underline their pure kinematical nature and the fact that they are not
based on any physical assumption nor balance principle.

Let us consider the C1
pw-diffeomorphism XX defined on Ba := Ba × (0, T ) by XX (a, t) := (χ(a, t), t)

and let us denote by Bb its image. The map XX resumes all needed information about the motion of the
considered continuum. In particular, Bb := ∪t∈(0,T )Bb (t) × {t}. The singularity surface Sa of XX describes
the motion of the singularity surface Sa(t) by Sa := ∪t∈(0,T )Sa (t) × {t}. Analogously the hypersurface
Sb := ∪t∈(0,T )Sb (t) × {t} resumes the motion of Sb(t).

If ff is a tensor field on Ba of order k ≥ 1 the components of which are ffi1,i2,...,ik
, with ik ∈ {1, 2, 3, 4},

we decompose ff writing ff = (f , f). Here f and f are the tensors of order k and k − 1 defined by

fi1i2...ik−1 j = ffi1i2...ik−1 j , j = 1, 2, 3, fi1,i2,...,ik−1
= ffi1i2...ik−1 4.

Using this decomposition for ff and U we have ff ·U = f · u + fu. Moreover, the 4D space-time gradient and
divergence of ff are related to its 3D gradient and time derivative by

∇∇ff = (∇ff, ∂ff/∂t) and DIVff = div f + ∂f/∂t.

In particular, if ff is a vector field, the 4 × 4 matrix ∇∇ff admits the block decomposition1

∇∇ff =

(

∇f (∂f/∂t)
T

∇f ∂f/∂t

)

.

Applying this block decomposition to the gradient of XX gives

F := ∇∇ XX =

(

F vT

0 1

)

,

and we can remark that J := det F coincides with J := detF.
Applying equation (3) to ff = (f , 0) and ff = (0, f) gives

div
(

J f ©a · F−T
)

= J(div f)©a and
∂

(

J f ©a
)

∂t
− div

(

Jf ©a ⊗ F−1 · v
)

= J

(

∂f

∂t

)©a

. (8)

Similarly, equation (4) particularizes into

div
(

JF−T
)

= 0,
∂J

∂t
= div

(

JF−1 · v
)

. (9)

It is easy to prove that using (9) in (8) gives

(div f)©a = ∇f©a : F−1,

(

∂f

∂t

)©a

=
∂f©a

∂t
−∇f©a ·F−1 · v (10)

which encompass the classical relationships between material and Eulerian derivatives.

Let ϕ(s, t) be a time dependent parametrization of the moving singularity surface Sa(t), then the sin-
gularity hypersurface Sa admits the parametrization Φ defined by Φ (s, t) = (ϕ (s, t) , t). A 4D vector
(m,m) is orthogonal to Sa if it is orthogonal to the three tangent vectors ∂1Φ = (τ1, 0), ∂2Φ = (τ2, 0) and
∂Φ/∂t = (∂ϕ/∂t, 1); that is if

τ1 · m = 0, τ2 · m = 0,
∂ϕ

∂t
·m +m = 0.

1When defining matrices, we identify any vector with the corresponding row matrix.
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From the two first equalities we deduce that m is proportional to the normal Na to Sa. Hence the vectors
orthogonal to Sa are those proportional to Ma = (Na,−ca), where ca := ∂ϕ/∂t · Na is usually called the
celerity of Sa(t). As it is well known (see e.g. Kosiński (1986)), this quantity does not depend on the choice
of the parametrization ϕ.

Noticing that the three vectors

T1 = (τ1, 0) , T2 = (τ2, 0) , T3 = (caNa, 1)

span the tangent hyper-plane to Sa and applying equation (6) to the field XX gives

[|F|] · τ1 = 0, [|F|] · τ2 = 0, [|F|] · caNa + [|v|] = 0. (11)

We notice that if Nb and cb are the unit normal vector and the celerity of Sb(t) respectively then
Mb := (Nb,−cb) is orthogonal to Sb. Hence, equation (7) reads in this context

[∣

∣J−1FT
∣

∣

]

· M©a
b =

[∣

∣

∣

(

J−1FT ·N©a
b , J−1(v · N©a

b − c©ab )
)∣

∣

∣

]

= 0,

which implies

[
∣

∣

∣
J−1FT ·N©a

b

∣

∣

∣

]

= 0,
[
∣

∣

∣
J−1

(

v · N©a
b − c©ab

)
∣

∣

∣

]

= 0. (12)

As noticed at the end of section 2, the 4D vector J−1FT · M
©a
b =

(

J−1FT ·N©a
b , J−1(v · N©a

b − c©ab )
)

is

orthogonal to Sa and so colinear to (Na , −ca). This implies

Na =
J−1FT · N©a

b
∥

∥

∥
J−1FT · N©a

b

∥

∥

∥

and ca =
J−1

(

c©ab − v ·N©a
b

)

∥

∥

∥
J−1FT ·N©a

b

∥

∥

∥

.

Considering XX−1 instead of XX gives the symmetrical relationships

Nb =

(

JF−T · Na

)©b

∥

∥

∥
(JF−T · Na)

©b
∥

∥

∥

and cb =

(

Jca + J
(

F−1 · v
)

· Na

)©b

∥

∥

∥
(JF−T · Na)

©b
∥

∥

∥

. (13)

Finally let us apply the rank-one property (5) for the jump of the gradient of the map XX . It states the
existence of a 4D vector U = (u , u), such that

[|F|] =

(

[|F|]
[∣

∣vT
∣

∣

]

0 0

)

= U ⊗ Ma,

the space-time decomposition of which gives

[|F|] = u⊗ Na and [|v|] = −u ca.

Eliminating u implies the following jump condition on Sa(t)

ca [|F|] = − [|v|] ⊗ Na. (14)

3.2. Balance Equations and Corresponding Jump Conditions in the Space-Time

Any balance equation for a quantity f on Bb(t) is of the type div f + ∂f/∂t = r, where f is the corre-
sponding flux and r is a source term. This equation is written in the time-space, introducing the 4D field
ff = (f , f) defined on Bb := ∪t∈(0,T )Bb (t) × {t} in the simple form

DIV ff = r, (15)
9



 

 

 

ACCEPTED MANUSCRIPT 

 

Recalling equation (3), this balance equation is easily transported on the domain Ba in the form

DIV
(

J ff
©a · F−T

)

= Jr©a which is equivalent to

div
(

J f©a ·F−T − Jf©a ⊗ F−1 · v
)

+
∂

(

J f ©a
)

∂t
= Jr©a. (16)

The jump condition on Sb associated to this balance equation is easily recovered by considering equation
(15) in the sense of distributions. If we do not consider any surface source term, this jump condition reads
[|ff · Mb|] = 0 which, recalling that Mb = (Nb,−cb), reduces to the more usual equation

[|f · Nb − fcb|] = 0.

This jump condition is easily transported on Sa: it takes the form
[∣

∣

∣
f©a ·N©a

b − f©a c©ab

∣

∣

∣

]

= 0 which

recalling (13) also reads

[
∣

∣Jf©a ·
(

F−T · Na

)

− Jf©a ⊗
(

F−1 · v
)

· Na − Jcaf
©a
∣

∣

]

= 0. (17)

Clearly, balance laws symmetrical to (16) and (17) can be obtained starting from the conservation of a
quantity on Ba.

4. Porous Medium with a Solid-Material Surface Singularity

4.1. Kinematics

As we intend to give a macroscopic description of a porous medium, we consider a continuum made by
the superposition of two continuous phases: a fluid one and a solid one.

Let us introduce the domains Bs ⊂ R3 and Bf ⊂ R3 (usually referred to as the Lagrangian configurations
of the two constituents) and the maps

χs : Bs := Bs × (0, T ) → R3, and χf : Bf := Bf × (0, T ) → R3

which represent the placement of the solid and fluid constituents. The motion of the fluid inside the solid
matrix is described by the function φs : Bs → Bf which, at any time t, associates to each solid particle
Xs that particular fluid material particle Xf = φs (Xs, t) occupying the same physical position as Xs. The
three introduced maps are related by χs = χf ◦ φs. We can assume, extending Bs and φs if necessary,
that φs is an homeomorphism from Bs to Bf . This extension and the resulting extension of χs have no
physical sense, but make easier the description of open porous media. It will be mandatory to check that
our final equations do not depend on the choice of this extension. Therefore χs (Bs, t) = χf (Bf , t) and
we denote Be (t) this time-varying 3D domain referred to as the Eulerian configuration. In the sequel, in
order to apply our previous results, we assume that the 4D-counterparts of χs, χf and φs are piecewise
C1-diffeomorphisms. We note that this assumption on the regularity of the kinematical fields is a pure
mathematical assumption and, while natural in a “continuum mechanics approach”, may lead to ill-posed
problems when no physical argument enforces it: for instance when the singularity surface does not remain
smooth during some evolution process, when the fluid is non viscous and/or when slip is allowed at the
interface.

We still adopt the superscript notation ©s (respectively ©f and ©e) to denote the transport of a tensor
field from the configuration where it is defined to Bs (resp. Bf , Be). For instance, if a tensor t is defined
on Bf , then t©s := t ◦ φs, while if it is an Eulerian field defined on Be, then t©s := t ◦ χs.

We denote the space gradient of the three placements by

Fs := ∇χs, Ff := ∇χf , Gs := ∇φs,

and its determinant by
Js := detFs, Jf := detFf , Is := detGs

10
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It is immediate to check, that the chain rule gives Fs = F
©s
f ·Gs and Js = J©s

f Is.
We define now the classical Lagrangian velocity fields vs and vf , associated to the motion of the solid

and of the fluid constituent, on Bs and Bf and, on Bs, the time derivative us of the map φs, which is not
a velocity in the classical sense, but plays a central role in further calculations:

vs :=
∂χs

∂t
, vf :=

∂χf

∂t
, us :=

∂φs

∂t
.

By the chain rule we get

0 =
∂

∂t

(

φs

(

φ−1
s (Xf , t) , t

))

= G©f
s ·

∂φ−1
s

∂t
+ u©f

s ·

This relationship allows us to link vs, vf and us:

vf =
∂χf

∂t
=

∂

∂t

(

χs

(

φ−1
s (Xf , t) , t

))

= F©f
s ·

∂φ−1
s

∂t
+ v©f

s = −F©f
s · (G©f

s )−1 · u©f
s + v©f

s .

Transporting this relationship on Bs gives

v
©s
f = vs − Fs .G

−1
s .us. (18)

Let us define the acceleration fields γs, γf and as as the time derivatives of vs, vf and us respectively.
Using Eq. (10) for the diffeomorphism φs, it is straightforward that

∂

∂t
v
©s
f = γ©sf + ∇v

©s
f ·G−1

s · us (19)

Finally, since it is needed for further calculations, we compute the time derivative of the tensor Fs · G
−1
s ;

using (10) for the map φs it is straightforward to recover that

∂

∂t

(

Fs · G
−1
s

)

=
∂

∂t
F

©s
f = ∇F

©s
f · G−1

s · us + (∇vf )
©s

= ∇
(

Fs · G
−1
s

)

· G−1
s · us + ∇v

©s
f · G−1

s . (20)

In the sequel we focus on a surface Ss (t) which may be a surface of singularity for χs and/or φs and on
the image surfaces Sf (t) = φs (Ss (t) , t) and Se (t) = χs (Ss (t) , t) = χf (Sf (t) , t) which are moving surfaces
in Bf and Be (t). We apply to these surfaces the notations and formulas stated in the previous sections. In
particular, we introduce the celerities cs, cf and ce of Ss (t), Sf (t) and Se (t) respectively.

Actually, in this paper we only consider the case in which the surface Ss is a solid-material surface
discontinuity which means that it does not depend on time. In other words, from now on, we assume that
Ss is parametrized by a function ϕ which does not depend on time. Consequently, the celerity cs of the
surface Ss is vanishing. This particular case of solid-material surface has many applications. It models all
those phenomena in which Ss divides the solid skeleton in two parts with different mechanical properties
(e.g. different porosities, rigidities, etc.) It also models, as a limit case, the boundary of a fluid-filled porous
matrix in contact with a pure fluid.

The hypothesis that the surface is solid-material (cs = 0), applying (14) to both χs and φs, implies

[|vs|] = 0 and [|us|] = 0 on Ss.

We underline that these equations do not imply [|vf |] = 0.

We finally remark that if (v©e
s − v

©e
f ) ·Ne = 0, or equivalently by (18) and (13), us ·N

©s
f = 0, then from (11)

[∣

∣

∣
F

©s
f · us

∣

∣

∣

]

=
[∣

∣

∣
vs − v

©s
f

∣

∣

∣

]

= 0.
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4.2. Balance of Masses

The masses Ms(B) and Mf (B) of solid skeleton and fluid contained in a part B ⊂ Be of the physical
space at time t are represented by means of two Eulerian densities ρs and ρf respectively in the form

Ms (B) =

∫

B

ρs, Mf (B) =

∫

B

ρf .

These densities are usually called “apparent densities” and they do not coincide with the mass densities of
the materials which constitute the solid skeleton or the fluid. Simple changes of variables give

Ms (B) =

∫

χ−1
s (B)

ρ©ss Js and Mf (B) =

∫

χ−1
s (B)

ρ©sf Js =

∫

χ−1

f
(B)

ρ©ff Jf , .

which leads us to introduce the “solid-Lagrangian apparent densities” ηs, mf for the solid and the fluid

constituent defined on Bs by ηs := Jsρ
©s
s , mf := Jsρ

©s
f and the “fluid-Lagrangian apparent density” ηf of the

fluid constituent on Bf by ηf := Jfρ
©f
f . The densities mf and ηf are related by mf = Is η

©s
f .

As we do not intend to model melting, dissolution or erosion phenomena, we assume conservation of mass
for each constituent. Mass conservation for the solid skeleton and the fluid take the form of the balance laws

∂

∂t
ηs = 0, and

∂

∂t
ηf = 0.

which are of the type studied in section 3.2. The results of section 3.2 give the associated jump conditions
[|ηs|] cs = 0 and [|ηf |] cf = 0 on Ss and Sf respectively. As cs = 0 the first equation is trivially satisfied.
So is is the second one if one assumes (which, as it is well known, can be done for a fluid without loss of
generality) that ηf is constant in space and time. However, the pull-back on Bs of the fluid balance and
jump equations, using the transport formulas (16) and (17) together with equation (18) gives the non-trivial
equations

ṁf + div D = 0 on Bs, (21)

[|D|] ·Ns = 0 on Ss,

where D := −mfG
−1
s ·us and ṁf := ∂mf/∂t. The vector D is interpreted as the mass fluid flux through the

porous medium in the Lagrangian configuration of the skeleton. The quantity D ·Ns, which is well defined
at the interface Ss, is the flux (per unit area of Ss) of fluid flowing through the interface. We introduce

d :=

(

D · Ns

‖JsF
−T
s ·Ns‖

)©e

= ρf (v©e
f − v©e

s ) · Ne = η©ef ‖(J−1
f FT

f )©e · Ne‖(Nf · us)
©e (22)

which is well defined at the interface Se and corresponds to the flux (per unit area of Se) of fluid flowing
through the interface.

5. Evolution Equations and Associated Jump Conditions in Presence of Dissipation

5.1. Action and Rayleigh Functionals

We start by recalling that the kinematics of the considered porous medium is described by means of the
fields χs and φs defined on Bs.

Then, we introduce the kinetic energy

1

2

∫

Be

(

ρs(v
©e
s )2 + ρf (v©e

f )2
)

=

∫

Bs

Λ
(

ηs,mf ,vs,v
©s
f

)

where Λ
(

ηs,mf ,vs,v
©s
f

)

= 1/2
(

ηs (vs )
2

+mf (v©s
f )2

)

is the solid-Lagrangian pull-back of the kinetic en-

ergy density.
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We now assume that the potential energy of the porous medium is characterized by a local density Ψ
on Bs which depends on the kinematic descriptors χs and φs through the placement χs, the strain tensor
ε := 1/2(FT

s ·Fs−I) and the quantity of fluid contained in the porous mediummf = Is ηf . For instance Ψ can
be the sum of a non-homogeneous deformation energy potential Ψi(ε,mf ,Xs) and a potential accounting for
external body forces Ψg = (ηs +mf )Ep(χs (Xs)). As we do not intend to model surface tension phenomena,
we do not consider any concentration of energy on the singularity surface Ss. Neither do we consider any
dependence of Ψ on higher gradients of the kinematical fields as done for instance in Sciarra et al. (2008).
Setting Bs := Bs × (0, T ), we define the action functional A for the porous system as

A :=

∫

Bs

(Λ − Ψ) .

It is well known that, in absence of dissipation, imposing the stationarity of the action implies that the
kinematic descriptors satisfy the virtual power principle i.e. a weak form of the balance of momentum.
As we want to account for dissipation phenomena, we introduce a generalized Rayleigh dissipation pseudo-
potential R on the Eulerian configuration. In linear thermodynamics the dissipation 2R is a quadratic form
of the velocity fields

2R =

∫

Be\Se

D
(

v©e
s − v

©e
f ,∇

(

v©e
s

)

,∇(v©e
f )

)

+

∫

Se

DS

(

(v©e
s )−, (v©e

s )+, (v©e
f )−, (v©e

f )+
)

(23)

where the volume density D is a positive quadratic form, the surface density DS is a Galilean invariant
quadratic form (the coefficients of these two forms may also depend on all the static parameters). In the
sequel, we limit ourselves to the case

D = (v©e
s − v

©e
f ) · K · (v©e

s − v
©e
f ) + ∇

(

v©e
s − v

©e
f

)

: B : ∇
(

v©e
s − v

©e
f

)

+ ∇v
©e
f : M : ∇v

©e
f (24)

DS =
[∣

∣

∣
v
©e
f

∣

∣

∣

]

· S ·
[∣

∣

∣
v
©e
f

∣

∣

∣

]

(25)

where K and S are second order symmetric, positive tensors, M and B are symmetric positive fourth order
tensors, the symbol “ : ” stands for the double contraction product. The tensor K accounts for the Darcy
dissipation; its inverse (if invertible) is called the Darcy permeability tensor. The tensor B accounts for
Brinkman dissipation (see e.g. Brinkman (1947)). Classical fluid viscous effects are described by M, while
S describes friction effects at the interface. We already noticed that, as the extension of χs is arbitrary in a
pure fluid region, the model should not depend on vs in this region. Hence, K and B have to vanish in any
pure fluid region.

This Rayleigh dissipation is pulled back on Bs by simply changing the variables

2R =

∫

Bs\Ss

JsD
©s +

∫

Ss

D©s
S

∥

∥JsF
−T
s · Ns

∥

∥ .

In the application of this formula, the change of variables in DS and in the first term of D is straightforward.
The terms involving gradients in D need to be transported according to formula (2).

We finally introduce respectively, the Darcy friction force κ, the Brinkman stress tensor Π, the fluid
viscous stress tensor Πf and the friction surface force σ as

κ := K · (v©e
s − v

©e
f ), Π := B : ∇

(

v©e
s − v

©e
f

)

,

Πf := M : ∇v
©e
f , σ := S ·

[∣

∣

∣
v
©e
f

∣

∣

∣

]

.

5.2. Equations of Motion

Let us denote by q := (χs, φs) the kinematic descriptor of the medium (a field defined on Bs). Hence the
action A is a functional of q. Moreover, let us denote by qt, q̇t the fields defined at any instant t on Bs by

13



 

 

 

ACCEPTED MANUSCRIPT 

 

qt(Xs) := q(Xs, t) and q̇t(Xs) := ∂q/∂t(Xs, t). The Rayleigh potential R is, at each instant t, a functional
of (qt, q̇t) .

The physical principle which determines the motion of a system can be alternatively stated in the
framework of second Newton’s law (balance of momentum), of D’Alembert principle (weak formulation of
momentum balance) or of Rayleigh-Hamilton principle. We adopt this last approach which reads

∂A

∂q
| δq =

∫ T

0

(

∂R

∂q̇t

| δqt

)

dt. (26)

Here, ∂A/∂q and ∂R/∂q̇t must be understood in the sense of functional differentiation.
Up to now, the functionals we have introduced do not depend on the choice of the reference configuration

of the fluid. The choice of admissible test functions is now crucial: if one considers only regular test functions
δφs, one gives an undeserved importance to the choice of the reference configuration of the fluid and one
can then obtain unphysical equations. Indeed, a C1

pw change of configuration F may transform a continuous

test function ξ in a discontinuous function δφs = (∇F)©s · ξ which is a test function as legitimate as ξ.
This problem can be overcome by considering all test functions δφs = (∇F)©s · ξ where ξ is a C∞ function
with compact support included in Bs and F is any time-independent C1

pw diffeomorphism defined on Bf ,
the gradient of which Γ has constant determinant (which can be set equal to 1 without loss of generality).
Indeed, since we decided to work with a constant field ηf in the fluid reference configuration, we need to
set detΓ = 1 to preserve this assumption. We denote S∗

f the singularity surface of F (which is fixed in Bf ),

S∗ := φ−1
s (S∗

f ) (a moving singularity surface in Bs) and S∗ := ∪t∈(0,T )S
∗(t) × {t}.

As the reference configuration of the solid has a precise physical meaning, we simply consider test
functions δχs of class C∞ with compact support included in Bs. Note that, as we only consider variations
with compact support in Bs, we work with fixed initial (t = 0) and terminal (t = T ) conditions. We also
work with fixed q (Dirichlet type boundary conditions) on the boundary of the considered domain Bs. This
assumption of variations with compact support is the only constraint introduced in our variational principle,
but it does not affect the expected result since we are only interested here in the bulk equations and the
jump conditions on the singularity surface Ss inside the domain Bs. Recalling that ηs and ηf are given

fixed fields, that ε, mf , vs and v
©s
f are all defined in terms of χs and φs, then A and R becomes functions

of χs and φs. We assume that the variational principle (26) holds for all variations δq = (δχs, δφs) with the
regularity described above.

After long computation which we postpone to Appendix C, the extended Hamilton-Rayleygh principle
(26) reads

0 =

∫

Bs\Ss

(

ηsγs +mfγ
©s
f +

∂Ψ

∂χs

− div

(

Fs ·
∂Ψ

∂ε

)

− div
(

Js(Π
©s
f )T ·F−T

s

)

)

· δχs

−

∫

Bs\(Ss∪S∗)

G−T
s ·

(

mfFs · γ
©s
f +mf∇

(

∂Ψ

∂mf

)

− FT
s ·

(

Jsκ
©s − div

(

Js(Π
©s − Π©s

f )T ·F−T
s

))

)

· δφs

+

∫

Ss

[
∣

∣

∣

∣

(

Fs

∂Ψ

∂ε
− v

©s
f ⊗ D + Js(Π

©s
f )T · F−T

s

)

·Ns

∣

∣

∣

∣

]

· δχs (27)

+

∫

Ss∪S∗

[∣

∣

∣

∣

G−T
s ·

(

mf

∂Ψ

∂mf

Ns −
1

2
mf

(

v
©s
f

)2

Ns + FT
s · v©s

f ⊗ D · Ns

)

· δφs

∣

∣

∣

∣

]

+

∫

Ss∪S∗

[∣

∣

∣
G−T

s · FT
s ·

(

Js

(

(Π©s − Π©s
f )T

)

· F−T
s · Ns −

∥

∥JsF
−T
s ·Ns

∥

∥σ©s
)

· δφs

∣

∣

∣

]

.

First let us consider arbitrary test functions δχs and δφs = ξ with compact support included in Bs \ Ss.
We get the following system of equations valid in Bs \ Ss

−
(

ηsγs +mfγ
©s
f

)

+ div

(

Fs ·
∂Ψ

∂ε

)

−
∂Ψ

∂χs

= − div
(

Js(Π
©s
f )T · F−T

s

)

, (28)

mf

(

FT
s · γ©sf + ∇

(

∂Ψ

∂mf

))

= FT
s ·

(

Jsκ
©s − div

(

Js(Π
©s − Π©s

f )T · F−T
s

))

. (29)
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Therefore the first two integrals in (27) vanish. Considering now δφs = 0 and arbitrary δχs we get the
jump condition valid on Ss:

[∣

∣

∣

∣

Fs ·
∂Ψ

∂ε
− v

©s
f ⊗ D + Js(Π

©s
f )T ·F−T

s

∣

∣

∣

∣

]

· Ns = 0,

which we prefer to write, using the continuity of vs,
[∣

∣

∣

∣

Fs ·
∂Ψ

∂ε
− (v©s

f − vs) ⊗ D + Js(Π
©s
f )T · F−T

s

∣

∣

∣

∣

]

· Ns = 0. (30)

Dealing with the last two terms in (27) is more tricky. We first take advantage of the continuity of
ξ = (Γ©s )−1 · δφs to write

0 =

∫

Ss∪S∗

[∣

∣

∣

∣

G−T
s ·

(

mf

∂Ψ

∂mf

Ns −
1

2
mf

(

v
©s
f

)2

Ns + FT
s · v©s

f ⊗ D ·Ns

)

· Γ©s

∣

∣

∣

∣

]

· ξ

+

∫

Ss∪S∗

[
∣

∣

∣
G−T

s ·FT
s ·

(

Js

(

(Π©s − Π©s
f )T

)

· F−T
s ·Ns −

∥

∥JsF
−T
s · Ns

∥

∥σ©s
)

· Γ©s
∣

∣

∣

]

· ξ.

Using the arbitrariness of ξ, we get the local condition on Ss

0 =

[∣

∣

∣

∣

G−T
s ·

(

mf

∂Ψ

∂mf

Ns −
1

2
mf

(

v
©s
f

)2

· Ns + FT
s · v©s

f ⊗ D · Ns

)

· Γ©s

∣

∣

∣

∣

]

+
[
∣

∣

∣
G−T

s ·FT
s ·

(

Js

(

(Π©s − Π©s
f )T

)

· F−T
s ·Ns −

∥

∥JsF
−T
s · Ns

∥

∥σ©s
)

· Γ©s
∣

∣

∣

]

. (31)

Then we choose a continuous field Γ (e.g. Γ = I). We project equation (31) on the tangent plane
to Sf by considering τe an arbitrary tangent vector to Se, and multiplying the equation by the vector
(Γ©s)−1 · Gs ·F

−1
s · τ©se , we get

τ©se ·
[∣

∣

∣
v
©s
f

∣

∣

∣

]

d©s + τ©se ·
[∣

∣

∣
(Π©s − Π©s

f )T
∣

∣

∣

]

·N©s
e −

∥

∥JsF
−T
s ·Ns

∥

∥ τ©se · σ©s = 0.

which we prefer to write, using the continuity of vs and the definition of σ,

τ©se ·
[∣

∣

∣
v
©s
f − vs

∣

∣

∣

]

d©s + τ©se ·
[∣

∣

∣
(Π©s − Π©s

f )T
∣

∣

∣

]

·N©s
e −

∥

∥JsF
−T
s ·Ns

∥

∥ τ©se · S ·
[∣

∣

∣
v
©s
f − vs

∣

∣

∣

]

= 0. (32)

Moreover, we also project the jump condition (31) in the direction of the continuous quantity −(Γ©s )−1 ·

us = (Γ©s )−1 · Gs ·F
−1
s · (v©s

f − vs) (which, owing to (22) is not a tangent vector when d 6= 0), we get

[∣

∣

∣

∣

(

1

2

(

v
©s
f

)2

− v
©s
f · vs +

∂Ψ

∂mf

)∣

∣

∣

∣

]

d©s +
[∣

∣

∣
(v©s

f − vs) ·
((

(Π©s − Π©s
f )T

)

·N©s
e − σ©s

) ∣

∣

∣

]

= 0.

which we prefer to write, using the continuity of vs,
[
∣

∣

∣

∣

(

1

2

(

v
©s
f − vs

)2

+
∂Ψ

∂mf

)
∣

∣

∣

∣

]

d©s +
[∣

∣

∣
(v©s

f − vs) ·
((

(Π©s − Π©s
f )T

)

·N©s
e − σ©s

) ∣

∣

∣

]

= 0. (33)

Up to now, we used only continuous fields Γ. We stress the fact that no extra condition can be established
by using arbitrary non continuous Γ when d 6= 0. Indeed, if d 6= 0 then cf 6= 0 (owing to (13) and to the
fact that cs = 0). If at a time t0, the surface S∗ coincides with Ss, it is moving with the celerity −cf , then,
since Ss is fixed, the two surfaces coincide at time t0 only. Hence, at almost every time, Γ is continuous
across Ss.

The situation is completely different when d = 0. Note that in this case equation (33) is useless (it
reduces to a particular case of (32)). When d = 0, we start by simplifying equation (31) using the fact
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that D · Ns = 0, that v
©s
f is continuous and consequently that σ©s vanishes. We also use the fact that

[∣

∣Is(Γ
©s)T ·G−T

s · Ns

∣

∣

]

= 0 (obtained by applying Eq. (12) to the C1
pw diffeomorphism φ−1

s ◦ F). We get

[
∣

∣

∣

∣

(Γ©s )T · G−T
s ·

(

mf

∂Ψ

∂mf

Ns + FT
s · Js(Π

©s − Π©s
f )T · F−T

s · Ns

)
∣

∣

∣

∣

]

= 0. (34)

If d = 0 during a time interval, on a non-negligible part of Ss, then Sf is fixed (cf = 0) and one can choose F
such that S∗ coincides with Ss on this part: we can choose non continuous fields Γ. First, let us choose them
of the type Γ = βτf ⊗ Nf , with β arbitrary and discontinuous. Using this expression for Γ and equation
(32) with d = 0, we obtain

[∣

∣β©s
∣

∣

]

(

τ©se · (Π©s − Π©s
f )T · N©s

e

)

N
©s
f = 0,

which, since
[∣

∣β©s
∣

∣

]

is arbitrary gives the following conditions valid on both sides of Ss

(

τ©se · (Π©s − Π©s
f )T ·N©s

e

)−

= 0,
(

τ©se · (Π©s − Π©s
f )T ·N©s

e

)+

= 0. (35)

Owing to these conditions, equation (34) becomes

[∣

∣

∣

∣

(Γ©s )T · G−T
s ·Ns

(

mf

∂Ψ

∂mf

+ Ns ·F
T
s · Js(Π

©s − Π©s
f )T · F−T

s · Ns

) ∣

∣

∣

∣

]

= 0.

or, using again the continuity of Is(Γ
©s)T ·G−T

s ·Ns,

[
∣

∣

∣

∣

(

∂Ψ

∂mf

+
1

mf

Ns ·F
T
s · Js(Π

©s − Π©s
f )T ·F−T

s ·Ns

)
∣

∣

∣

∣

]

= 0. (36)

In conclusion, the motion of the porous medium is ruled by the equations (28) (29) valid far from Ss

and, if d 6= 0, by the jump conditions (30), (32) and (33) valid on Ss. If d = 0, the last two conditions have
to be replaced by the three conditions stated in (35) and (36). In both cases (d = 0, d 6= 0) it must be
recalled that the kinematical condition [|vs|] = 0 has been used.

We remark that this system of equations respects Galilean invariance. Indeed, all equations (as well as
the criterium d = 0 or d 6= 0) involve only Galilean invariant physical quantities.

Equations (28) and (30) encompass the well known Lagrangian balance equation for the total stress and
the corresponding jump condition: these equations only involve physical quantities. As for equations (29),
(32), (33), (35) and (36), they are not available in the literature.

6. The Case of a Deformable Porous Medium Surrounded by a Pure Fluid

In this section we consider the case of a surface discontinuity Ss separating a porous medium (which
occupies the volume B+

s ) from a pure fluid (which occupies the volume B−
s ). When the fluid is pure (and

when external body forces are neglected), its Eulerian energy density, its chemical potential and its pressure
are functions of its mass density only. These three real functions are denoted respectively by Ψf , µf and
pf . They are related by

µf (y) = Ψ′
f (y) and pf (y) = −Ψf(y) + yΨ′

f (y), (37)

In the sequel, as no ambiguity can arise, we simply denote µf , pf and Ψf the fields µf (ρf ), pf (ρf ) and
Ψf(ρf ) defined on Be. The restriction Ψ− of the potential Ψ in B−

s is that of a pure fluid: transporting the
Eulerian density Ψf (ρf ) on Bs, we get

Ψ− (ε,mf ) = JsΨf

(

ρ©sf

)

= JsΨf

(

J−1
s mf

)

, (38)
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Note that Js is a function of ε only, as we have Js = detFs =
√

det (2ε+ I) and that ∂Js/∂ε = JsF
−1
s ·F−T

s .
Thus we have

∂Ψ−

∂ε
= (Ψ©s

f + µ©s
f ρ

©s
f )

∂Js

∂ε
= −p©sf JsF

−1
s · F−T

s , and
∂Ψ−

∂mf

= µ©s
f .

As for the porous region, we simply denote Ψ+ the potential density function in B+
s .

In the pure fluid region B−
s we clearly have ηs = 0 and Π = 0. Moreover, as already noticed, K©s = 0,

M©s = 0.

Under these assumptions, using equations (9) and (37), we obtain the following expression for the equa-
tion of motion (28) in B−

s :

mfγ
©s
f = div

(

Fs ·
∂Ψ−

∂ε

)

+ div
(

Js(Π
©s
f )T ·F−T

s

)

= div
(

Js

(

−p©sf I + (Π©s
f )T

)

· F−T
s

)

= Js

(

div
(

−pf I + ΠT
f

))©s
.

As expected, this last equation, when transported on the Eulerian configuration, is the usual Navier-
Stokes equation for the motion of a fluid :

ρfγ
©e
f = −∇pf + div ΠT

f . (39)

The existence of a supplementary equation (29) may seem astonishing. Under the hypotheses we formu-
lated, recalling (38) and (37), Eq. (29) can be rewritten

mfF
T
s · γ©sf +mf∇µ

©s
f = FT

s · div
(

Js(Π
©s
f )T · F−T

s

)

,

which, multiplied on the left by F−T
s , and then rewritten on the Eulerian configuration gives

mfγ
©s
f +mfF

−T
s · ∇µ©s

f = div
(

Js(Π
©s
f )T · F−T

s

)

,

ρfγ
©e
f + ρf∇µf = div ΠT

f ,

This last equation is clearly equivalent to Eq. (39) owing to the identity ∇pf = ρf ∇(µf ). Hence, as
expected, the fluid is governed only by the usual Navier-Stokes equation.

Let us consider the Eulerian form of jump condition (30) on the surface Ss which divides the porous
medium region B+

s from the pure fluid region B−
s :

(

J−1
s Fs ·

∂Ψ

∂ε
·FT

s + (Π©s
f )T

)+

·N©s
e = −(p©sf )− N©s

e +
[∣

∣

∣
v
©s
f − vs

∣

∣

∣

]

d©s + ((Π©s
f )T )− ·N©s

e . (40)

The reader can recognize in the left hand side of this equation the total Cauchy stress tensor of the porous
medium. It appears clearly that, as predictable, the action of the fluid on the surface do not depend on the
extension of χs.

As for the jump conditions (32) or (35), they remain unchanged, as they do not involve Ψ−. Since they
are written in Eulerian form, they also do not depend on the extension of χs.

Considering the jump conditions (33) or (36), we remark that in this special case one just has to replace

∂Ψ−/∂mf by the chemical potential of the fluid µ©s
f . They are both written in Eulerian form if one recognizes

that the term [|(1/mf Ns ·F
T
s ·Js(Π

©s−Π©s
f )T ·F−T

s ·Ns) |] can be rewritten as [|(1/ρ©sf N©s
e ·(Π©s−Π©s

f )T ·N©s
e ) |].

In conclusion, the motion of the porous medium is driven by two independent equations of the type
(28)-(29), while the motion of the pure fluid is driven by a simple equation in the form (39). The differential
system is completed by the jump conditions (32) and (33) in the case d 6= 0 and by the jump conditions
(35) and (36) if d = 0.
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7. Conclusions

In this paper the configuration of a fluid-filled porous medium is characterized by means of the placement
fields χs and φs. Moreover, suitable action and dissipation functionals are postulated in order to account
for the mechanical properties of a deformable solid matrix permeable to fluid flow. Therefore, the obtained
Euler-Lagrange-Rayleigh equations naturally determine the time evolution of the fields χs, mf and us which
represent the solid placement, the solid-Lagrangian density of the fluid and the solid-fluid relative velocity,
respectively.

In the presented model the “solid volume fraction” ν does not appear explicitly as a kinematical field:
nevertheless, solid volume fraction plays a crucial role, for instance, in the determination of the macroscopic
deformation energy of the fluid-filled solid matrix. Indeed, when the macroscopic constitutive equations for
such a system need to be postulated, the most natural choice actually is to deduce them starting from the
microscopic constitutive equations of the pure fluid and solid constituents. This is exactly what is done in
the literature stemming from the papers of Fillunger, Terzaghi and Biot (see e.g. Biot (1941); Biot (1956a);
Biot (1956b); Biot and Willis (1957); Biot (1962); Biot (1963); Beavers and Joseph (1967); Coussy and
Bourbie (1984); Coussy et al. (1998); Coussy (2004); de Boer (1996); Deresiewicz (1963); Dormieux and
Stolz (1992); Saffman (1971); Wilmanski (2006)).

One suggestive reasoning to explain such an approach and its logical limits can be the following. Let
us assume that a macroscopic solid material particle is in a state described by the macroscopic deformation
gradient Fs and that the macroscopic fluid saturating particle has a (solid referential) density mf . Then,
the microscopic deformation energy ψtot of the fluid-filled porous matrix can be expressed, in terms of the
fluid and solid volume fractions νf and ν, as follows:

ψtot (Fs,mf , νf , ν) = ψs (Fs, ν) + ψf

(

J−1
s mf

νf

)

(41)

where ψs is the microscopic deformation energy of a solid matrix when it experiences the macroscopic
deformation Fs and its solid volume fraction is given by ν, while ψf is the microscopic deformation energy
of the permeating fluid. In order to obtain from (41) a macroscopic energy density, one needs to assume a
kind of “instantaneous local equilibrium hypothesis”. In other words, it must be assumed that, for fixed Fs

and mf , with characteristic times much shorter than those characterizing macro-phenomena, the fluid and
solid volume fractions adjust to a local equilibrium value. These equilibrium values are obtained by solving
the following local minimization problem: find the functions νf (Fs,mf ) and ν(Fs,mf ) such that

ψtot (Fs,mf , νf (Fs,mf ), ν(Fs,mf )) = min
νf ,ν

ψtot (Fs,mf , νf , ν) . (42)

The minimization problem (42) is crucial and has been solved in very clever ways under physically acceptable
assumptions. The resulting macro deformation energy density is thus obtained as follows

Ψ(Fs,mf ) = ψtot (Fs,mf , νf (Fs,mf ), ν(Fs,mf)) . (43)

In the present paper we refrain from any attempt of deducing any particular form for Ψ. Our aim is to find a
logically consistent set of evolution equations and boundary conditions for models in which the independent
kinematical descriptors are χs and φs.

To our knowledge, the inertia terms appearing in the jump conditions (32) and (33) are not found in
the literature. Moreover, all presented boundary conditions are valid also when the solid matrix is suffering
large deformations and when the Stokes fluid-flow condition is not applicable.
A deduction of a jump condition similar to (33) and valid in the particular case of absence of inertia, of
Darcy-Brinkman and Beavers-Joseph dissipation is presented in Baek and Srinivasa (2004).
Other authors (see e.g. Neale G., Nader (1974); Vafai and Thiyagaraja (1987); Vafai and Kim (1990);
Poulikakos and Kazmierczak (1987)) based themselves on the pioneering works of Beavers and Joseph
(1967) and Saffman (1971), to justify the so-called slip boundary conditions at the interface between a
porous matrix and an external viscous fluid. Beavers-Joseph-Saffman conditions include the continuity
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of the tangent components of the relative velocity at the interface between the porous medium and the
external fluid. Moreover, they express the jump of the gradient of the tangent relative velocity in terms of
the common value of tangent velocity at the interface. Nevertheless, they only describe phenomena related to
the viscosity of the outflowing fluid with no consideration of inertial effects and Darcy-Brinkman dissipation.
Beavers-Joseph-Saffman conditions can be deduced from our jump condition (40), once assuming that the
solid matrix is suffering small deformation and when Stokes fluid-flow condition is verified.
The jump conditions deduced in Deresiewicz (1960); Deresiewicz (1962a); Deresiewicz (1962b); Deresiewicz
(1962c); Deresiewicz (1963); Deresiewicz (1964a); Deresiewicz (1964b) are suitable to assure that the differ-
ential problem of Darcy-Fillunger-Terzaghi-Biot is well-posed (see Fillunger (1936); Terzaghi (1943); Biot
(1941); Biot (1956a); Biot (1956b); Biot and Willis (1957); Biot (1962); Biot (1963)). These jump conditions
can be obtained as a particular case from Beavers-Joseph-Saffman conditions, once it is possible to neglect
dissipative phenomena at the considered interface. In Albers (2006); Wilmanski (1999); Wilmanski (2006);
de la Cruz et al. (1992); Quiroga-Goode and Carcione (1997) the jump conditions proposed by Deresiewicz
(1963) are used to study wave propagation phenomena at discontinuity surfaces in porous media.
In Coussy and Bourbie (1984); Coussy et al. (1998); Rasolofosaon and Coussy (1985a); Rasolofosaon
and Coussy (1985b); Rasolofosaon and Coussy (1986); Coussy (2004), a variational approach is used to
study some wave propagation phenomena of interest in oil industry: the boundary conditions proposed by
Deresiewicz (1963) are examined there with a view towards the applications.
In Kubik and Cieszko (2005) a dissipative Rayleigh surface potential is proposed which is suitable to produce
a particular form of Beavers-Joseph-Saffman boundary conditions: many versions of them are compared in
Alazmi and Vafai (2001).

As for our jump conditions (30), (32) and (33), they also allow for describing phenomena in which
inertial effects are relevant. The inertia terms, which are here newly introduced, are at least quadratic in
the relative velocity fields at the interface: when Stokes fluid-flow conditions hold (and when the solid matrix
is subjected to “small deformations”) they may be negligible. Indeed, when the equations are linearized
in the neighborhood of a state of rest (i.e. when all velocity fields and their gradients are vanishing) the
aforementioned inertia terms do not produce, in the resulting boundary conditions, any term additional
to those appearing in Beavers-Joseph-Saffman conditions. However, when the linearization procedure is
performed in the neighborhood of a state in which some velocity fields are not vanishing, then inertia terms
cannot be neglected.
Moreover, one should remark that in Ochoa-Tapia and Whitaker (1998) some inertial effects at the interface
are considered. However, they deduce no-slip conditions for tangential velocity and a normal-to-the-interface
boundary condition by means of an averaging procedure involving “excess quantities”. Their assumptions
produce inertia terms in which only the tangential part of the fluid velocity appears.

Finally, we remark that the dissipation Rayleigh functional which we assumed to be a quadratic form in
the relative and fluid velocities, does not need to be restricted to this particular form and can be generalized
to any power dissipation law. This generalization would be of interest in the study of particular fluids (as
polymeric fluids and slurries) in which dissipation effects cannot be adequately described by the classical
linearly viscous fluid model (see Dunn and Rajagopal (1995); Rajagopal and Srinivasa (2000), Srinivasa
(2000)). In this paper we preferred to limit the range of applicability of our model to the dissipation
phenomena encompassed by the classical approach of Rayleigh and to postpone a more complex modeling
to further investigations.

Future investigations will be aimed to get a generalization of the newly found boundary conditions to
the case of shock waves.

A. Proof of the Properties of the Gradients of C
2 Vector Fields

We prove here the properties of smooth tensor fields which are the gradient of some vector field.

Notation 1. For any differentiable k-th order tensor field tt = tti1...ik
defined on Rn, we denote by ∇∇ tt its

gradient and, when k ≥ 1 and ik varies in {1, 2, ..., n}, by DIV tt its divergence.
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The components of these tensors are given by 2

(∇∇ tt)i1i2...ik+1
:= ∂ik+1

(tti1i2...ik
) ; (DIV tt)i1i2...ik−1

:=
n

∑

ik=1

∂ik
(tti1i2...ik

) .

We assume here that XX is a C2-diffeomorphism from Ba ⊂ Rn onto Bb ⊂ Rn and we recall that F := ∇∇XX
and J := det F.

Next Proposition gives a transport formula for the divergence operator and states an important property
for the gradient of a diffeomorphism.

Proposition 1. Let XX be a C2-diffeomorphism between the domains Ba and Bb. For any differentiable
tensor field zz (of order ≥ 1) defined on Bb the following equation holds

DIV
(

J zz
©a · F−T

)

= J (DIV zz )
©a
. (44)

In particular

DIV
(

JF−T
)

= 0. (45)

Proof. Let us consider a differentiable scalar field ψ with compact support included in Ba. Owing to
the regularity assumptions on XX , the corresponding scalar field ψ©b on Bb has compact support and is
differentiable on Bb. A simple change of variables gives

∫

Bb

ψ©b DIV zz =

∫

Ba

ψ (DIV zz )
©a

J. (46)

On the other hand, using the divergence theorem and recalling that ψ©b has compact support

∫

Bb

ψ©b DIV zz = −

∫

Bb

zz .∇∇ψ©b. (47)

Starting from Eq. (47), using successively formula (2) for ψ©b, a change of variables, the divergence theorem
and the fact that ψ has compact support we get the following equalities

∫

Bb

ψ©b DIV zz = −

∫

Bb

zz ·
(

∇∇ ψ · F−1
)©b

= −

∫

Ba

zz
©a · F−T · ∇∇ψJ =

∫

Ba

ψDIV
(

J zz
©a · F−T

)

. (48)

The comparison between Eq. (46) and the last term of Eq.(48) gives

∫

Ba

ψ (DIV zz )
©a

J =

∫

Ba

ψ DIV
(

J zz
©a · F−T

)

.

The fact that this last equality is satisfied for any ψ with compact support included in Ba proves (44). It is
enough to apply (44) choosing for zz the identity tensor to get (45).

Note that the previous proposition can be applied to XX−1 so that, for any differentiable tensor field tt

(of order ≥ 1) defined on Ba one gets

DIV
(

J−1
tt · FT

)©b
=

(

J−1DIV tt
)©b

and DIV
(

J−1 FT
)©b

= 0. (49)

2The symbol ∂j indicates the partial derivative of a function with respect to the j-th component of its argument. Moreover
in order to lighten notations, we adopt the Einstein summation convention on repeated indices dropping the summation symbol.
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Corollary 1. Let U be a C1 vector field defined in Bb and let U©a be its corresponding vector field on Ba.
Let Na and Nb be the outward unit normal vectors to ∂Ba and ∂Bb respectively, then

∫

∂Bb

U · Nb =

∫

∂Ba

U©a ·
(

J F−T · Na

)

, (50)

Proof. Recalling Eq. (44), one gets
∫

∂Bb

U · Nb =

∫

Bb

DIV (U) =

∫

Ba

(DIV (U))©a J =

∫

Ba

DIV(J U©a · F−T ) =

∫

∂Ba

U©a ·
(

J F−T · Na

)

.

Note that the last corollary applied to XX−1 reads
∫

∂Ba

U©a · Na =

∫

∂Bb

U ·
(

(

J−1FT
)©b

· Nb

)

.

B. Proof of the Properties of the Gradients of Piecewise C
1 Vector Fields

We now precisely define piecewise differentiable vector fields and prove some properties which hold in
their singular points.

Let Sa be a smooth codimension-one hypersurface in Ba; this means that, at least locally, there exists a
parametric representation of Sa, i.e. an open subset Ω of Rn−1 and a smooth embedding ϕ ∈ C1 (Ω,Ba ⊂ Rn)
such that Sa := ϕ (Ω). By definition of an embedding, for any x = ϕ (s) ∈ Sa the vectors

Ti (x) := ∂iϕ|s=ϕ−1(x) , i = 1, 2, ..., n− 1

make a basis spanning the tangent space Tx (Sa) of Sa at x. The orthogonal space to Tx (Sa) is one-
dimensional: there exists a unique unit vector Na (x) in this space which completes {Ti (x)} in a direct basis
of Rn. This vector Na locally provides an orientation for Sa and we call it the normal to Sa.

Notation 2. Let tt be a tensor field defined on Ba (and consequently on Sa). We say that tt is differentiable
on Sa if tt ◦ ϕ ∈ C1 (Ω). The surface gradient ∇∇Satt (x) at point x is the linear operator which, to any

tangent vector T =
∑n−1

i=1 viTi, associates the derivative of tt in the direction T defined by

∇∇Satt (x) · T :=
n−1
∑

i=1

vi ∂i ( tt ◦ ϕ) .

Recall that, even if the basis Ti depends on the choice of the parametrization ϕ, the surface gradient
(regarded as a linear operator) does not.

Notation 3. We say that a tensor field tt defined on Ba is piecewise continuous (or briefly C0
pw) if there

exists a smooth codimension-one C1 hypersurface Sa in Ba (or a finite union of such hypersurfaces ) such
that tt belongs to C0 (Ba�Sa,R

p) and admits continuous traces tt
+ and tt

− on both sides of Sa. The quantity

[|tt (x)|] := tt
+ (x) − tt

− (x)

is called jump of tt through the surface Sa at point x. Moreover, the surface Sa is said to be the singularity
surface of the field tt. When tt has vanishing jump across the singularity surface, we simply indicate by tt the
common value tt

+ = tt
−.

Indeed, at least locally, the normal Na to Sa defines the “upper” part B+
a of Ba toward which the normal is

pointing and the “lower” part B−
a of Ba in the opposite direction. Then, for any x ∈ Sa

tt
+ (x) = lim

y → x
tt (y) , y ∈ B+

a ; tt
− (x) = lim

y → x
tt (y) , y ∈ B−

a .
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Notation 4. We say that a tensor field tt defined on Ba is piecewise differentiable (or briefly C1
pw) if it is

continuous and if its gradient ∇∇tt is C0
pw.

Property 1. The well-known Hadamard property (see e.g. Kosiński (1986)) states that the jump of the
gradient of a C1

pw tensor field tt is a rank-one matrix field in the form

[|∇∇tt |] = [|∇∇tt |] · Na ⊗ Na =
(

(∇tt)+ · Na − (∇tt)− · Na

)

⊗ Na =

[∣

∣

∣

∣

∂tt

∂Na

∣

∣

∣

∣

]

⊗ Na (51)

In other words, for any T ∈ Tx (Sa)
[|∇∇tt (x) · T |] = 0. (52)

This property simply reflects the fact that tt, when restricted to Sa, reduces to a differentiable field and

∇∇Sa tt · T = (∇∇tt )
+
· T = (∇∇tt )

−
· T (53)

The following proposition states some important consequences of Property 1.

Proposition 2. Let Ba,Bb be two regular open subsets of Rn respectively, and let XX ∈ C1
pw (Ba,Bb) with

singularity surface Sa ⊂ Ba. Assume that J 6= 0 everywhere on Sa, then

(i) For any T tangent to Sa, [|F · T|] = 0 on Sa.

(ii) The surface Sb := XX (Sa) is a smooth codimension-one C1 surface in Bb with tangent vectors (F · Ti)
©b
, i ∈

{1, 2, ..., n− 1}.

(iii) For any normal vector field Mb to Sb, the following jump condition holds on Sa

[∣

∣J−1FT
∣

∣

]

· M
©a
b = 0, (54)

(iv) Moreover, the quantity J−1FT · M©a
b which is continuous through the surface is orthogonal to Sa.

Proof. Point (i) is an immediate consequence of (52) if we recall that F denotes ∇∇XX . To prove point
(ii) we note that, as XX is C1

pw, its restriction to Sa is differentiable and so is ξ := XX ◦ ϕ which makes a
parametrization for Sb := XX (Sa). Moreover, for any y = ξ (s) ∈ Sb and for any i = 1, 2, ..., n− 1, the vectors

∂iξ|s=ξ−1(y) = F±
∣

∣

XX−1(y)
· ∂iϕ|ϕ−1(XX−1(y)) =

(

F± · Ti

)©b
= (F · Ti)

©b

make a basis spanning the tangent space Ty (Sb) of Sb at y.
To prove points (iii) and (iv) we consider, at any point x of Sa, the three linear applications La and L±

b

respectively defined on Rn by

La (U) := det (T1,T2, ...,Tn−1,U) , (55)

L±
b (V) := det

(

(

F± · T1

)©b
,
(

F± · T2

)©b
, ...,

(

F± · Tn−1

)©b
,V

)

, (56)

Owing to point (i) one easily gets L+
b (V) = L−

b (V). In virtue of the Rietz theorem there exist unique vectors

M̃a and M̃b such that

La (U) = M̃a · U, ∀U ∈ Rn, Lb (V) = M̃b · V ∀V ∈ Rn. (57)

Hence
M̃a · U = det (T1,T2, ...,Tn−1,U) , (58)

and

M̃b ·
(

F± · U
)©b

= det
(

(

F± · T1

)©b
,
(

F± · T2

)©b
, ...,

(

F± · Tn−1

)©b
,
(

F± · U
)©b

)

=
(

J±
)©b

det
(

(T1)
©b
, (T2)

©b
, ..., (Tn−1)

©b
,U©b

)

. (59)
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From (58) and (59) we get

M̃
©a
b ·

(

F± · U
)

= J± det (T1,T2, ...,Tn−1,U)

and so
M̃

©a
b ·

(

F± · U
)

= J± M̃a · U

Since this last identity is satisfied for any U ∈ Rn then

M̃a =
(

J+
)−1 (

F+
)T

· M̃©a
b =

(

J−
)−1 (

F−
)T

· M̃
©a
b , (60)

thus
[
∣

∣J−1FT
∣

∣

]

· M̃
©a
b = 0. (61)

From (58), (59) we also get that for any i ∈ {1, 2, ..., n− 1},

M̃a · Ti = 0, and M̃b ·
(

F± · Ti

)©b
= 0.

It follows that M̃a and M̃b belong to the one dimensional orthogonal spaces to Sa and Sb respectively. As
they clearly are non vanishing, Eq. (7) remains valid for any Mb normal to Sb.

Definition 1. We call piecewise diffeomorphism a C1
pw homeomorphism XX from Ba onto Bb such that XX−1

∈ C1
pw (Bb,Ba).

Note that if XX is a piecewise diffeomorphism with singularity surface Sa then the previous proposition
can be applied to both XX and XX−1. Thus we also have, for any Ma ⊥ Sa the following jump condition
on Sb = XX (Sa)

[∣

∣

∣

∣

(

JF−T
)©b

∣

∣

∣

∣

]

· M©b
a = 0, (62)

and the quantity
(

JF−T · Ma

)©b

is orthogonal to Sb . If tt is a differentiable tensor field defined on Ba then

its corresponding tensor field tt
©b on Bb may be not differentiable on Sb. However, tt

©b is C1
pw and on Sb we

have
(

∇∇tt
©b

)+
=

(

∇∇tt ·
(

F+
)−1

)©b

;
(

∇∇tt
©b

)−
=

(

∇∇tt ·
(

F−
)−1

)©b

. (63)

C. Variation of the Action and Rayleigh Functionals

We focus on the singularity Ss which we assumed to be fixed in Bs. We assume that all the physical
fields introduced in our model are smooth out of this singularity. As for the test fields, δφs = Γξ they
may be singular on a surface S∗

f fixed in Bf . Indeed, recall that Γ = ∇F where F is a time-independent

C1
pw diffeomorphism on Bf . Hence, S∗ := φ−1

s (S∗
f ) is a moving singularity surface in Bs; we denote S∗ :=

∪t∈(0,T )S
∗(t) × {t}. Out of the singularity surfaces we have

δε =
1

2
δ

(

FT
s ·Fs − I

)

=
1

2

(

δFT
s ·Fs + FT

s · δFs

)

=
(

FT
s · ∇ (δχs)

)sym
,

δηs = 0, δvs = δχ̇s (64)

δIs = δ (det (∇φs)) = IsG
−T
s | ∇ (δφs) ; (65)

δη©sf = δ (ηf ◦ φs) = (∇ηf )
©s
· δφs = ∇η©sf · G−1

s · δφs, (66)

δmf = δ
(

Isη
©s
f

)

= η©sf δIs + Is δη
©s
f = div

(

η©sf Is G−1
s · δφs

)

= div
(

mfG
−1
s · δφs

)

.

Recalling Eq. (18), the variation of the solid Lagrangian fluid velocity v
©s
f is now computed

δv©s
f = δvs − δFs ·G

−1
s · us + Fs · G

−1
s · δGs ·G

−1
s · us − Fs ·G

−1
s · δus,

δv©s
f = δχ̇s −∇ (δχs) ·G

−1
s · us + Fs · G

−1
s .∇ (δφs) · G

−1
s · us − Fs ·G

−1
s · δφ̇s.
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Let us now perform the solid-Lagrangian variation δA of the action functional. We have

δΨ =
∂Ψ

∂ε
| δε+

∂Ψ

∂χs

δχs +
∂Ψ

∂mf

δmf =
∂Ψ

∂ε
|
(

FT
s · ∇ (δχs)

)

+
∂Ψ

∂χs

· δχs +
∂Ψ

∂mf

div
(

mfG
−1
s · δφs

)

(67)

and

δΛ = ηsvs · δvs +mfv
©s
f · δv©s

f +
1

2
v2

s δηs +
1

2

(

v
©s
f

)2

δmf ,

which can be written δΛ = δΛs + δΛf with

δΛs :=
(

ηsvs +mfv
©s
f

)

· δχ̇s −mfv
©s
f · ∇ (δχs) · G

−1
s · us,

δΛf :=
1

2

(

v
©s
f

)2

div
(

mfG
−1
s · δφs

)

+mfv
©s
f · Fs ·G

−1
s · ∇ (δφs) · G

−1
s · us −mfv

©s
f ·Fs · G

−1
s · δφ̇s.

We first compute the variation of the potential energy by integrating Eq. (67). Integrating by parts in
space we get

∫

Bs

δΨ =

∫

Bs\Ss

[

∂Ψ

∂χs

− div

(

Fs ·
∂Ψ

∂ε

)]

· δχs −

∫

Bs\(Ss∪S∗)

[

mfG
−T
s · ∇

(

∂Ψ

∂mf

)]

· δφs+

∫

Ss

[
∣

∣

∣

∣

Fs ·
∂Ψ

∂ε
Ns

∣

∣

∣

∣

]

· δχs +

∫

Ss∪S∗

[
∣

∣

∣

∣

mfG
−T
s ·

∂Ψ

∂mf

Ns · δφs

∣

∣

∣

∣

]

.

We integrate separately the two parts of the variation of the kinetic energy. Integrating by parts in space
and time the first term, recalling that ηs is constant in space and time, that D = −mfG

−1
s · us and using

expressions (18)-(19) for v
©s
f and v̇

©s
f , the balance of mass (21) for ṁf , we have

∫

Bs

δΛs = −

∫

Bs\Ss

[

ηsγs +mf v̇
©s
f + ṁfv

©s
f + div

(

v
©s
f ⊗ D

)]

· δχs +

∫

Ss

([∣

∣

∣
v
©s
f ⊗ D

∣

∣

∣

]

· Ns

)

· δχs,

= −

∫

Bs\Ss

(

ηsγs +mfγ
©s
f

)

· δχs +

∫

Ss

([
∣

∣

∣
v
©s
f ⊗ D

∣

∣

∣

]

·Ns

)

· δχs,

∫

Bs

δΛf =

∫

Bs\(Ss∪S∗)

[

−
1

2
mf∇

(

(

v
©s
f

)2
)

·G−1
s + div

(

v
©s
f ·Fs · G

−1
s ⊗ D

)

+
∂

∂t

(

mfv
©s
f · Fs ·G

−1
s

)

]

· δφs

+

∫

Ss∪S∗

[∣

∣

∣

∣

(

1

2
mf

(

v
©s
f

)2

G−T
s ·Ns − v

©s
f · Fs ·G

−1
s ⊗ D ·Ns

)

· δφs

∣

∣

∣

∣

]

=

∫

Bs\(Ss∪S∗)

(

mfγ
©s
f ·Fs · G

−1
s

)

· δφs +

∫

Ss∪S∗

[
∣

∣

∣

∣

(

1

2
mfG

−T
s

(

v
©s
f

)2

·Ns − G−T
s ·FT

s · v©s
f ⊗ D ·Ns

)

· δφs

∣

∣

∣

∣

]

.

where in the last equality we also used expression (20) for ∂
(

Fs · G
−1
s

)

/∂t.
We now compute the Rayleigh dissipation term. We start by recalling that, owing to (24), (25) and (2),

(18), the pull back of the dissipation densities reads

D©s = (Fs ·G
−1
s · us) ·K

©s · (Fs ·G
−1
s · us) +

(

∇v
©s
f · F−1

s

)

: M©s :
(

∇v
©s
f · F−1

s

)

+
(

∇
(

Fs ·G
−1
s · us

)

· F−1
s

)

: B©s :
(

∇
(

Fs · G
−1
s · us

)

·F−1
s

)

,

D©s
S =

[∣

∣

∣
v
©s
f

∣

∣

∣

]

· S©s ·
[∣

∣

∣
v
©s
f

∣

∣

∣

]

.

Using these expressions and then integrating by parts in space we get
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∫ T

0

(

∂R

∂q̇t

| δqt

)

dt =

∫

Bs\(Ss∪S∗)

Js(Fs · G
−1
s · δφs) · κ

©s) +

∫

Bs\(Ss∪S∗)

Js

(

∇(δχs − Fs · G
−1
s · δφs) ·F

−1
s

)

: Π©s
f

+

∫

Bs\ (Ss∪S∗)

Js

(

∇
(

Fs ·G
−1
s · δφs

)

· F−1
s

)

: Π©s +

∫

(Ss∪S∗)

∥

∥JsF
−T
s ·Ns

∥

∥

[
∣

∣δχs − Fs · G
−1
s · δφs

∣

∣

]

· σ©s

=

∫

Bs\Ss

− div
(

Js(Π
©s
f )T ·F−T

s

)

· δχs + G−T
s ·FT

s ·
(

Jsκ
©s − div

(

Js(Π
©s − Π©s

f )T ·F−T
s

))

· δφs

+

∫

Ss

[∣

∣

∣
Js(Π

©s
f )T ·F−T

s · Ns

∣

∣

∣

]

· δχs +
[∣

∣

∣
G−T

s ·FT
s ·

(

Js

(

(Π©s − Π©s
f )T

)

·F−T
s · Ns −

∥

∥JsF
−T
s ·Ns

∥

∥σ©s
)

· δφs

∣

∣

∣

]

.

(68)
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