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ADJUSTMENT COEFFICIENT FOR RISK PROCESSES IN

SOME DEPENDENT CONTEXTS

H. COSSETTE, E. MARCEAU, AND V. MAUME-DESCHAMPS

Abstract. Following Müller and Pflug [18] and Nyrhinen [19, 20], we
study the adjustment coefficient of ruin theory in a context of temporal
dependency. We provide a consistent estimator for this coefficient, and
perform some simulations.

1. Introduction

We consider (Yn)n∈N a sequence of random variables and Ru the event
{Yn > u for some n ≥ 1}. Yn is interpreted as the value of the claim surplus
process of a company at the end of year n. Ru is understood as the ruin
event for an initial reserve u > 0. We write

Yn :=
n∑

i=0

Xi,

where Xi is the loss/gain of the company during year i, such that E(Xi) < 0
to satisfy the solvency condition. If Un denotes the total reserve of the com-
pany at the end of year n, then Un = u−Yn, and the ruin event corresponds
to the event that for some n the reserve Un is negative.
In the classical risk model, the random variables (r.v.’s) Xi (i = 1, . . . , n)
are assumed independent and identically distributed (i.i.d.). The adjust-
ment coefficient w > 0 is defined as the unique positive solution to λ(w) = 0
with

λ(t) := logE [exp(tX1)]

assumed to be well defined. Mammitzsch ([15]) gave a necessary and suffi-
cient existence condition for w. The importance of the adjustment coefficient
is revealed by the exact formula due to Gerber ([11]). Let Tu be the ruin
time for an initial reserve u > 0, Tu = inf{k ∈ N / Yk > u} and Tu = ∞ if
ruin does not occur. Then, the expression for the ruin probability is given
by

P(Ru) = P(Tu < ∞) =
e−wu

E[e−wUTu |Tu < ∞]
,
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with UTu = u− YTu , and the famous de Finetti bound follows :

P(Ru) ≤ e−wu.

We shall focus on the following asymptotic result also due to Lundberg :

lim
u→∞

logP(Ru)

u
= −w.

Based on a general dependent setting considered by Nyrhinen [19] and Müller
and Pflug [18] in which such an asymptotic result holds, we provide a consis-
tent estimator for the adjustment coefficient. Our approach does not require
a precise knowledge of the dependence structure, nor of the law of (Xi)i∈N
but only an information on the speed of mixing (given by Equation (2.1)).
When it is defined, we consider

(1.1) cn(t) :=
logE [exp(tYn)]

n
.

Following Nyrhinen [19] and Müller and Pflug [18], we assume that there
exists a t0 > 0 such that for all 0 < t < t0,

(1.2) c(t) := lim
n→∞

cn(t) exists.

Also, there exists a t (0 < t < t0) such that c(t) = 0.

We shall provide a sufficient condition that implies the existence and unique-
ness of a positive solution to c(t) = 0, provided that (1.2) is satisfied. We
shall denote by wd this unique solution. We shall also denote by wi the
unique positive solution to λ(t) = 0 with

λ(t) := logE [exp(tX1)] .

Of course, if the sequence (Xi)i∈N is i.i.d., then wi = wd.

Several results for sums of i.i.d. claims exist: Gerber [11] gave an exact
formula for finite time ruin probabilities involving the adjustment coeffi-
cient w, Pitts et al. [21] provide a consistent and asymptotically normal
estimator of w, V. Mammitzsch [15] gave a necessary and sufficient condi-
tion for the existence of w. In dependent contexts, let us cite Gerber [12]
for auto-regressive processes, Christ and Steinebach [3] for an extension to
ARMA processes and Cossette et al. [4] for the study of the adjustment
coefficient in Markovian environments. The main objective of the present
paper is to provide a non parametric estimation of the adjustment coeffi-
cient introduced in Nyrhinen [19, 20] and Müller and Pflug [18] in dependent
contexts. We give a general dependent context (weak temporal dependency
in the sense of Dedecker et al. [7]) for which our estimator is consistent.
The paper is organized as follows :

• Section 2 contains the definitions and elementary properties of weak
dependent processes as well as for the adjustment coefficient. To
make short, wi will be the adjustment coefficient if the process is
i.i.d. while wd will be the adjustment coefficient of a dependent
sequence.
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• In Section 3, we prove that wd may be seen as a limit (for r → ∞) of
independent coefficients wi

r. We also provide some general examples
for which the adjustment coefficient wd may be defined.

• Section 4 is devoted to the estimation of coefficients wi and wd and
contains the main results (see Theorems 4.3, 4.5 and 4.10). Note
that in Christ and Steinebach [3], an estimation of wd is given for
ARMA processes which is based on the estimation of the ARMA
parameters. Our procedure is completely non parametric.

• In Section 5 we provide some simulations.

2. Weak dependence and adjustment coefficient

2.1. Weak dependent processes. This last decade, Dedecker et al. ([7, 6,
9, 8]) have developed new dependence definitions that both extend classical
probabilistic definitions (as α or Φ-mixing) and are satisfied for several useful
models that are neither α nor Φ-mixing (for example ARMA processes with
discrete innovation) in the standard way. Roughly speaking, in the classical
probabilistic definitions of mixing, the functions f and g in the definition
below (2.1) belong to the whole class of square integrable functions.
Given a non negative functional c(f, g), we define, for a real valued or vector
valued process (Xt)t∈N, the auto-correlation function as

(2.1) ε(k) := sup
|Cov(f(Xi1 , . . . , Xiℓ), g(Xj1 , . . . , Xjm))|

c(f, g)

(see Dedecker et al. [7]). In this definition, the supremum is taken over
multi-indices i = (i1, . . . , iℓ), j = (j1, . . . , jm) such that

i1 < · · · < iℓ ≤ iℓ + k ≤ j1 < · · · < jm

and that all functions f : R
ℓ −→ R, g : R

m −→ R are bounded
and Lipschitz functions, with respect to the distance on R

p (with p = ℓ or
p = m):

d(x, y) :=

p∑

i=1

|xi − yi|, x = (x1, . . . , xp), y = (y1, . . . , yp).

Remark. We could replace the space of Lipschitz functions by other spaces
of regular functions (differentiable functions, functions of bounded varia-
tion ...), see Maume-Deschamps [17] for a general condition of convenient
functional spaces.

We define a notion of weak dependence according to the functional c(f, g).

Definition 1. Consider the following functions c(f, g), defined for
f : R

ℓ −→ R and g : R
m −→ R bounded and Lipschitz functions,

lip(f) is the Lipschitz coefficient of the function f .

(1) c(f, g) = m‖f‖∞lip(g), we say that the sequence (Xi)i∈N is θ-weakly
dependent if the corresponding mixing coefficients sequence (ε(k))k∈N
is summable.

(2) c(f, g) = ℓlip(f)‖g‖∞ + m‖f‖∞lip(g), we say that the sequence
(Xi)i∈N is η-weakly dependent if the corresponding mixing coeffi-
cients sequence (ε(k))k∈N is summable.
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Remark. It follows from the definitions above that θ-weakly dependent pro-
cesses are η-weakly dependent processes as well.

This class of dependent processes is very rich and enjoys lots of nice
probabilistic properties. Let us remark that weak dependent processes need
not be stationary.
For completeness, we recall the definitions of α, Φ and Ψ-mixing coefficients
(see Bradley [1] for a review on these strong mixing coefficients). Ψ-mixing
coefficient may be defined in a formalism close to that of Definition 1 while
for α and Φ-mixing, it is not clear that the same formalism is meaningful.

Definition 2. Consider mixing coefficients ε(k) defined by Equation (2.1)
where the supremum is taken over functions

f : R
u −→ R and g : R

v −→ R

in L2 and c(f, g) = ‖f‖1‖g‖1. We say that the sequence (Xi)i∈N is Ψ-mixing
if the corresponding Ψ-mixing coefficients ε(k) go to zero, taking f and g
indicator functions lead to Bradley’s ([1]) definition of Ψ-mixing.
We define α and Φ-mixing coefficients by:

α(U ,V) = sup
U∈U , V ∈V

|P(U ∩ V )− P(U)P(V )|,

Φ(U ,V) = sup
U∈U , V ∈V

∣∣∣∣
P(U ∩ V )

P(U)
− P(V )

∣∣∣∣ .

A process (Xt)∈Z is α (resp. Φ)-mixing if the coefficients

αX(r) = sup
i∈Z

α(σ(Xt, t ≤ i), σ(Xt, t ≥ i+ r)),

resp. ΦX(r) = sup
i∈Z

Φ(σ(Xt, t ≤ i), σ(Xt, t ≥ i+ r))

go to 0.

Let us note that the above definition of Ψ-mixing is equivalent to the clas-
sical one. This follows from the fact that the bounded measurable functions
are limits of simple functions.

2.2. Adjustment coefficient: existence condition. In Mammitzsch ([15])
it is proven that wi exists (and is unique as a positive solution to λ(t) = 0)
if and only if the following three conditions are satisfied. We shall denote
by (E) these three conditions.

(E1) E(X1) < 0,
(E2) P(X1 > 0) > 0, and
(E3) either a < ∞ and E(eaX1) ≥ 1 or a = ∞ where

(2.2) a := sup{t ≥ 0, E(etX1) < ∞}.
This condition, together with the weak dependence assumption is suffi-

cient to get consistency and asymptotic normality of the estimator of wi. In
order to get existence and uniqueness (as a positive solution to c(t) = 0) of
wd, we shall need some additional conditions.

Property 2.1. Assume that the limit c(t) is well defined on [0, t0[, in par-
ticular, for all t < t0, for n large enough, E(etYn) < ∞. Assume that (E) is
satisfied for 0 < a ≤ t0, and



ADJUSTMENT COEFFICIENT IN SOME DEPENDENT CONTEXTS 5

(1) cn(t) exists for all n and 0 ≤ t < a,
(2) for large enough n, P(Yn > 0) > 0,

(3) if a < ∞ then for n large enough, lim
t→a−

E(etYn) ≥ 1, and

(4) c′(0+) < 0,

then there exists a unique positive solution to c(t) = 0. This solution is
denoted by wd.

Proof. We adapt Mammitzsch’s arguments. Recall that any convex function
is continuous and admits left and right derivatives on all points where it
is defined. Moreover, if fn is a sequence of convex functions defined on
[0, t0[ and converging to f on [0, t0[, then f is a convex function and the
convergence is uniform on any compact subset of [0, t0[.
The function c is the limit in [0, t0[ of convex functions cn defined by (1.1).
Thus c is a convex function with c(0) = 0 and we assume that c′(0+) < 0.
This last condition is equivalent to ∃ t > 0 such that c(t) < 0 by convexity.
We consider two cases: a < ∞ and a = ∞.
If a < ∞ then, we assume that for large enough n, ∞ ≥ E(eaYn) ≥ 1 thus
∞ ≥ c(a) ≥ 0 . Since c is continuous (because it is convex), we deduce that
there exists a w > 0 such that c(w) = 0. This solution is unique because of
the convexity of c.
If a = +∞, then c(t) is well defined for any t ∈ R

+. Because P(Yn > 0) > 0

for n large enough, we have that for large enough n, lim
t→∞

E(etYn) = +∞. As

a consequence, we have that lim
t→∞

c(t) ≥ 0. Since we assume that c(t) < 0

for some t, the convexity of c then implies that there exists a t0 such that
c′(t±) > 0 for any t > t0. We deduce that c(t) > 0 for t large enough.
Since c is continuous (because it is convex), we deduce that there exists a
w > 0 such that c(w) = 0. This solution is unique because of the convexity
of c. �

Remark. The condition P(Yn > 0) > 0 is necessary because if a w > 0 exists
such that c(w) = 0, then by convexity, either there exists a t > 0 such that
c(t) > 0 or c(t) = +∞ for all t ≥ w. This implies that E(etYn) > 1 for large
enough n which implies P(Yn > 0) > 0 for large enough n.

3. Limit result and examples

3.1. Asymptotic behavior for ruin probability. In Müller and Pflug
[18], it is proven that if the adjustment coefficient wd exists then it describes
the asymptotic behavior of the ruin probability in the following sense:

(3.1) lim
u→∞

logP(Ru)

u
= −wd.

As a consequence to (3.1), we obtain that if it exists, wd is the limit of the
adjustment coefficient of the sequence (Yn)n∈N.

Corollary 3.1. Assume that the hypotheses of Property 2.1 are satisfied.
For large enough n, there exists a unique wn > 0 such that

E(ewnYn) = 1

and wd = lim
n→∞

wn.
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Proof. The existence of wn follows from Mammitzsch [15]: Yn satisfies the
existence hypotheses of Mammitzsch for n large enough. Applying Markov’s
inequality, we get for all n > 0,

wn ≤ − logP(Yn > u)

u
.

Then, (3.1) implies that any limit point w of the sequence wn verifies :
w ≤ wd. The convergence of functions cn to c is uniform on [0, wd], thus
we have that c(w) = 0, so that either w = 0 or w = wd. Now, 0 cannot be
a limit point of the sequence wn, otherwise we would have c(t) ≥ 0 for all
t ≥ 0 which contradicts the hypotheses of Property 2.1. We conclude that

wn
n→∞−→ wd. �

Let us give some examples for which the function c(t) is well defined.
We recall the following result on approximate sub additive sequences due to
Hammersley [13].

Lemma 3.2. Assume h : N −→ R be such that for all n,m ≥ 1,

h(n+m) ≤ h(n) + h(m) + ∆(m+ n),

with ∆ a non decreasing sequence satisfying :

(3.2)
∞∑

r=1

∆(r)

r(r + 1)
< ∞.

Then, λ = lim
n→∞

h(n)

n
exists and is finite. Moreover, for all m ≥ 1,

λ ≤ h(m)

m
− ∆(m)

m
+ 4

∞∑

r=2m

∆(r)

r(r + 1)
.

Of course, for ∆(r) = O(1), then (3.2) is satisfied. Lemma 3.2 asserts
that ∆(r) may go to infinity but not too fast.

3.2. Bounded Ψ-mixing coefficients. According to Definition 2, we con-
sider the following classical Ψ-mixing coefficients :

(3.3) Ψ(k) := sup
|Cov(f(Xi1 , . . . , Xiℓ), g(Xj1 , . . . , Xjm))|

‖f‖1‖g‖1
,

where the supremum is taken over functions f, g ∈ L2 and over multi-indices
i = (i1, . . . , iℓ) and j = (j1, . . . , jm) with i1 < · · · < iℓ ≤ iℓ + k ≤ j1 < · · · <
jm.

Proposition 3.3. Let

Sn =

n∑

i=1

Xi.

Assume that for t ∈ [0, a[, for all n ∈ N, E(e2tSn) < ∞ and (Xn)n∈N a
stationary process with bounded Ψ-mixing coefficients, then

lim
n→∞

1

n
logE(etSn)

exists for any t ∈ [0, a[.
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Proof. Using (3.3), we have :

∣∣E(etSn+m)− E(etSn)E(etSm)
∣∣ ≤ Ψ(1)E(etSn)E(etSm).

We conclude the proof by using Lemma 3.2. �

Examples of Ψ-mixing processes are finite state Markov chains of any
order but also Variable Length Markov Chains (VLMC) on a finite state
(see Lemma 3.1 in [10]).
Even if Ψ (Φ, α)-mixing processes are often used in probability theory, lots
of useful processes (like ARMA processes with discrete innovations) are not
Ψ (Φ, α)-mixing. In the following two subsections, we provide a class of
η mixing processes for which the function c(t) is well defined provided the
mixing is sufficiently fast and the variables Xi are almost surely bounded.
This condition is close to the one used in [2] by Bric and Dembo for one
other class of mixing processes (namely α-mixing processes). Then we prove
that if the sequence has some structure (here, the sequence is a Bernoulli
shift) then the condition on the speed of mixing may be weakened. We refer
to Dedecker et al. [7] for other examples of θ and η-weakly mixing processes
(including ARMA and ARCH processes).

3.3. Super mixing processes. We prove that if the process (Xi)i∈N is η-
weakly dependent (recall Definition 1) with dependence coefficient ε(n) =

O
(
θn(lnn)β

)
with 0 < θ < 1 and β > 1, then the function c(t) is well defined

provided |Xi| ≤ Ma.e. A η-weakly dependent process with dependence

coefficient ε(n) = O
(
θn(lnn)β

)
will be called a super mixing process.

Proposition 3.4. Assume (Xn)n∈N is a η-weakly dependent process with

mixing coefficients ε(n) = O(e−cn(lnn)β ) with c > 0, β > 1. Moreover,
assume that there exists an M > 0 such that |Xi| ≤ M a.e. Then the
sequence c(t) is well defined on R.

Proof. For any 0 < j < k, let Sk
j =

k∑

ℓ=j

Xℓ and, because |Xi| ≤ M a.e.,

e−t(k−j)M ≤ E(etS
k
j ) ≤ et(k−j)M .

Also, for any j ≤ ℓ ≤ k,

e−t(ℓ−j)M
E(etS

k
ℓ ) ≤ E(etS

k
j ) ≤ et(ℓ−j)M

E(etS
k
ℓ ).

Remark that for t ≥ 0, the function : x 7→ etx is bounded above by etM and
has Lipschitz constant tetM for x ∈ [−M,M ].
Fix an integer 0 < r < max(n,m). Firstly, assume that n ≤ m and, using
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the definition of η-weak dependence, we get:

E(etSn+m) = E(etS
n
1 etS

n+m
n+1 )

= E

(
etS

n
1 × etS

n+m
n+r+1 × etS

n+r
n+1

)

≤ etrM
(
E(etS

n
1 )× E(etS

n+m
n+r+1) + ε(r)(n+m)tetnMet(m−r)M

)

≤ e2trME(etSn)E(etSm) + (n+m)ε(r)te2t(n+m)M
E(etSn)E(etSm)

≤ E(etSn)E(etSm)(e2trM + (n+m)ε(r)te2t(n+m)M ).

We conclude the proof by choosing r = O( n+m
ln(n+m)κ ), 1 < κ < β and applying

Lemma 3.2 with a function:

∆(r) = O

(
r

(ln r)κ

)
.

If n > m, the proof is similar but uses the decomposition :
Sn+m = Sm

1 + Sm+r
m+1 + Sn+m

m+r+1. �

3.4. Bernoulli shifts. Causal Bernoulli shifts are processes defined as:

Xn = H(ξn−j , j ∈ N)

withH a measurable function and (ξn)n∈Z an i.i.d. process. We shall assume
the following regularity condition on H : define the continuity coefficients

dn = ‖ sup
u=(u0,u−1,...)

|H(ξn−i, i ∈ N)−H(ξn, . . . , ξ1, u0, u−1, . . .)|‖∞

and assume that the sequence dn is summable. By adapting the arguments
of Dedecker et al. [7] we may prove that such a process is θ-dependent with
mixing coefficient θ(n) = dn.

Proposition 3.5. Assume that (Xn)n∈N is a Bernoulli shift satisfying the
summability condition for the continuity coefficients (dn)n∈N. Then, the
sequence lnE(etSn) satisfies the hypothesis of Lemma 3.2 and thus c(t) is
well defined.

Proof. We fix a sequence of real numbers u = (u0, u−1, . . .) and we write

Sℓ
i =

ℓ∑

j=i

Xj

=
ℓ∑

j=i

H(ξj , . . . , ξi, . . .)

=
ℓ∑

j=i

H(ξj , . . . , ξi, u0, u−1, . . .)

︸ ︷︷ ︸
:=Uℓ

i

+

ℓ∑

j=i

H(ξj , . . . , ξi, . . .)−H(ξj , . . . , ξi, u0, u−1, . . .)

︸ ︷︷ ︸
:=dℓi(u,ξ)

.(3.4)
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Using the stationarity of (ξn)n∈N, we have that

dℓi ≤
ℓ∑

j=i

dj−i =
ℓ−i∑

j=0

dj .

Now, Un
1 and Um

n+1 are independent random variables and thus,

E(etSn+m) ≤ et(
∑n

i=1 di+
∑m

i=1 di)E(etU
n
1 )E(etU

n+m
n+1 ).

Applying once more (3.4), we get:

E(etSn+m) ≤ exp


4t

max(n,m)∑

i=1

di


E(etSn)E(etSm).

If we denote D :=
∑

j∈N

dj , we get

E(etSn+m) ≤ e4tDE(etSn)E(etSm)

and we conclude by applying Lemma 3.2. �

Remark. In the above proposition, we could replace the hypotheses of summa-
bility of the sequence (dj)j∈N by the summability of

∆(r)

r(r + 1)
with ∆(r) :=

r∑

j=0

dj .

Lemma 3.2 would apply as well and the limit c(t) would be well defined.

In Dedecker et al. [7], it is mentioned that stationary ARMA processes are
examples of Bernoulli shifts. Non linear autoregressive processes may also be
examples of Bernoulli shifts. For example, ARMA processes with bounded
innovation satisfy our hypotheses. Note that bounded variables might be
meaningful for insurers in a “stop-loss” context where the insurer does not
cover the claims above a certain fixed amount, these large claims being
covered by a reinsurer. Propositions 3.4 and 3.5 give the existence of the
function c(t) under few structure hypotheses but are mainly applicable for
bounded variables. For processes more specifically defined, the existence of
c(t) may be obtained for unbounded variables. We cite below two examples.

3.5. Some Markov processes. Following Nyhrinen [19] and Iscoe et al.
[14] we recall that for (Xn, n = 0, 1, . . .) an irreductible, aperiodic Markov
chain on a general state space E with σ-field E and with the transition
probability function π(x,A), (x ∈ E,A ∈ E). The initial state of the chain
is assumed to be fixed. Let g : (E, E) → (R,B) be a measurable map
and ξn = g(Xn). Assume there exists a probability measure ν on (E, E),
constants 0 < a ≤ b < ∞ and an integer m0 such that for all x ∈ E and
A ∈ E ,

aν(A) ≤ πm0(x,A) ≤ bν(A).

Then the limit c(t) exists and is finite for t ∈ D(h) with

D(g) =



t ∈ R /

∫

E

etg(x)dν(x) < ∞



 .
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Nyhrinen [19] also presents a condition of existence of c(t) for partial sums
of moving averages. Indeed, its result can be extended to MA(∞) processes
as follows. Let (εn)n∈Z be i.i.d. random variables. Let (ai)i∈N be a sequence

of re-summable real numbers, that is :
∑

i∈N

|ai| < ∞ and
∑

j∈N

|bj | < ∞ where

bj =
∑

i≥j ai. Denote a =
∑

i∈N

ai, Xn =
∑

i∈N

aiεn−i, cε(t) = logE(etε1) and

Sn =
∑

i=1n

Xi. Then,

cn(t) =
1

n
log(E(etSn) =

1

n

[
n−1∑

k=0

cε

(
t
n−k−1∑

ℓ=0

aℓ

)]
+

1

n

∑

j≥1

cε


t

n+j−1∑

k=j

ak


 .

Because (ai)i∈N is re-summable,
(
cε

(
t
∑n+j−1

k=j ak

))
j≥1

is summable and

then cn(t) → cε(at).

4. Estimation

4.1. Definition of estimators. In this section, we assume that the se-
quence (Xi)i≥1 is stationary and that the hypotheses of Proposition 2.1 are
satisfied. For r ∈ N, the functions E(etX1) and E(etYr) may be estimated by
their empirical moment versions: for k ∈ N,

m̂k(t) :=
1

k

k∑

i=1

etXi ,

M̂ r
k (t) :=

1

k

k−1∑

i=0

etZ
r
i ,

where Zr
i :=

r∑

j=1

Xj+ir. Then we define ŵi as the positive solution to

log m̂k(t) = 0 and ŵr as the positive solution to 1
r log M̂

r
k (t) = 0. We

shall prove that ŵi is a consistent estimator of wi and that there exists an
r = r(k) such that ŵr = ŵd is a consistent estimator of wd. We shall also
prove that they satisfy a central limit theorem.
Before stating and proving our main results on the asymptotic properties
of the estimators ŵi and ŵr, we prove that ŵi exists almost surely (the
proof for ŵr will be done later because it requires some weak dependence
properties for (Zr

i )i∈N which is proven in Lemma 4.4).

Proposition 4.1. Assume that the sequence (Xi)i∈N is η or θ-weakly depen-
dent and satisfies (E). Then, ŵi exists eventually almost surely as k −→ ∞.

Proof. We begin by noting that the θ or η-weak dependence implies ergod-
icity, see for example Dedecker and Doukhan [6]. Following Section 2.2, we
have that ŵi exists and is unique if and only if,

(1) 1
k

∑k
i=1Xi < 0,

(2) {i = 1, . . . , k / Xi > 0} is not empty.
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Mammitzsch’s third condition is satisfied with a = ∞ because here, ex-
pectations are finite sums. The two above conditions are statisfied eventually
almost everywhere because of the ergodic theorem. �

4.2. Asymptotic properties of ŵi. Asymptotic properties of the estima-
tors ŵi and ŵr are done by using the same approach as the one used to
prove results on asymptotic properties of M -estimators in a parametric con-
text (see van der Vaart [22] section 5). It is known (see Dedecker et al.
[7], Douckhan and Louhichi [9]) that provided the sequence Cov(X0, Xi),
i ∈ N, is summable, the process (Xi)i∈N satisfies a central limit theorem
with asymptotic variance

Γ2 :=
∞∑

i=0

Cov(X0, Xi),

in other words

√
n

(
1

n

n−1∑

i=0

Xi − E(X0)

)
L−→ N (0,Γ2) as n → ∞.

We obtain a central limit theorem for m̂k(t) by proving that the sequence
(etXn)n∈N is also weakly dependent. Then we prove a central limit theorem
for the M -estimator ŵi.
Let us recall the following results from [7] (Theorem 7.1 and Section 7.5.4).

Theorem 4.2. Let (Zn)n∈N be an η-weakly dependent sequence with ε(n) =
O(n−2−κ) for κ > 0. Then,

Γ2 :=
∑

n≥0

Cov(Z0, Zn)

is well defined and

√
n

(
1

n

n−1∑

i=0

Zi − E(Z0)

)
L−→ N (0,Γ2) as n → ∞.

As a consequence, we get the following consistency result for ŵi as well as
asymptotic normality. In order to use Theorem 4.2, we first need to prove
that the sequence (etXn)n∈N is also η-weakly dependent with ε(n) decreasing
to zero sufficiently rapidly.

Theorem 4.3. Assume (Xn)n∈N is η-weakly dependent with ε(n) = O(θn),
0 < θ < 1. We have for any t ∈ [0, t0[ that

Γ2(t) :=
∑

n≥0

Cov(etX0 , etXn)

is well defined on [0, t0[ and
√
n
(
m̂n(t)− E(etX0)

) L−→ N (0,Γ2(t)) as n → ∞.

ŵi converges in probability to wi and
√
n
(
ŵi − wi

) L−→ N (0,Γ2
i ) as n → ∞,

with Γ2
i :=

Γ2(wi)

E(X1ew
iX1)2

.
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As already mentioned, we begin by proving that the sequence of random
variables (etXn)n∈N is η-weakly dependent.

Lemma 4.4. Assume (Xn)n∈N is η-weakly dependent with mixing coefficient
ε(r). Then, for any t ∈ [0, t0[, the sequence of random variables (etXn)n∈N is

η-weakly dependent with mixing coefficient εt(r) ≤ 2[t+ E(e(t+κ)X1)]ε(r)
κ

t+κ

with κ > 0 such that t+ κ ∈ [0, t0[.

Proof. We follow the proof of Proposition 2.1 in Dedecker et al. [7]. Let
f and g be two Lipschitz functions and for M > 0 fixed, x ∈ R, denote
x(M) = min(x,M). Assume (i, j) are multi-indices such that

i1 < · · · < iu ≤ iu + r ≤ j1 < · · · < jv,

and define:

F (Xi) = f(etXi1 , . . . , etXiu ) F (M)(Xi) = (e
tX

(M)
i1 , . . . , etX

(M)
iu ),

G(Xj) = g(etXj1 , . . . , etXjv ) G(M)(Xj) = (e
tX

(M)
j1 , . . . , etX

(M)
jv ).

Then, we have

|Cov(F (Xi), G(Xj))| ≤ 2‖f‖∞E(|G(Xj)−G(M)(Xj)|)
+2‖g‖∞E(|F (Xi)− F (M)(Xi)|)
+|Cov(F (M)(Xi), G

(M)(Xj))|.
Recall that E(esXi) < ∞ for any s ∈ [0, t0[ and let κ > 0 be such that

t+κ ∈ [0, t0[. Then E(|e(t+κ)Xi |) < ∞ and, using the Markov inequality, we
get

E

(
etXj − etX

(M)
j

)
≤ 2E

(
etXj1{Xj>M}

)

≤ 2e−κM
E

(
e(t+κ)Xj

)
.

This leads to:

E(|G(Xj)−G(M)(Xj)|) ≤ lip(g)
v∑

k=1

E(|etXjk − e
tX

(M)
jk |)

≤ 2vlip(g)e−κM
E(e(t+κ)X1).

Also, since (Xn)n∈N is η-weakly dependent,

|Cov(F (M)(Xi), G
(M)(Xj))| ≤ (ulip(f) ‖g‖∞ + vlip(g)‖f‖∞)tetMε(r).

Finally, we obtain for M ≥ 1

|Cov(F (Xi), G(Xj))| ≤ (ulip(f) ‖g‖∞ + vlip(g)‖f‖∞)

×(tetMε(r) + 2E(e(t+κ)X1)e−κM ).

To conclude, we choose M = − 1
t+κ ln(ε(r)). �

Proof of Theorem 4.3. Lemma 4.4 together with Theorem 4.2 imply that for
any t ∈ [0, t0[,

√
n
(
m̂n(t)− E(etX0)

) n→∞−→ N (0,Γ2(t))



ADJUSTMENT COEFFICIENT IN SOME DEPENDENT CONTEXTS 13

provided that the sequence εt(r) = ε(r)
κ

t+κ = O(r−2−α) for some α > 0.
Since we assume that ε(r) = O(θr), 0 < θ < 1, this condition is satisfied.
This convergence in law also leads to

m̂n(t)
n→∞−→ E(etX0) in probability.

Moreover we have that this convergence takes place almost everywhere be-
cause of the ergodic theorem.
Now, let us consider the estimator ŵi of wi. Following the proof of Lemma
5.10 in van der Vaart [22], we have that ŵi converges to wi in probability
(this uses the convergence in probability of m̂k(t), the continuity of the map
t 7→ m̂k(t) and the uniqueness of ŵi as a positive solution to m̂k(t) = 1).
The central limit theorem follows now from the ∆ method :

m̂k(ŵ
i)− m̂k(w

i) = (ŵi − wi)
∂m̂k(w

i)

∂t
+

1

2
(ŵi − wi)2

∂2m̂k(w̃)

∂t2
,

with w̃ ∈ [min(wi, ŵi),max(wi, ŵi)]. Thus, it follows that

√
k(ŵi − wi) =

√
k(m̂k(ŵ

i)− m̂k(w
i))

∂m̂k(w
i)

∂t
+

1

2
(ŵi − wi)

∂2m̂k(w̃)

∂t2

.

We have that
√
k(m̂k(ŵ

i)− m̂k(w
i)) =

√
k(1− m̂k(w

i))

=
√
k(E(ew

iX1)− m̂k(w
i))

and therefore it is asymptotically normal with mean zero and variance
Γ2(wi). Moreover,

∂m̂k(w
i)

∂t
=

1

k

k∑

j=1

Xje
wiXj .

This quantity converges in probability to E(X1e
wiX1) and we have that

(ŵi −wi)
∂2m̂k(w̃)

∂t2
goes to zero in probability. Finally, we have proven that

√
n(ŵi − wi)

L−→ N
(
0,

Γ2(wi)

E(X1ew
iX1)2

)
as k → ∞.

�

Remark. We could relax the hypothesis that ε(r) decreases to 0 exponen-

tially fast. It is sufficient to have ε(r)
κ

t+κ = O(r−2−α) for some α > 0.

For example, some intermediate speed of mixing like ε(r) = O
(
e−K(ln r)β

)
,

K > 0, β > 1 or ε(r) = O
(
θn

α)
, 0 < θ < 1, 0 < α < 1 is convenient.

4.3. Asymptotic properties of ŵd. Now, we are interested in the consis-
tency of ŵd.

Theorem 4.5. Under the assumptions of Theorem 4.3 there exists a se-

quence r = r(k)
k→∞−→ ∞ such that ŵd converges in probability to wd, as k

goes to infinity.
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Theorem 4.5 will be proven by rewriting 4.3 for ŵr instead of ŵi and then
by using Corollary 3.1. We only need to prove that the sequence (Zr

i )i∈N
satisfies some weak dependence property.

Lemma 4.6. Assume that (Xn)n∈N is η-weakly dependent with mixing coef-
ficient ε(k). Then, the sequence (Zr

i )i∈N is η-weakly dependent with mixing
coefficient εZ(k) = rε(r(k − 1)).

Proof. Let f and g be two Lipschitz functions. Assume (i, j) are multi-indices
such that

i1 < · · · < iu ≤ iu + k ≤ j1 < · · · < jv.

Then, we have

Cov(f(Zr
i1 , . . . , Z

r
iu), g(Z

r
j1 , . . . , Z

r
jv))

= Cov
(
f̃(Xi1r+1, . . . , Xi1(r+1), Xi2r+1, . . . , X(iu+1)r) ,

g̃(Xj1r+1, . . . , Xj1(r+1), Xj2r+1, . . . , X(jv+1)r)
)

≤ rε((k − 1)r) (ulipf‖g‖∞ + v‖f‖∞lipf) ,

where ϕ̃(x1, . . . , xr, . . . , xrk) = ϕ

(
r∑

i=1

xi, . . . ,
r∑

i=1

xr(k−1)+i

)
. �

As a corollary to Lemma 4.6, we deduce that for any r, ŵr exists eventually
almost surely.

Corollary 4.7. Assume that the hypotheses of Property 2.1 are satisfied
and that the sequence (Xi)i∈N is η-weakly dependent. Then, for any r, ŵr

exists eventually almost surely.

Proof. This is a direct consequence of Proposition 4.1 and Lemma 4.6. �

Proof of Theorem 4.5. From Lemma 4.6 and Theorem 4.3, we get

√
k
(
M̂ r

k (t)− E(etZ
r
1 )
)

L−→ N (0,Γ2
r(t)) as k → ∞

with

Γ2
r(t) :=

∑

n≥0

Cov(etZ
r
0 , etZ

r
n)

and if we denote by wr the independent adjustment coefficient of the se-

quence Zr
0 and ŵr the positive solution to M̂ r

k (t) = 1,

√
k(ŵr − wr)

L−→ N (0,Γ2
r) as k → ∞

with

Γ2
r :=

Γ2
r(wr)

E(Zr
1e

wrZr
1 )2

.

This implies that ŵr goes to wr in probability, as k goes to infinity. We
conclude the proof of Theorem 4.5 by using Corollary 3.1 : there exists a

sequence r(k)
k→∞−→ ∞ such that ŵr converges to wd in probability. �
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Theorem 4.5 is interesting from a theoretical point of view but it is not
so useful from a practical point of view. Indeed, it proves that ŵr converges
to wd for a sequence r = r(k) but we have no information on how to choose

r with respect to k. Moreover, provided that Γ2(wr)

E(Zr
1e

wrZ
r
1 )2

is converging, we

could obtain a central limit theorem for
√
k(ŵr − wd) with limit variance

Γ2
d := lim

r→∞

Γ2(wr)

E(Zr
1e

wrZr
1 )2

. This expression of the asymptotic variance in the

central limit theorem is not useful from a practical point of view. We might
nevertheless use moment and Bienaimé-Tchebitchev inequalities in order to
get a useful relationship between r and k.
The following lemma is required in the proof of Proposition 4.9.

Lemma 4.8. Let (Wi)i∈N be a sequence of centered random variables and

Cj,2 = sup
t1, t2

t2−t1=j

Cov(Wt1 ,Wt2).

E(S2
n) ≤ 2n

n−1∑

j=0

Cj,2,

where Sn =

n∑

i=1

Wi.

As a consequence, if Wi is η-dependent and stationary, with mixing coeffi-
cient ε(k) ≤ Cθk, we have that for any m > 2 such that Mm = E(|Wi|m) <
∞,

E(S2
n) ≤ 16nM

2
m
m C

m−2
m

1

1− θ
m−2
m

.

Proof. The first part of the proof of Lemma 4.8 may be found in Dedecker et
al. [7] (see Lemma 4.6 p.79). For the second part, we proceed as in the proof

of Lemma 4.4 : let W
(M)
t = max(min(Wt,M),−M), (so that W

(M)
t = Wt

provided that |Wt| ≤ M). Then,

Cov(Wt,Wt+j) ≤ Cov(W
(M)
t ,W

(M)
t+j ) + Cov(W

(M)
t , (Wt+j −W

(M)
t+j )) +

Cov(W
(M)
t+j ,Wj −W

(M)
j ) + Cov((Wt+j −W

(M)
t+j ),Wj −W

(M)
j )

≤ 2M2ε(j) + 2M‖Wt −W
(M)
t ‖1 + ‖(Wt −W

(M)
t )2‖1

≤ 2M2ε(j) + 6M2−mMm,

where the last line is obtained by noting that

‖Wt −W
(M)
t ‖1 =

∫
1|Wt|>M |Wt −W

(M)
t |dP

≤ 2

∫
1|Wt|>M |Wt|dP

≤ 2M1−mMm.

Similarly, we obtain

‖(Wt −W
(M)
t )2‖1 ≤ 4M2−mMm.
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We conclude by choosing M =

(
Mm

ε(j)

) 1
m

. �

Proposition 4.9. Assume that (Xi)i∈N is an η-weakly dependent process,
with mixing coefficient ε(k) ≤ Cθk, C > 0, 0 < θ < 1. Then, for any
t ∈ [0, t0[, such that 3t ≤ t0, for any v > 0, we have:

P

(
|M̂ r

k (t)− E(etYr)| > v
)
≤ 4(Cr + 3)E(e3tYr)2/3

v2k(1− θ
1
6 )

.

Proof. We apply the Bienaimé-Tchebitchev inequality and Lemma 4.8 with
m = 3. Let

Wℓ(t) = et
∑r

i=1 Xi+rℓ .

Following the lines of the proof of Lemma 4.8, we have that the covariance
coefficients associated to (Wℓ(t))ℓ∈N are:

C2,j ≤ M
2
m
m θ

j

2
m−2
m (2Cr + 6),

with Mm = E(etmYr). We have used the fact that

Cov(W
(M)
ℓ (t),W

(M)
ℓ+j (t)) ≤ 2M2

mrε(r(j − 1) + 1) ≤ 2M2
mrCθ

j

2 .

We choose m = 3 and apply Proposition 4.8, so that

E([kM̂ r
k (t)− kE(etYr)]2) ≤ 2k(2Cr + 6)[E(e3tYr)]

2
3

1

1− θ
1
6

.

We conclude by using the Bienaimé-Tchebitchev inequality. �

This proposition shows that in order to get the consistency for ŵr we
should choose r(k) = o(ln k).

Theorem 4.10. Assume that (Xi)i∈N is an η-weakly dependent process,
with mixing coefficient ε(k) = O(θk), 0 < θ < 1 and that 3wd < t0. Then,
for r = r(k) = o(ln k), ŵr goes to wd in probability.

Proof. We have that

E(ewrZr
1 )− M̂ r

k (wr) = M̂ r
k (ŵr)− M̂ r

k (wr)

= (ŵr − wr)
∂M̂ r

k (wr)

∂t
+

ŵr − wr

2

∫

Îr

∂2M̂ r
k (w)

∂t2
dw,

with Îr := [min(ŵr, wr),max(ŵr, wr)]. It follows that

|ŵr − wr| = |E(ewrZr
1 )− M̂ r

k (wr)|



∂M̂ r

k (wr)

∂t
+

1

2

∫

Îr

∂2M̂ r
k (w)

∂t2
dw




−1

≤ |E(ewrZr
1 )− M̂ r

k (wr)|
[
∂M̂ r

k (wr)

∂t

]−1

.
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Remark that
∂2M̂ r

k (w)

∂t2
> 0. For any L > 0, we have

P(|ŵr − wr| > u) = P

(
|E(ewrZr

1 )− M̂ r
k (wr)| > u

∂M̂ r
k (wr)

∂t

)

≤ P(|M̂ r
k (wr)− E(ewrZr

1 )| > uL) + P

(∣∣∣∣∣
∂M̂ r

k (wr)

∂t

∣∣∣∣∣ ≤ L

)
.

Denote αr(t) = E

(
∂M̂r

k
(t)

∂t

)
= E(Zr

1e
tZr

1 ) = ∂
∂tE(e

tYr) and take L = αr(wr)
2 .

Note that αr(wr) > 0 because of the convexity of E(etZ
r
1 ) and the fact that

wr is the unique positive solution to E(etZ
r
1 ) = 1. Hence, we obtain

P

(∣∣∣∣∣
∂M̂ r

k (wr)

∂t

∣∣∣∣∣ ≤ L

)
≤ P

(∣∣∣∣∣
∂M̂ r

k (wr)

∂t
− αr(wr)

∣∣∣∣∣ >
αr(wr)

2

)

≤ 16(Cr + 3)E(Y 3
r e

3wrYr)
2
3

kαr(wr)2(1− θ
1
6 )

(we proceed as in the proof of Proposition 4.9). Finally, we get

(4.1) P(|ŵr−wr| > v) ≤ 16(Cr + 3)

αr(wr)2k(1− θ
1
6 )
(E(e3wrYr)

2
3
1

v2
+E(Y 3

r e
3wrYr)

2
3 ).

Remark that αr(wr) = rE(ewrYr)c′r(wr). Consider an interval [t1, t2] ⊂ [0, t0[
such that wd ∈ [t1, t2], 3t2 < t0, c is non decreasing on [t1, t2], c(t1) < 0,
c(t2) > 0 (this exists because of the convexity of the function c). Since
cr converges uniformly to c and wr converges to wd, for r large enough,
wr ∈ [t1, t2], and

E(e3wrYr) ≤ er(ε+c(3t2)).

We also have that for r large enough, αr(wr) ≥ 1− er(c(t1)−ε)

t2 − t1
. By taking

r(k) = o(ln k), we have that ŵr goes to wd in probability. �

5. Simulations

We conclude by providing some simulation results. We present some
models for which the adjustment coefficient is computable - namely MA
and AR linear processes with an innovation following an exponential law.
We provide also a non linear example. We refer to Cossette et al. [5] for
non linear and computable examples. The examples of that later article are
also more realistic from an actuarial point of view.
We consider an auxiliary random variable ξi with exponential law. Recall
that if ξi follows an exponential law with parameter θ > 0 then for 0 ≤ t < θ,

E(etξi) =
θ

θ − t
.

Let εi = ξi − c, with cθ > 1. Then, the independent adjustment coefficient
wi associated to (εi)i∈N is the positive solution to :

e−tc θ

θ − t
= 1.
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We shall perform simulations using independent copies of εi as innovations
of auto regressive and moving average models.
The simulation results are summarized below. The simulations have been
done on a standard laptop running under Linux. The scripts have been
written in R. The computations may be done within reasonable time. Indeed,
in the case of the non linear AR(1) model (see section 5.1.4), in order to
simulate one sample of size 10000 and to perform the estimation of wd(r)
for r = 1, . . . , 15, it tooks 8s.

5.1. Large samples. For each model (independent, linearAR(1) andMA(1))
we produce large samples from which we compute the estimators ŵi and ŵd.
We provide 50 simulations of length 10000, we also consider the results for
several values of r (for r = 1 to r = 10). This study gives indications on
the most appropriate value for the parameter r in order to calculate the
estimator ŵd.

5.1.1. Independent case. We have simulated independent samples of εi =
ξi − c of length 10000 and θ = 1.2, c = 1. In that case, we know that
wi = wd = 0.37. The table below gives the mean of the estimated value
ŵd(r), the standard deviation and square root of the mean squared error
over the 50 samples, for r going from 1 to 15.

r 1 2 3 4 5 6 7 8 9
mean 0.363 0.367 0.366 0.367 0.367 0.371 0.374 0.378 0.38

deviation 0.036 0.029 0.036 0.04 0.036 0.039 0.043 0.043 0.04√
mse 0.037 0.031 0.038 0.042 0.037 0.04 0.043 0.043 0.039
r 10 11 12 13 14 15

mean 0.384 0.383 0.388 0.382 0.389 0.394
deviation 0.043 0.05 0.039 0.048 0.047 0.059√

mse 0.043 0.046 0.04 0.048 0.048 0.061

Theoretically, we should find values very close to 0.36 for all r (because of
independence). We remark that the result may be considered as correct for
r = 1 to r = 6. This is consistent with the theoretical condition that r has
to be o(lnn).

5.1.2. AR(1) model. We consider the followingAR(1) model: Xn = aXn−1+
εn. Following Gerber [12], we have that wd = (1 − a)w0, where w0 is the
(independent) adjustment coefficient of ε1. We have simulated 50 samples
of length 10000 for θ = 1.2, c = 1, a = 0.3. The theoretical value of the
(dependent) adjustment coefficient is wd = 0.263. The table below gives the
mean of the estimated value ŵd(r), the standard deviation and squared root
of the mean squared error over the 50 samples, for r going from 1 to 15.
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r 1 2 3 4 5 6 7 8 9
mean 0.45 0.36 0.32 0.31 0.29 0.27 0.28 0.28 0.28

deviation 0.046 0.036 0.029 0.028 0.028 0.026 0.033 0.028 0.035√
mse 0.183 0.103 0.063 0.052 0.043 0.038 0.038 0.035 0.042
r 10 11 12 13 14 15

mean 0.28 0.28 0.28 0.28 0.28 0.29
deviation 0.034 0.035 0.032 0.038 0.033 0.037√

mse 0.038 0.039 0.038 0.042 0.04 0.039

We remark that the choice of r is not easy to determine, the best choice in
this example seems to be r = 6 or r = 7. We remark also that our estimator
seems to overestimate a bit the adjustment coefficient.

5.1.3. MA(1) model. We consider the following MA(1) model: Xn = εn +
aεn−1, with θ = 1.2, c = 1, a = 0.2. Then, wd is the positive solution to:

−tc(1 + a) + ln θ − ln(θ − t(1 + a)) = 0.

We find wd = 0.31. We have simulated 50 samples of length 10000. The table
below gives the mean of the estimated value ŵd(r), the standard deviation
and squared root of the mean squared error over the 50 samples, for r going
from 1 to 15.

r 1 2 3 4 5 6 7 8 9
mean 0.41 0.35 0.33 0.32 0.33 0.32 0.32 0.32 0.32

deviation 0.034 0.031 0.034 0.033 0.027 0.032 0.032 0.038 0.034√
mse 0.1 0.051 0.039 0.034 0.03 0.033 0.032 0.038 0.033
r 10 11 12 13 14 15

mean 0.32 0.32 0.32 0.32 0.33 0.32
deviation 0.031 0.035 0.04 0.037 0.047 0.038√

mse 0.032 0.035 0.041 0.038 0.047 0.039

For this example, a good choice for r seems to be r = 5 or r = 6 or even
r = 7. We observe the same stabilization phenomenon of the values of the
estimator but when r increases, the standard deviation increases also.

5.1.4. A non linear AR(1) model. We consider the following non linear
AR(1) model (which may be seen as a particular case of Bernoulli shifts, see
Dedecker et al. [7]): Xn = aX2

n−1+0.7εn. We have simulated 50 samples of
length 10000, with θ = 1.2, c = 1, a = −0.2. For that model we don’t know
the exact value of wd. The table below gives the mean of the estimated value
ŵd(r) and the standard deviation over the 50 samples, for r going from 1 to
15.

r 1 2 3 4 5 6 7 8 9
mean 0.88 1.0 1.06 1.14 1.13 1.22 1.21 1.26 1.28

deviation 0.22 0.17 0.23 0.19 0.23 0.24 0.21 0.27 0.26
r 10 11 12 13 14 15

mean 1.28 1.33 1.26 1.44 1.41 1.42
deviation 0.26 0.27 0.30 0.32 0.3 0.41
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Because for the previous example r = 6 or r = 7 was a good choice for
r, also because for larger values of r, the standard deviation is higher, we

propose to consider ŵd = 1.22 as a good approximation of wd.

5.1.5. An example with a Gaussian innovation. In order to give an idea
of the effect of the distribution of the innovation, we have done an AR(1)
simulation with a Gaussian innovation. In that case, we consider ξi ❀

N (0, σ2) a i.i.d sequence and an innovation εi = ξi − c. In that case,

E(etξi) = et
2/2,

and the adjustment coefficient w associated to the i.i.d. sequence (εi)i∈Z is
the solution to

t2σ2

2
− tc = 0,

that is w = 2c
σ2 .

We consider the AR(1) model Xn − aXn−1 = εn. We have simulated 50
samples of length 10000, with σ = 2, c = 1.2, a = 0.4. For that model, we
have w0 = 0.5 and wd = (1−a)w0 = 0.3. The table below gives the mean of
the estimated value ŵd(r), the standard deviation and squared root of the
mean squared error over the 50 samples, for r going from 1 to 15.

r 1 2 3 4 5 6 7 8 9
mean 0.7 0.5 0.43 0.39 0.38 0.36 0.35 0.37 0.37

deviation 0.022 0.025 0.028 0.03 0.034 0.04 0.045 0.063 0.065√
mse 1.34 0.67 0.45 0.32 0.29 0.25 0.24 0.31 0.32
r 10 11 12 13 14 15

mean 0.38 0.39 0.40 0.44 0.46 0.44
deviation 0.06 0.079 0.1 0.14 0.15 0.16√

mse 0.1 0.11 0.14 0.19 0.22 0.21

For that example also, we remark that the estimation of wd is decreasing and
then increases or becomes non monotonic. The best estimation is given for
r corresponding to this change of behavior. Here r = 6 or r = 7. Also, the
estimation is much worst than in the case of an innovation with exponential
law. This is probably due to the variance of the (εn)n∈Z process which is
higher in this example.

5.2. How to choose the r-parameter ? When performing the estima-
tion of the wd coefficient, we have to choose the value of the parameter
r. Following Theorem 4.10, we should take r = o(ln(k)) but the practical
choice of r for n given is not clear. The study above for several samples is
instructive but does not give the answer of the choice of r for a given sample.
We have performed several simulations for the independent, MA(1), AR(1),
non linear AR(1) models, for several values of r. These experiments tend to
show that when r increases, the estimator ŵd behaves monotonically in the
beginning and then has a more chaotic behavior. We propose to choose r
as the largest integer for which ŵd is monotonic on [0, r]. This is illustrated
in the graphs below for several models.
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5.2.1. Independent case. We have simulated an independent sample of εi =
ξi − c of length 10000 and θ = 1.2, c = 1. Below is represented ŵd for
r = 1, . . . , 35, wi = wd = 0.38. The horizontal line corresponds to the exact
value of wd.

5.2.2. Linear MA(1). We consider the following MA(1) model: Xn = εn +
aεn−1, with θ = 1.2, c = 1, a = 0.3. We have simulated a sample of size
10000 and represented below ŵd for r = 1, . . . , 40, wd = 0.26.

5.2.3. Linear AR(1). We consider the followingAR(1) model: Xn = aXn−1+
εn. We have simulated a sample of length 10000 for θ = 1.2, c = 1, a = 0.4,
wd = 0.23.

5.2.4. Non linear AR(1). We have represented below ŵd for r = 1, . . . , 35
for the non linear AR(1) model of section 5.1.4.

The choice of the r parameter is the main issue of our estimation method
but it is also a general problem when dealing with non linear dependent
processes for which we often have to make blocks of size r.

5.3. Smaller samples. We conclude this section with simulations on smaller
samples in the linear and non linear AR(1) cases. The tables below give the
mean of ŵd and the squared root of the mse (mean squared error) for sev-
eral values of r. For the linear AR(1) case, based on 200 samples of size
n (n = 500, 1000), our simulations indicate that our estimation procedure
could be applied for n ≥ 1000. Christ and Steinebach [3] had the same
conclusion. Remark that our results are not directly comparable to theirs
because for each size, we have produced 200 independent samples while
they considered several sub-samples extracted from the same large sample
of size 10000. Moreover, we point out that our estimation procedure is non
parametric and is available for non linear processes for which no estimation
procedure exists.

5.3.1. Linear MA(1) model. The model is the same as in section 5.1.3. Re-
call that wd = 0.31.

r ŵd √
mse

n = 500 1 0.43 0.17
n = 500 3 0.36 0.134
n = 1000 1 0.43 0.16
n = 1000 5 0.34 0.096

The r parameter has been chosen to be considered as o(lnn), also we
have computed the mean of ŵd

r for several values of r and have chosen a
stabilization point : r 7→ mean(ŵd

r ) is monotonic before this point and non
monotonic after. It seems to be a convenient choice.
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5.3.2. Non linear AR(1) model. The model is the same as in section 5.1.4.
Recall that for a large sample (n = 10000), we got ŵd = 1.21.

r ŵd

n = 500 1 0.79
n = 500 3 1.24
n = 1000 1 0.79
n = 1000 5 1.22

We choose r as in the MA(1) case. Our simulations indicate that our
estimation procedure should be useful, especially for non linear processes.

5.4. Conclusion. This simulation section emphasizes that two important
questions have to be considered further. We observe that the choice of r may
be guided by the behavior of ŵd computed for several values of r but should
be confirmed theoretically (maybe using a cross-validation procedure). Also,
it would be useful to construct confidence intervals, which would require
further work.
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[21] S.M. Pitts, R. Grübel, P. Embrechts, Confidence bounds for the adjustment coefficient.

Ad. in Applied probability, 28 n◦3, (1996), 802-827.
[22] A.W. van der Vaart, Asymptotic Statistics. Cambridge Series in Statistical and Prob-

abilistic Mathematics, (1998).

E-mail address: helene.cossette@act.ulaval.ca
E-mail address: etienne.marceau@act.ulaval.ca
E-mail address: veronique.maume@univ-lyon1.fr

Université Laval
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