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Abstract

In this paper, we consider various speci�cations of the general discrete-time risk model in
which a serial dependence structure is introduced between the claim numbers for each period.
We consider risk models based on compound distributions assuming several examples of discrete
variate time series as speci�c temporal dependence structures: Poisson MA(1) process, Poisson
AR(1) process, Markov Bernoulli process and Markov regime-switching process. In these models,
we derive expressions for a function that allows us to �nd the Lundberg coe¢ cient. Speci�c cases
for which an explicit expression can be found for the Lundberg coe¢ cient are also presented.
Numerical examples are provided to illustrate di¤erent topics discussed in the paper.
Keywords : Discrete-time risk model; Poisson MA(1) process; Poisson AR(1) process; Markov

Bernoulli Process; Markovian Environment; Lundberg Coe¢ cient.

1 Introduction

We consider the portfolio of an insurance company in the context of a discrete time risk model
allowing di¤erent possible temporal dependence structures. We de�ne a sequence of identically
distributed but not necessarily independent random variables (r.v.�s)W = fWk; k 2 N+g where the
r.v. Wk represents the aggregate claim amount in period k, k = 1; 2; ::: . The r.v. Wk is distributed
as W with cumulative distribution function (c.d.f.) FW and moment generating function (m.g.f.)
MW . Let N = fNk; k 2 N+g be de�ned as a discrete time claim number process. In an insurance
context, Nk corresponds to the number of claims in period k. The aggregate claim amount r.v. Wk

is de�ned as

Wk =

NkX
j=1

Bk;j ; (1)

assuming that
P0
j=1 aj = 0. The claim amounts in period k, denoted Bk;1, Bk;2; :::, form a sequence

of i.i.d. r.v.�s with c.d.f. FB and independent of Nk. It implies that Wk follows a compound
distribution with E [W ] = E [N ]E [B] and MW (r) = PN (MB (r)), where PN (s) is the probability
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generating function (p.g.f.) of N . We assume that the m.g.f. of B, denoted MB (r), exists. The
premium income per period is designated by � and satis�es the usual solvency condition � > E [W ].
The strictly positive relative risk margin is � = �

E[W ] � 1.

Let U = fUk; k 2 Ng be the surplus process of the insurance portfolio where Uk corresponds to
the surplus level at time k 2 N. The dynamic of the surplus process is given by

Uk = Uk�1 + � �Wk = u�
kX
j=1

Wk + �k = u� Sk + �k;

for k 2 N+ and initial surplus U0 = u. We de�ne S = fSk; k 2 Ng as the accumulated aggregate
claim amount process with Sk = W1 + ::: +Wk and S0 = 0. We denote by the r.v. T the time of
ruin where

T =

(
inf

k2f1;2;3;:::g
fk; Uk < 0g ; if Uk goes below 0 at least once

1; if Uk never goes below 0
or

T =

8<: inf
k2f1;2;3;:::g

n
k;
Pk
j=1Wk � �k > u

o
; if
Pk
j=1Wk � �k exceeds u at least once

1; if
Pk
j=1Wk � �k never goes above u:

:

The in�nite time ruin probability is given by  (u) = Pr (T <1jU0 = u) and, when certain condi-
tions are satis�ed, we have the asymptotic Lundberg-type result

lim
u!1

� ln ( (u))
u

= �;

where � is the Lundberg adjustment coe¢ cient. Based on this asymptotic result and for large
values of u,  (u) can be approximated by

 (u) ' e��u: (2)

De�ne the convex function

cn (r) =
1

n
ln
�
E
h
er(Sn�n�)

i�
: (3)

Using di¤erent approaches, Nyrhinen (1998) and Müller and P�ug (2001) have shown that the
Lundberg adjusment coe¢ cient � is the solution to

c (r) = lim
n!1

cn (r) = 0: (4)

We recall that the adjustment coe¢ cient is a measure of dangerousness of an insurance portfolio.
Nyrhinen (1999b) has shown how to use the adjustment coe¢ cient � in Monte Carlo approximations
of ruin probabilities. The expression of cn (r) de�ned in (3) depends on the temporal dependence
structure for W .
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In the classical discrete time risk model due to De Finetti (1957), it is assumed that W =
fWk; k 2 N+g forms a sequence of i.i.d. r.v.�s (see e.g. Bühlmann (1970), Gerber (1979) and
Dickson (2005)). Some papers consider various models with temporal dependence. Gerber (1982)
examines the estimation of ruin probabilities in a linear (Gaussian) risk model. Promislow (1991)
derives upper bounds for a similar risk model. Christ and Steinebach (1995) propose an
empirical-moment generating function type estimator of the adjustment coe¢ cient in
the risk model introduced by Gerber (1982). Yang and Zhang (2003) derive both
exponential and non exponential upper bounds to the in�nite-time ruin probability
in an extension to the model of Gerber (1982) with interest rate. In a multivariate
extension to Yang and Zhang (2003), Zhang et al. (2007) obtain a Lundberg-type
inequality for the ruin probability in a discrete-time model with dependent classes
of business based on a multivariate �rst-order autoregressive time-series model and
assuming a constant interest rate. Nyrhinen (1998, 1999a,b) derive Lundberg-type asymptotic
results for the case of dependent claims with light tails using results from large deviation theory.
Müller and P�ug (2001) obtain the same result using Markov inequalities. A special case of the
classical discrete time risk model is the compound binomial risk model which was �rst proposed by
Gerber (1988a, b) and further examined e.g. by Shiu (1989), Willmot (1993) and Dickson (1994).
In the last decade, contributions such as Yuen and Guo (2001) and Cossette et al. (2003, 2004a,
b, c) have considered temporal dependence within the compound binomial risk model.

In their paper, Müller and P�ug (2001) apply the result in (2) with (3) and (4) within notably
the classical discrete time risk model and linear risk models considered by Gerber (1982) and
Promislow (1991). However, the linear risk models such as the Gaussian AR(1) and ARMA(p; q)
may be less applicable in the context of risk theory. As stated in almost all actuarial textbooks,
compound distributions are the corner stones of several risk models in risk theory.

In this paper, we examine risk models based on compound distributions assuming time series
models for count data as speci�c temporal dependence structures for N = fNk; k 2 N+g. Time
series of counts arise in many di¤erent contexts such as counts of cases of a certain
disease, counts of price changes, counts of injuries in a workplace, etc. In our paper,
the following types of models for time series of counts will be considered:

� Models based on thinning. This category of models includes the integer value moving average
(INMA), integer value autoregressive (INAR), integer moving average autogressive models
(INARMA). These models are based on appropriate thinning operations which replace the
scalar multiplications by a fraction in the Gaussian ARMA framework of time series with
continuous data (see e.g. Al-Osh and Alzaid (1987, 1988), Mckenzie (1986, 1988, 2003), and
Joe (1997)). Quddus (2008) and Gourieroux and Jasiak (2004) apply the class of
INAR models for the time series analysis of car accident count data. Freeland
(1998) and Freeland and McCabe (2004) analyze a collection of time series of
claim counts at the Worker�s Compensation Board of British Columbia. Empiri-
cal studies of the INMA model include notably the one of Brännas, Hellström and
Nordström (2002) on the tourism demand and the one of Brännas and Quoreshi
(2004) on the number of transactions in stocks. Kremer (1995) adapts the theory
of INAR processes to the context of IBNR-predictions.
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� Models based on Markov chains. The discrete time process N is itself a Markov chain of
order 1 or more (see Mackenzie (2003) and references therein). Markov chains can be used
to deal with count data in time series. This approach is reasonable when there are very
few possible values for N . When the state space of N becomes too large, these models loose
tractability. A good example is the Markov Bernoulli process on which is based the compound
Markov binomial model proposed by Cossette et al. (2003, 2004a). Arvidsson and Francke
(2007) �t the compound Markov binomial model to allrisk- insurance data from
the insurance company Folksam.

� Models based on a speci�c conditional distribution with stochastic parameters. The dependence
structure is based on an underlying process such as an ARMA time series or a hidden discrete
time Markov chain de�ned on a �nite time space (see e.g. Zeger (1988), Heinen (2003), and
Jung et al. (2006) and references therein). When the underlying process is a hidden discrete
time Markov chain, these models may be also called Markov regime switching models or risk
models de�ned in a Markovian environment. Examples of the conditional distributions are
the Poisson, the binomial or the negative binomial distributions. Malyshkina, Mannering
and Tarko (2009) explore two-state Markov switching count data models to study
accident frequencies.

Other models such as models based on copulas, where the marginals are �xed and the depen-
dence structure is based on a copula (see e.g. Joe (1997) and Frees and Wang (2006)), could have
been considered. A review on time series models for count data can be found in the sur-
vey of McKenzie (2003), the monographs of Cameron and Trivedi (1998) and Kedem
and Fokianos (2002). All examples considered for N in this paper satisfy the constraints on the
process fWk � �; k 2 N+g given in Müller and P�ug (2001).

The paper is structured as follows. In the next three sections, we present risk models based
on compound distributions assuming for N a Poisson MA(1) process, Poisson AR(1) process,
Markov Bernoulli process, and a Markov switching regime process. For each model, we examine
its properties and derive explicit expressions for cn(r) and c(r). Speci�c cases for which an explicit
expression can be found for � are also presented. Numerical examples are provided to illustrate
di¤erent topics discussed in the paper.

2 Models based on thinning

We begin this section by introducing the operator "�" used in models based on thinning. Let M
be a non-negative integer-valued random variable and � 2 [0; 1]. The �-operation of � on M is
referred to as the binomial thinning of M and is de�ned as

� �M =

MX
i=1

Yi;

where fYi; i = 1; 2; :::g is a sequence of i.i.d Bernoulli r.v�s with mean � and independent of M .
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2.1 Risk Model �Poisson MA(1)

2.1.1 De�nitions and properties

Now let us consider a Poisson MA(1) process for N = fNk; k 2 N+g whose dynamic is de�ned as

Nk = � � "k�1 + "k; k = 1; 2; :::; (5)

where " = f"k; k 2 Ng is a sequence of i.i.d. r.v.�s following a Poisson distribution with mean �
1+�

and � 2 [0; 1]. Also,

� � "k�1 =
"k�1X
j=1

�k�1;j ; k = 1; 2; :::; (6)

where f�k�1;jg is a sequence of i.i.d. Bernoulli r.v.�s with mean �. The sequences f�k;j ; j = 1; 2; :; ::g
(for k = 1; 2; :::) are assumed independent for di¤erent periods k: Given these distribution assump-
tions, the r.v. � � "k�1 is Poisson with mean ��

1+� . From (5) and (6), we have

N1 = "1 +

"0X
j=1

�0;j ;

N2 = "2 +

"1X
j=1

�1;j ;

:::

Nk = "k +

"k�1X
j=1

�k�1;j :

As stated in Al-Osh and Alzaid (1987), the marginal distribution of the model (5) is uniquely
determined by the distribution of "k. Hence, Nk is Poisson distributed with mean

E [Nk] = E [� � "k�1 + "k]

=
��

1 + �
+

�

1 + �
= �

and (5) generates a stationary process with a Poisson(�) marginal distribution. If � = 0, the
behavior of Nk is solely explained by "k, which means that the claim number r.v.�s are independent
from one period to the other. If � = 1, the r.v. Nk is equally a¤ected in its behavior by the r.v.�s
"k and "k�1. The number of claims Nk in period k is therefore mainly due to the new
arrivals between k � 1 and k, and a proportion of the new arrivals between k � 2 and
k � 1 de�ned by the thinning procedure.
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One can also use the p.g.f. to identify the distribution of Nk

PNk (r) = E
�
rNk
�
= E [r"k ]E

h
r
P"k�1
j=1 �k�1;j

i
= e

�
1+�

(r�1)e
�

1+�
((1��)+�r�1)

= e
�

1+�
((1+�)r�(1+�)) = e�(r�1):

The autocorrelation function of N is


N (h) =

�
�
1+� ; h = 1

0; h > 1
;

(see McKenzie (1988)) which implies that 
N (1) 2 [0; 0:5]. Therefore,

Cov (Wk;Wk+h) = �
 (h)E [B]2 =

(
��E[B]2

1+� ; h = 1

0; h > 1
:

Also from McKenzie (1988), the expression for the joint mass probability function of (Nk; Nk�1)
is given by

Pr (Nk = nk; Nk�1 = nk�1) = e�(2�
�

1+�)�
min(nk;nk�1)X

j=0

�
�
1+�

�j �
1� �

1+�

�nk+nk�1�2j
�nk+nk�1�j

j! (nk � j)! (nk�1 � j)!
;

for nk; nk�1 2 N. See e.g. McKenzie(1988, 2003) for other properties of the Poisson MA(1) model.

2.1.2 Expression for c (r)

We derive the expression of the function c(r) in a risk model which considers a Poisson MA(1)
process for the dependence structure of the number of claims. As previously mentioned, the solution
to c(r) = 0 is the adjusment coe¢ cient which enables us to examine the riskiness of the suplus
process.

Proposition 1 The expression for c (r) is given by

c (r) =
� (1� �)
1 + �

MB (r) +
��

(1 + �)
M2
B (r)�

�

1 + �
� r�: (7)

Proof. The m.g.f. of Sn is expressed as

E
�
erSn

�
= E

h
er(W1+:::+Wn)

i
= MW1;:::;Wn (r; :::; r) : (8)
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Let the joint p.g.f. of (N1; :::; Nn) be given by

PN1;:::;Nn (t1; :::; tn) = E
h
tN11 tN22 :::tNnn

i
:

The expression for the multivariate m.g.f. MW1;:::;Wn (r1; :::; rn) of (W1; :::;Wn) is de�ned in terms
of PN1;:::;Nn (t1; :::; tn) and the m.g.f. of B

MW1;:::;Wn (r1; :::; rn) = PN1;:::;Nn (MB (r1) ; :::;MB (rn)) : (9)

The expression for PN1;:::;Nn (t1; :::; tn) is given by

E
h
tN11 tN22 :::tNnn

i
= E

�
t"11 t

P"0
j=1 �0;j

1 t"22 t
P"1
j=1 �1;j

2 :::t"nn t
P"n�1
j=1 �n�1;j

n

�
= E

�
t
P"0
j=1 �0;j

1

�
E

�
t"11 t

P"1
j=1 �1;j

2

�
:::E

�
t
"n�1
n�1 t

P"n�1
j=1 �n�1;j

n

�
E [t"nn ] ; (10)

where

E

�
t
P"0
j=1 �0;j

1

�
= e

�
1+�

((1��)+�t1�1) = e
��
1+�

(t1�1) (11)

E [t"nn ] = e
�

1+�
(tn�1); (12)

and

E

�
t
"n�1
n�1 t

P"n�1
j=1 �n�1;j

n

�
= E"n�1

�
E

�
t
"n�1
n�1 t

P"n�1
j=1 �n�1;j

n

���� "n�1��
= E"n�1

�
t
"n�1
n�1 E

�
t
P"n�1
j=1 �n�1;j

n

���� "n�1��
= E"n�1

�
t
"n�1
n�1 (1� �+ �tn)

"n�1
�

= E"n�1 [(tn�1 (1� �+ �tn))
"n�1 ]

= e
�

1+�
((tn�1(1��+�tn))�1)

= e
�

1+�
((1��)tn�1+�tn�1tn�1): (13)

Substituting (11), (12), and (13) into (10), we obtain

E
h
tN11 tN22 :::tNnn

i
= e

�
1+�

((1��)+�t1�1)e
�

1+�
((1��)t1+�t1t2�1):::e

�
1+�

((1��)tn�1+�tn�1tn�1)e
�

1+�
(tn�1):

(14)
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Combining (14), (9) and (8), we have

E
�
erSn

�
= e

�
1+�

((1��)+�MB(r)�1)e
(n�1)�
1+� ((1��)MB(r)+�MB(r)

2�1)e
�

1+�
(MB(r)�1)

= e
�

1+�f(1+�+(n�1)(1��))MB(r)+(n�1)�MB(r)
2+1���1�n+1�1g

= e
�

1+�f(1+�+(n�1)(1��))MB(r)+(n�1)�MB(r)
2���ng

= e
�(n+�)
1+�

�
(1+�+(n�1)(1��))MB(r)+(n�1)�MB(r)

2

n+�
�1
�

= e
�(n+�)
1+�

�
(n(1��)+2�)MB(r)+(n�1)�MB(r)

2

n+�
�1
�
: (15)

After inserting (15) in (3), we obtain

cn (r) =
1

n
ln (E [exp (r (Sn � n�))])

=
1

n

�

1 + �

n
(n (1� �) + 2�)MB (r) + (n� 1)�MB (r)

2 � (n+ �)
o
� r�

=
� (1� �)
1 + �

MB (r) +
�2�

n (1 + �)
MB (r) +

�� (n� 1)
n (1 + �)

M2
B (r)�

(n+ �)�

n (1 + �)
� r�;

which implies

c (r) = lim
n!1

cn (r) =
� (1� �)
1 + �

MB (r) +
��

(1 + �)
M2
B (r)�

�

1 + �
� r�:

�

Remark 2 Given (15), Sn =
Pn
k=1Wk follows a compound Poisson distribution i.e. we can

express Sn as

Sn =

( PMn
j=1C

(n)
j ; Mn > 0

0; Mn = 0
;

where Mn has a Poisson distribution with mean
�(n+�)
1+� and C(n)1 ,C(n)2 , ... is a sequence of i.i.d.

r.v.�s distributed as C(n) with

FC(n) (x) =
(n (1� �) + 2�)FB (x) + (n� 1)�F �2B (x)

n+ �
:

Note that F �nB denotes the n-fold convolution of FB for n 2 N+. If � = 0, then

E
�
erSn

�
= en�fMB(r)�1g;

which correponds to the m.g.f of the aggregate claim amount in the classical discrete time risk model.
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2.1.3 Impact of the parameter �

To analyze the impact of the dependence parameter �, we take the derivative of c (r) with respect
to � and we obtain

@c (r)

@�
= � �

1 + �
MB (r)�

� (1� �)
(1 + �)2

MB (r) +
�

(1 + �)
M2
B (r)�

��

(1 + �)2
M2
B (r) +

�

(1 + �)2

= �� (1 + �)
(1 + �)2

MB (r)�
� (1� �)
(1 + �)2

MB (r) +
� (1 + �)

(1 + �)2
M2
B (r)�

��

(1 + �)2
M2
B (r) +

�

(1 + �)2

= � 2�

(1 + �)2
MB (r) +

�

(1 + �)2
M2
B (r) +

�

(1 + �)2

=
�

(1 + �)2
(MB (r)� 1)2 � 0:

If � < �0, it follows from above that the solutions � and �0 to (7) are such that � > �0. This
implies that the degree of dangerousness represented by the adjustment coe¢ cient increases with
the dependence parameter �. Given the structure of the model, when the dependence parameter
increases, it becomes more likely that claims in period k � 1 also lead to claims in period k, which
increases the dangerousness of the portfolio.

The impact of the dependence parameter � on the Lundberg coe¢ cient could have been studied
using the supermodular order. However, after investigation, the proof of this inequality based on
supermodular ordering remains an open problem.

2.1.4 An explicit expression for the adjustment coe¢ cient

In the following proposition, we derive an explicit expression for the adjustment coe¢ cient � in the
case where the claim amount B is exponentially distributed.

Proposition 3 Assume that B � Exp (�) with mean 1
� and m.g.f MB (r) =

�
��r . Then, we have

� =
�

2 (1 + �)

 
2 (1 + �)� 1

1 + �
�
s
4
� (1 + �)

1 + �
+

1

(1 + �)2

!
: (16)

Proof. Here, the function c(r) is

c(r) =
� (1� �)
1 + �

�

� � r +
��

(1 + �)

�2

(� � r)2
� �

1 + �
� r (1 + �) �

�
= 0

which is equivalent to

(1� �) � �2

� � r + ��
�3

(� � r)2
� �� = r (1 + �) , (17)
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with 1
1+� = �. Multiplying (17) by (� � r)2, we obtain

(1� �) ��2 (� � r) + ���3 � �� (� � r)2 = r (1 + �) (� � r)2

leading to the equality

r
�
(1 + �) r2 + (�� � 2� (1 + �)) r + ��2

�
= 0: (18)

Solution to (18) leads to the desired result. �

Note that, when � = 0 in (16), the adjustement coe¢ cient becomes

� =
��

1 + �
;

which corresponds to the adjustment coe¢ cient when claim number r.v.�s are assumed to be inde-
pendent.

To take a look at the impact of � on �, we di¤erentiate the expression derived for � in terms of
�: We �nd

@�

@�
=

�

2 (1 + �)

0BB@ 1

(1 + �)2
� 1

(1 + �)2

�
2 (1 + �)� 1

1+�

�
r�

2 (1 + �)� 1
1+�

�2
� 4 (1 + �) �

1CCA : (19)

Since �
2 (1 + �)� 1

1+�

�
r�

2 (1 + �)� 1
1+�

�2
� 4 (1 + �) �

> 1;

for � 2 [0; 1], we have d�
d� < 0. Hence, the adjustment coe¢ cient � decreases (as shown in Section

2.1.3) as the dependence parameter � increases.

Example 4 We consider an insurance portfolio where the claim amount r.v. has an exponential
distribution with mean 1

� = 1. The premium income � includes a relative risk margin � equal to
20%. In Table 1, we provide values of � computed with (16) for di¤erent values of �. Using (2),
we approximate the in�nite time ruin probability  (u) by e��u and, based on this approximation,
we �nd the amount of initial surplus required to have an in�nite time ruin probability of 1%.

� 0 0.25 0.5 0.75 1
� 0.1667 0.1396 0.1265 0.1186 0.1134
u = ���1 ln (0:01) 27.6310 32.9835 36.4174 38.8272 40.6162

Table 1. Values of the Lundberg coe¢ cient in the Poisson MA(1) risk model

Results in Table 1 clearly con�rm that the adjustment coe¢ cient � decreases as the
dependence parameter � increases. The adjustment coe¢ cient is a measure of danger-
ousness of the risk portfolio. As the adjustment coe¢ cient decreases, the risk process
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becomes more dangerous. Based on the approximation of  (u) by e��u, it means that
the initial surplus which is required to have an in�nite ruin probability of 1% increases
as the dependence parameter � increases. Therefore, we may conclude that if the de-
pendence between the claim number r.v.�s is at a high (low) level then it requires a
large (small) amount of initial surplus to satisfy an in�nite time ruin probability of
1%. �

2.2 Risk Model �Poisson AR(1)

2.2.1 De�nitions and properties

We suppose here that N = fNk; k 2 N+g is a Poisson AR(1) process where the r.v. N1 has a
Poisson distribution with mean � and the autoregressive dynamic for N2, N3, ... is given by

Nk = "k + � �Nk�1; (20)

for k = 2; 3; :::. We assume that " = f"k; k 2 N+g is a sequence of i.i.d. r.v.�s following a Poisson
distribution with mean (1� �)� where � 2 [0; 1]. Following Joe (1997), the dependence structure
of the Poisson AR(1) process can be represented as follows

N2 =

N1X
i=1

�21i + "2;

N3 =

N1X
i=1

�21i�31i +

"2X
i=1

�32i + "3;

:::

Nk =

N1X
i=1

�21i�31i:::�k1i +
k�1X
j=2

"jX
i=1

kY
l=j+1

�l;j;i + "k (k = 3; 4; :::).

The r.v.�s "2; "3::: are i.i.d. and follow a Poisson distribution with mean ((1� �)�) and �21; �31; �32; :::; �k1; :::; �k;k�1
are i.i.d. Bernoulli r.v�s with mean �. Hence, given a sequence of i.i.d. Poisson r.v�s " with mean
(1� �)�; the model given in (20) yields a stationary sequence of Poisson r.v.�s with mean �. The
model given by (20) may be interpreted in the context of the evolution of a popula-
tion as the number of people at time k; Nk; beeing the sum of those who arrive in the
interval (k� 1;k) and survive until time k, i.e. "k, and those who survive from time
(k� 1) to k, i:e:, � �Nk�1. In an insurance context, the number of claims in period k;
meaning Nk, can be viewed as the sum of the new claims during period k, and the
claims of period k � 1 leading to claims in period k.

As for a classical Gaussian AR(1) model, the autocorrelation function for N is equal to 
N (h) =
�h, for h � 1 (see McKenzie (1988)) with 
N (1) 2 [0; 1). The expression for the covariance between
Wk and Wk+h corresponds to

Cov (Wk;Wk+h) = ��hE [B]2 ;

11



for h � 1. The joint p.m.f. of (Nk; Nk�1) is given by

Pr (Nk = nk; Nk�1 = nk�1) = e�(2��)�
min(nk;nk�1)X

j=0

�j (1� �)nk+nk�1�2j �nk+nk�1�j

j! (nk � j)! (nk�1 � j)!
;

(see, e.g. McKenzie (1988)).

2.2.2 Expression for c (r)

The expression for c (r) is provided in the following proposition.

Proposition 5 Assuming that �MB (r) < 1, the expression for c (r) is given by

c (r) =
(1� �)2 �MB (r)

1� (�MB (r))
� (1� �)�� r� = 
2�MB (r)

1� (�MB (r))
� 
�� r�; (21)

where 
 = 1� �.

Proof. We have

Sn =W1 + :::+Wn =

LnX
j=1

Cj

where
Ln = N1 +N2 + :::+Nn

and C1, C2, ... form a sequence of i.i.d. r.v.�s distributed as B.

Also, we have

MSn (r) = PN1;:::;Nn (MB (r) ; :::;MB (r))

= E
h
MB (r)

N1 :::MB (r)
Nn
i

= E
h
MB (r)

N1+:::+Nn
i

= E
h
MB (r)

Ln
i

= PLn (MB (r)) :

We need to �nd the expression for PLn (t).

Let us develop the expressions for PLn (t) for periods n = 1; 2; 3; 4. We have

PLn (t) = E
�
tN1+:::+Nn

�
= E

�
tN1 :::tNn

�
:

12



For n = 1, we have
PLn (t) = E

�
tN1
�
= e�(t�1):

For n = 2, we have

PLn (t) = E
�
tN1tN2

�
= E

h
tN1t

PN1
i=1 �21it"2

i
= e�(
t+�t

2�1)e
�(t�1):

For n = 3, we �nd

PLn (t) = E
�
tN1tN2tN3

�
= E

�
tN1t

nPN1
i=1 �21i+

PN1
i=1 �21i�31i

o
t"2tf

P"2
i=1 �32igt"3

�
= E

�
tN1t

nPN1
i=1 �21i+

PN1
i=1 �21i�31i

o�
E
h
t"2tf

P"2
i=1 �32ig

i
E [t"3 ]

= e�((

2+�
)t+�
t2+�2t3�1)e
�(
t+�t

2�1)e
�(t�1):

For n = 4, we begin with

PLn (t) = E
�
tN1tN2tN3tN4

�
= E

�
t

n
N1+

PN1
i=1 �21i+

PN1
i=1 �21i�31i+

PN1
i=1 �21i�31i�41i

o
tf"2+

P"2
i=1 �32i+

P"2
i=1 �32i�42igtf"3+

P"3
i=1 �43igt"4

�
= E

�
t

n
N1+

PN1
i=1 �21i+

PN1
i=1 �21i�31i+

PN1
i=1 �21i�31i�41i

o�
�E

h
tf"2+

P"2
i=1 �32i+

P"2
i=1 �32i�42ig

i
E
h
tf"3+

P"3
i=1 �43ig

i
E [t"4 ]

= E

�
t

n
N1+

PN1
i=1 �21i+

PN1
i=1 �21i�31i+

PN1
i=1 �21i�31i�41i

o�
�e
�((
2+�
)t+�
t2+�2t3�1)e
�(
t+�t2�1)e
�(t�1): (22)

Given (22), we need to �nd the expression for

E

�
t

n
N1+

PN1
i=1 �21i+

PN1
i=1 �21i�31i+

PN1
i=1 �21i�31i�41i

o�

13



and we obtain the following

E

�
t

n
N1+

PN1
i=1 �21i+

PN1
i=1 �21i�31i+

PN1
i=1 �21i�31i�41i

o�
= E

�
tN1E

�
t

nPN1
i=1 �21i

o
E

�
t

nPN1
i=1 �21i�31i

o
E

�
t

nPN1
i=1 �21i�31i�41i

o
jN1; �2i; �3i

�
jN1; �21i

�
jN1
��

= E

"
tN1E

"
t

nPN1
i=1 �21i

o
E

"
t

nPN1
i=1 �21i�31i

o N1Y
i=1

�

 + �t

n
�21i�31i

o�
jN1; �21i

#
jN1

##

= E

"
tN1E

"
t

nPN1
i=1 �21i

o
E

"
N1Y
i=1

�

tf�21i�31ig + �tf2�21i�31ig

�
jN1; �21i

#
jN1

##

= E

"
tN1E

"
t

nPN1
i=1 �21i

o N1Y
i=1

�


�

 + �t�21i

�
+ �

�

 + �t2�21i

��
jN1

##

= E

"
tN1E

"
N1Y
i=1

�

t�21i

�

 + �t�21i

�
+ �t�21i

�

 + �t2�21i

��
jN1

##

= E

"
tN1E

"
N1Y
i=1

�

2t�21i + �
t2�21i + 
�t�21i + �2t3�21i

�
jN1

##
: (23)

Further manipulations lead to

E

"
tN1E

"
N1Y
i=1

�

2t�21i + �
t2�21i + 
�t�21i + �2t3�21i

�
jN1

##

= E

"
tN1

N1Y
i=1

�

2 (
 + �t) + �


�

 + �t2

�
+ 
� (
 + �t) + �2

�

 + �t3

��#
= E

h
tN1
�

2 (
 + �t) + �


�

 + �t2

�
+ 
� (
 + �t) + �2

�

 + �t3

��N1i
= e�((


3+2�
2+�2
)t+(�
2+�2
)t2+�2
t3+�3t4�1): (24)

Finally, combining (24) and (22), we obtain

PL4 (t) = E
�
tN1tN2tN3tN4

�
= e�f(
3+2�
2+�2
)t+(�
2+�2
)t2+�2
t3+�3t4�1g

�e
�f(
2+�
)t+�
t2+�2t3�1ge
�f�t+�t2�1ge
�f(t�1)g

and

MS4 (r) = PL4 (MB (r))

= e�f(
3+2�
2+�2
)MB(r)+(�
2+�2
)MB(r)
2+�2
MB(r)

3+�3MB(r)
4�1g

�e
�f(
2+�
)MB(r)+�
MB(r)
2+�2MB(r)

3�1ge
�f
MB(r)+�MB(r)
2�1ge
�fMB(r)�1g:(25)
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In (25), we observe that �

2 + �


�
= 
 (
 + �) = 
�

�
2 + �2

�
= 
� (
 + �) = �
�


3 + 2�
2 + �2

�
= 
 (
 + �)2 = 


etc:

Consequently, we deduce the following general form for MSn for n = 2; 3; :::

MSn (r) = PLn (MB (r))

= e��f
MB(r)
Pn
k=0(�MB(r))

k+�n(MB(r))
n�ng

�e
�f
nMB(r)
Pn
k=0(�MB(r))

k+MB(r)
Pn
k=0(�MB(r))

k�MB(r)
Pn
k=0(k+1)(�MB(r))

k�ng

= e
��

�

MB(r)

1�(�MB(r))
n

1��MB(r)
+�n(MB(r))

n�n
�

(26)

�e

�

�

nMB(r)

1�(�MB(r))
n

1��MB(r)
+MB(r)

1�(�MB(r))
n

1��MB(r)
�MB(r)

�
��n(�MB(r))

n�1

(1��MB(r))
+
1�(�MB(r))

n

(1��MB(r))
2

�
�n
�
:

From (26), we �nd this expression for cn (r)

cn (r)

=
1

n
ln
n
E
h
er(Sn��)

io

=

8>><>>:
��
�

MB (r)

1�(�MB(r))
n

1��MB(r)
+ �n (MB (r))

n � 1
�

+
�MB (r)
�

n1�(�MB(r))

n

1��MB(r)
+ 1�(�MB(r))

n

1��MB(r)
� n(�MB(r))

n�1

(1��MB(r))
� 1�(�MB(r))

n

(1��MB(r))
2

�
�n
�� n�r

9>>=>>;
n

: (27)

Assuming that �MB (r) < 1 and taking the limit of (27), we obtain the desired result

c (r) = lim
n!1

cn (r) =

2�MB (r)

1� (�MB (r))
� 
�� r�:

�

Note that, given (26), Sn follows a compound Poisson distribution.

Combining (4) and (21), � is the strictly positive solution to


2MB (r)

1� (�MB (r))
� 
 � r (1 + �)E [B] = 0;

in which the parameter � does not appear.
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2.2.3 Impact of the parameter �

To have an idea of the in�uence of the dependence parameter � on the Lundberg coe¢ cient, we
take the derivative of c (r) de�ned by (21) with respect to �

dc (r)

d�
=
2 (1� �)�MB (r)

1� (�MB (r))
+MB (r)

(1� �)2 �MB (r)

(1� (�MB (r)))
2 + � � 0:

If � < �0, then the solutions � and �0 to (21) are such that � > �0 since dc(r)d� � 0. It means that the
degree of dangerousness represented by the adjustment coe¢ cient increases with the dependence
parameter �.

2.2.4 An explicit expression for the adjustment coe¢ cient

A nice expression for the Lundberg coe¢ cient is provided in the next proposition when the claim
amount r.v. B follows an exponential distribution.

Proposition 6 Assume that B � Exp (�) with mean 1
� and m.g.f MB (r) =

�
��r . Then, we have

� =

��

1 + �
=
(1� �)��
1 + �

; (28)

where � 2 [0; 1).

Proof. When B follows an exponential distribution, (21) becomes


2� �
��r

1� � �
��r

� 
�� r� = 0;

which can be rewritten as follows

�
2�


� � r � 
�� r� =

2�


� � r � 
 � r (1 + �)E [B] = 0;

or

2� � 
2� � 
 (1 + �) r + r
 + r2 (1 + �)E [B] = 0:

After some rearrangements, we �nd the desired result. �

As expected, if � = 0 (i.e. the independence case), the expression (28) for the Lundberg
coe¢ cient is reduced to

� =
��

1 + �
:

Example 7 For an insurance portfolio, we assume that the claim amount r.v. B has an exponential
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distribution with mean 1
� = 1 and that the premium income � includes a relative risk margin � of

20%. In Table 2, we apply (28) to compute values of � assuming di¤erent values of dependence
parameter �. Using (2), we approximate the in�nite time ruin probability  (u) by e��u and, based
on this approximation, we �nd the amount of initial surplus required to have an in�nite time ruin
probability of 1%.

� 0 0.25 0.5 0.75 0.995
� 0.1667 0.125 0.0833 0.04167 0.00083
u = ���1 ln (0:01) 27.6310 36.8414 55.2620 110.5241 5526.2042

Table 2. Values of the Lundberg coe¢ cient in the Poisson AR(1) risk model.

Results in Table 2 illustrate the dramatic impact of the dependence parameter � on
the adjustment coe¢ cient �. The risk process becomes more dangerous as the depen-
dence (represented by the parameter �) between the claim number r.v.�s become more
signi�cative. Therefore, it requires a larger (smaller) amount of initial surplus to
satisfy an in�nite time ruin probability of 1% as the dependence parameter increases
(decreases). �

2.3 Comments

One can carry a similar analysis for a Poisson moving average or a Poisson autoregressive model of
order greater than 1, and also for a Poisson autoregressive moving average process. Other marginals
such as the negative binomial distribution could be considered.

3 Markov Bernoulli Process

3.1 De�nitions and properties

We assume that the claim number process N is a Markov Bernoulli process i.e. N is a Markov
chain with state space f0; 1g and with transition probability matrix

P =

�
1� (1� �) q (1� �) q
(1� �) (1� q) �+ (1� �) q

�
=

�
p00 p01
p10 p11

�
; (29)

where � can be seen as the dependence parameter, introducing a positive dependence
relation between the claim numbers r.v.�s. In this risk model, at most one claim can occur
over a period. The initial probabilities associated to P are

Pr (N0 = 1) = q = 1� Pr (N0 = 0) ;

where 0 � � < 1 and 0 < q < 1: When � tends to 1, a period with a (no) claim will be likely
followed by a period with a (no) claim. If � = 0, the claim number process N becomes a sequence
of i.i.d. r.v.�s.
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The covariance between Nk and Nk+h is given by

Cov (Nk; Nk+h) = Pr (Nk+h = 1; Nk = 1)� Pr (Nk+h = 1)Pr (Nk = 1)
= qPr(Nk+h = 1 j Nk = 1)� q2

= q(1� q)�h;

for k = 1; 2; ::: and h = 0; 1; 2; ::: . Also, we know that Cov (Wk;Wk+h) = E [B]2Cov (Nk; Nk+h)
for k = 1; 2; ::: and h = 1; 2; ::: which implies that


 (h) =
E [B]2 q(1� q)�h

V ar (B) q + E [B]2 q (1� q)

=
E [B]2 (1� q)

V ar (B) + E [B]2 (1� q)
�h;

for h = 1; 2; ::: . Hence, the autocorrelation function 
 (h) decreases exponentially. A special case
of this model is examined in Cossette et al. (2003, 2004a, b). In the latter model, it
is assumed that the premium rate is equal to 1 and the claim amount distribution is
de�ned over N+. Here, the claim amount distribution is de�ned over R+.

3.2 Expression for c (r)

The next proposition gives the function c (r) when N is a Markov Bernoulli process.

Proposition 8 The expression for c (r) is given by

c (r) = ln

�
(p00 + p11MB (r)) +

q
(p00 + p11MB (r))

2 � 4MB (r) (p00p11 � p10p01)
�
� ln 2� �r;

where (p00p11 � p10p01) = �:

Proof. According to Example 2 of Nyrhinen (1998), c (r) is the natural logarithm of the
maximal real eigenvalue of the matrix M (r)

M (r) =

�
m00 (r) m01 (r)
m10 (r) m11 (r)

�
whose entries are

mi0 (r) = pi0e
��r

mi1 (r) = pi1MB (r) e
��r;

for i 2 f0; 1g and some r � 0. The eigenvalues of M (r) are the solution to

det (M (r)� � � J) = 0;
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where J is the identity matrix. Therefore,

M (r)� � � J =
�
p00e

��r � � p01MB (r) e
��r

p10e
��r p11MB (r) e

��r � �

�
and its determinant is

h (�) = �2 �
�
p00e

��r + p11MB (r) e
��r� � + e�2�rMB (r) (p00p11 � p10p01) :

The maximal solution to h (�) = 0 is

�� (r) =
(p00e

��r + p11MB (r) e
��r) +

q
(p00e��r + p11MB (r) e��r)

2 � 4e�2�rMB (r) (p00p11 � p10p01)
2

= e��r
(p00 + p11MB (r)) +

q
(p00 + p11MB (r))

2 � 4MB (r) (p00p11 � p10p01)
2

: (30)

Taking the natural logarithm on both sides of (30) leads to the desired result.

�

Example 9 In the context of this particular risk model, we assume that the probability of occur-
rence of a claim q is equal to 0:1 and that the claim amount r.v. B has an exponential distribution
with mean ��1 = 1. The relative security margin � is equal to 20%. In the following table, we
provide values of the Lundberg coe¢ cient for the dependence parameter � = 0, 0.25, 0.5, 0.75,
0.995. Approximating  (u) by e��u, we �nd the amount of surplus such that  (u) = 1%.

� 0 0.25 0.5 0.75 0.995
� 0.175383924 0.133977918 0.091008226 0.046379157 0.000948
u = ���1 ln (0:01) 26.2576528 34.37260609 50.60169187 99.29396004 4857.774458

Table 3. Values of the Lundberg coe¢ cient in the Markov Bernoulli risk model

As the dependence parameter � becomes larger, the positive dependence relation be-
tween the claim numbers r.v.�s increases. It implies that the risk process for the portfo-
lio becomes riskier which requires a higher initial reserve to maintain an in�nite-time
ruin probability of 1%. �

4 Risk model de�ned in a Markovian Environment

4.1 De�nitions and properties

We assume that the claim number process N = fNk; k 2 N+g is in�uenced by an underlying
Marvovian environment represented by the time homogeneous Markov chain � de�ned over the
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2-state space f�1; �2g with transition probabilities

pij = Pr (�k+1 = �j j�k = �i) ;

for k 2 N+. We assume that the conditional p.m.f. of (Nkj�k = �j) (k 2 N+) is fN j�=�j , the
conditional c.d.f. is FN j�=�j and the corresponding conditional m.g.f. is M

(j)
N (r). Assume that

the conditional distribution of (Nkj�k = �j) is Poisson with mean �j (j = 1; 2) with �1 � �2. The
frequencies in the two di¤erent states are generated by separate counting processes.
For example in Malyshkina, Mannering and Tarko (2009) they consider two di¤erent
states of roadway safety to model vehicule accident frequencies. Other discrete distribu-
tions for (Nkj�k = �j) (e.g. negative binomial, binomial, etc.) could be considered.

We suppose that the transition probability matrix P of � is

P =

�
p11 p12
p21 p22

�
=

�
1� (1� �)� (1� �)�
(1� �) (1� �) � + (1� �)�

�
;

with 0 < � < 1. To avoid negative transition probabilities, the parameter � must satisfy
the constraint max

�
�1��

� ;� �
1��

�
< � < 1. The stationary probabilities associated to P are

Pr (�k = �1) =
p21

p12 + p21
= 1� �;

Pr (�k = �2) =
p12

p12 + p21
= �:

Note that the claim amounts are assumed not to be a¤ected by the Markovian process.

The expression for the conditional m.g.f. of Wk given �k = �j is given by

E
�
erWk j�k = �j

�
= E

h
eNk ln(MB(r))j�k = �j

i
=M

(j)
N (ln (MB (r))) =M

(j)
W (r) = e�j(MB(r)�1):

4.2 Expression for c (r)

The function c (r) is provided in the following proposition.

Proposition 10 Proposition. The expression for c (r) is given by

c (r) = ln

8><>:
�
p11M

(1)
W (r) + p22M

(2)
W (r)

�
+

r�
p11M

(1)
W (r) + p22M

(2)
W (r)

�2
� 4M (1)

W (r)M
(2)
W (r) (p11p22 � p12p21)

9>=>;� ln 2� �r;
where (p11p22 � p12p21) = �:
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Proof. We de�ne the matrix M (r) where the entries are

mij (r) = pijM
(j)
W (r) e��r

for i; j 2 f1; 2g and some r � 0. We �nd c (r) in a similar way as in the previous section based on
the eigenvalues of M (r). They are the solution to

det (M � �� J) = 0;

where J is the identity matrix. Therefore,

M � � � J =
 
p11M

(1)
W (r) e��r � � p12M

(2)
W (r) e��r

p21M
(1)
W (r) e��r p22M

(2)
W (r) e��r � �

!

and its determinant is

h (�) = �2 � e��r
�
p11M

(1)
W (r) + p22M

(2)
W (r)

�
� + e�2�rM

(1)
W (r)M

(2)
W (r) (p11p22 � p12p21) :

The maximal solution to h (�) = 0 is

�� (r) = e��r

�
p11M

(1)
W (r) + p22M

(2)
W (r)

�
+

r�
p11M

(1)
W (r) + p22M

(2)
W (r)

�2
� 4M (1)

W (r)M
(2)
W (r) (p11p22 � p12p21)

2
: (31)

The desired result is obtained by taking the natural logarithm on both sides of (31). �

Remark 11 We could have assumed � to be de�ned over a m-state space f�1; :::; �mg. However,
the expression for c (r) would no longer be analytic.

Example 12 We assume that �1 = 1, �2 = 2, � = 3
4 , and that the claim amount follows an

exponential distribution with mean ��1 = 1. The relative security margin � is equal to 50%.
In Table 4, we compute the Lundberg coe¢ cient for di¤erent values of the dependence parameter
� = �0:25; 0; 0.25, 0.5, 0.75. Using the approximation  (u) ' e��u we compute the amount of
surplus required to have an in�nite time ruin probability of 1%.

� -0.25 0 0.25 0.5 0.75
� 0.064595843 0.063320997 0.061352843 0.0578554 0.049905485
u = ���1 ln (0:01) 71.29205177 72.72737976 75.06042046 79.59793168 92.27783595

Table 4. Values of the Lundberg coe¢ cient in the risk model de�ned in a Markovian environment.

The dependence parameter � monitors the dependence relation between the claim
number r.v.�s. As the parameter � increases, the risk process for the portfolio becomes
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riskier. Therefore, to meet an objective of an in�nite-time ruin probability of 1%, one
requires to set aside a higher initial reserve as � increases. �

5 Weak dependence properties of the Poisson AR(1) model

In Cossette et al. (2008), we give an estimation procedure for the adjustment coe¢ cient for processes
satisfying some weak dependence properties, such as the �-dependence or �-dependence. For com-
pleteness, we �rst recall the de�nition of �-dependence (see Dedecker et al. (2007) for a review on
weak dependence). We then examine the weak dependence properties of the Poisson AR(1) model
more speci�cally.

5.1 �-dependence

Let X = fXk; k 2 Ng be a stochastic process. The �-dependence is de�ned in terms of the �
coe¢ cients of the process X which are de�ned as follows.

De�nition 13 Let k k1 denotes the sup norm and kgkL = max(kgk1;lip(g)) denotes the Lipschitz
norm of a Lipschitz function g (where lip(g) denotes the Lipschitz constant of g). For k 2 N, we
de�ne coe¢ cient �(k) by

�(k) = sup
jCov(f(Xi1 ; : : : ; Xiu); g(Xj1 ; : : : ; Xjv))j

vkfk1kgkL
;

where the supremum is taken over multi-indices i = (i1; : : : ; iu), j = (j1; : : : ; jv) such that

i1 < � � � < iu � iu + k � j1 < � � � < jv

and all functions f : Ru �! R, g : Rv �! R are bounded and satisfy the Lipschitz property,
with respect to the following distance:

d(x; y) =

pX
i=1

jxi � yij; x = (x1; : : : ; xp); y = (y1; : : : ; yp):

De�nition 14 A stochastic process X is said to be �-dependent if the sequence f�(k); k 2 Ng is
summable.

Because a Poisson MA(1) model is 1-dependent, it is easily seen that it is �-dependent. For
the Poisson AR(1) model some computations are required to show that we have the � dependence.

22



5.2 �-dependence for the Poisson AR(1) model

Here we show that the process W = fWk; k 2 N+g as de�ned in (1) is �-dependent. We �rst need
to bound the quantities Cov(f(W0); g(Wk)); for bounded functions f and g, and k 2 N+. A simple
computation gives

Cov(f(W0); g(Wk))

=
X
n;m�1

E

0@f
0@ nX
j=1

B0;j

1A1AE
0@g
0@ mX
j=1

Bk;j

1A1A [Pr(N0 = n; Nk = m)� Pr(N0 = n) Pr(Nk = m)] :

Thus, we are left to bound

[Pr(N0 = n; Nk = m)� Pr(N0 = n) Pr(Nk = m)] :

Following Al-Osh and Alzaid (1987), we know that

(N0; Nk)
L
=

 
N0; �

k �N0 +
k�1X
i=0

�i � "k�i

!

which implies

Pr(N0 = n;Nk = m) = Pr(N0 = n) Pr

 
�k � n+

k�1X
i=0

�i � "k�i = m

!
;

where �k � n denotes the sum of n i.i.d Bernoulli r.v.�s with parameter �k (� = dependence
parameter). We have

Pr(N0 = n; Nk = m)� Pr(N0 = n) Pr(Nk = m)

= Pr(N0 = n)

mX
j=1

h
Pr(�k � n = j)� Pr(�k �N0 = j)

i
Pr

 
k�1X
i=0

�i � "k�i = m� j
!
:

For j � 1, we easily get

Pr(�k � n = j) � E([�k � n]2)
j2

and Pr(�k �N0 = j) � E([�k �N0]2)
j2

:

Also,
E([�k � n]2) � n2�k and E([�k �N0]2) � E(N2

0 )�
k:
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It follows that�����X
n;m

Pr(N0 = n; Nk = m)� Pr(N0 = n) Pr(Nk = m)

�����
� �k

X
n;m

Pr(N0 = n)

24(n2 + E(N2
0 ))

mX
j=1

1

j2
Pr

 
k�1X
i=0

�i � "k�i = m� j
!35

� �k

24X
n�0
(n2 + E(N2

0 )) Pr(N0 = n)
X
j�1

1

j2

X
m�j

Pr

 
k�1X
i=0

�i � "k�i = m� j
!35

� �k2E(N2
0 )
X
j�1

1

j2
:

Consequently, for any bounded functions f and g, we have that for some constant C > 0,

Cov(f(W0); g(Wk)) � Ckfk1kgk1�k:

A similar computation for

Pr(Ni1 = n1; : : : ; Niu = niu ; Nj1 = mj1 ; : : : ; Njv = mjv)

�Pr(Ni1 = n1; : : : ; Niu = niu Pr(Nj1 = mj1 ; : : : ; Njv = mjv)

for multi-indices i1 < � � � < iu � iu + � � j1 < � � � < jv implies that we have, for some constant
C > 0,

jCov(f(Wi1 ; : : : ;Wiu); g(Wj1 ; : : : ;Wjv))j � Ckfk1kgk1�k:

Then, it follows that � (k) � C�k and the sequence f�(k); k 2 Ng is summable, meaning that the
processW = fWk; k 2 N+g is �-dependent. Consequently, the process fWk � �; k 2 N+g associated
to the risk model based on the Poisson AR(1) process is also �-dependent which implies that the
estimation procedure proposed by Cossette et al. (2009) is applicable in the context of this risk
model.

Let us recall the estimation procedure for the adjustment coe¢ cient. For r 2 N, let

Yr =
rX
j=0

(Xj � �) :

The function E(etSr) may be estimated by its empirical moment version: for k 2 N,

M̂ r
k (t) =

1

k

k�1X
i=0

etZ
r
i ;

where Zri =
Pr
j=1Xj+ir. Then we de�ne b�r as the positive solution of 1r ln�M̂ r

k (t)
�
= 0. We have

that under the condition of � weak dependence and on the existence of the adjustment coe¢ cient
�, b�r is a consistent estimator of �, provided we take r = o(ln k).
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