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In this paper, we consider various speci…cations of the general discrete-time risk model in which a serial dependence structure is introduced between the claim numbers for each period. We consider risk models based on compound distributions assuming several examples of discrete variate time series as speci…c temporal dependence structures: Poisson MA(1) process, Poisson AR(1) process, Markov Bernoulli process and Markov regime-switching process. In these models, we derive expressions for a function that allows us to …nd the Lundberg coe¢ cient. Speci…c cases for which an explicit expression can be found for the Lundberg coe¢ cient are also presented. Numerical examples are provided to illustrate di¤erent topics discussed in the paper.

Introduction

We consider the portfolio of an insurance company in the context of a discrete time risk model allowing di¤erent possible temporal dependence structures. We de…ne a sequence of identically distributed but not necessarily independent random variables (r.v.'s) W = fW k ; k 2 N + g where the r.v. W k represents the aggregate claim amount in period k, k = 1; 2; ::: . The r.v. W k is distributed as W with cumulative distribution function (c.d.f.) F W and moment generating function (m.g.f.) M W . Let N = fN k ; k 2 N + g be de…ned as a discrete time claim number process. In an insurance context, N k corresponds to the number of claims in period k. The aggregate claim amount r.v. W k is de…ned as

W k = N k X j=1 B k;j ;
(1) assuming that P 0 j=1 a j = 0. The claim amounts in period k, denoted B k;1 , B k;2 ; :::, form a sequence of i.i.d. r.v.'s with c.d.f. F B and independent of N k . It implies that W k follows a compound distribution with E [W ] = E [N ] E [B] and M W (r) = P N (M B (r)), where P N (s) is the probability generating function (p.g.f.) of N . We assume that the m.g.f. of B, denoted M B (r), exists. The premium income per period is designated by and satis…es the usual solvency condition > E [W ]. The strictly positive relative risk margin is = E[W ] 1.

Let U = fU k ; k 2 Ng be the surplus process of the insurance portfolio where U k corresponds to the surplus level at time k 2 N. The dynamic of the surplus process is given by

U k = U k 1 + W k = u k X j=1 W k + k = u S k + k;
for k 2 N + and initial surplus U 0 = u. We de…ne S = fS k ; k 2 Ng as the accumulated aggregate claim amount process with S k = W 1 + ::: + W k and S 0 = 0. We denote by the r.v. :

The in…nite time ruin probability is given by (u) = Pr (T < 1jU 0 = u) and, when certain conditions are satis…ed, we have the asymptotic Lundberg-type result

lim u!1 ln ( (u)) u = ;
where is the Lundberg adjustment coe¢ cient. Based on this asymptotic result and for large values of u, (u) can be approximated by

(u) ' e u : (2) 
De…ne the convex function

c n (r) = 1 n ln E h e r(Sn n ) i : (3) 
Using di¤erent approaches, [START_REF] Nyrhinen | Rough descriptions of ruin for a general class of surplus processes[END_REF] and [START_REF] Müller | Asymptotic ruin probabilities for risk processes with dependent increments[END_REF] have shown that the Lundberg adjusment coe¢ cient is the solution to

c (r) = lim n!1 c n (r) = 0: (4) 
We recall that the adjustment coe¢ cient is a measure of dangerousness of an insurance portfolio. Nyrhinen (1999b) has shown how to use the adjustment coe¢ cient in Monte Carlo approximations of ruin probabilities. The expression of c n (r) de…ned in (3) depends on the temporal dependence structure for W .

In the classical discrete time risk model due to De [START_REF] De Finetti | Su un'impostazione alternativa della teoria collecttiva del rischio[END_REF], it is assumed that W = fW k ; k 2 N + g forms a sequence of i.i.d. r.v.'s (see e.g. [START_REF] Bühlmann | Mathematical methods in risk theory[END_REF], [START_REF] Gerber | An Introduction to Mathematical Risk Theory[END_REF] and [START_REF] Dickson | Insurance Risk and Ruin[END_REF]). Some papers consider various models with temporal dependence. [START_REF] Gerber | Ruin theory in the linear model[END_REF] examines the estimation of ruin probabilities in a linear (Gaussian) risk model. [START_REF] Promislow | The probability of ruin in a process with dependent increments[END_REF] derives upper bounds for a similar risk model. [START_REF] Christ | Estimating the adjustment coe¢ cient in an ARMA(p, q) risk model[END_REF] propose an empirical-moment generating function type estimator of the adjustment coe¢ cient in the risk model introduced by [START_REF] Gerber | Ruin theory in the linear model[END_REF]. [START_REF] Yang | Martingale method for ruin probability in an autoregressive model with constant interest rate[END_REF] derive both exponential and non exponential upper bounds to the in…nite-time ruin probability in an extension to the model of [START_REF] Gerber | Ruin theory in the linear model[END_REF] with interest rate. In a multivariate extension to [START_REF] Yang | Martingale method for ruin probability in an autoregressive model with constant interest rate[END_REF], [START_REF] Zhang | A time-series risk model with constant interest for dependent classes of business[END_REF] obtain a Lundberg-type inequality for the ruin probability in a discrete-time model with dependent classes of business based on a multivariate …rst-order autoregressive time-series model and assuming a constant interest rate. [START_REF] Nyrhinen | Rough descriptions of ruin for a general class of surplus processes[END_REF]Nyrhinen ( , 1999a,b) ,b) derive Lundberg-type asymptotic results for the case of dependent claims with light tails using results from large deviation theory. [START_REF] Müller | Asymptotic ruin probabilities for risk processes with dependent increments[END_REF] obtain the same result using Markov inequalities. A special case of the classical discrete time risk model is the compound binomial risk model which was …rst proposed by Gerber (1988a, b) and further examined e.g. by [START_REF] Shiu | The probability of eventual ruin in the the compound binomial model[END_REF], [START_REF] Willmot | Ruin probabilities in the compound binomial model[END_REF] and [START_REF] Dickson | Some comments on the compound binomial model[END_REF]. In the last decade, contributions such as [START_REF] Yuen | Ruin probabilities for time-correlated claims in the compound binomial model[END_REF] and [START_REF] Cossette | Ruin probabilities in the compound Markov binomial model[END_REF]Cossette et al. ( , 2004a, b, c) , b, c) have considered temporal dependence within the compound binomial risk model.

In their paper, [START_REF] Müller | Asymptotic ruin probabilities for risk processes with dependent increments[END_REF] apply the result in (2) with ( 3) and ( 4) within notably the classical discrete time risk model and linear risk models considered by [START_REF] Gerber | Ruin theory in the linear model[END_REF] and [START_REF] Promislow | The probability of ruin in a process with dependent increments[END_REF]. However, the linear risk models such as the Gaussian AR(1) and ARMA(p; q) may be less applicable in the context of risk theory. As stated in almost all actuarial textbooks, compound distributions are the corner stones of several risk models in risk theory.

In this paper, we examine risk models based on compound distributions assuming time series models for count data as speci…c temporal dependence structures for N = fN k ; k 2 N + g. Time series of counts arise in many di¤erent contexts such as counts of cases of a certain disease, counts of price changes, counts of injuries in a workplace, etc. In our paper, the following types of models for time series of counts will be considered: Models based on thinning. This category of models includes the integer value moving average (INMA), integer value autoregressive (INAR), integer moving average autogressive models (INARMA). These models are based on appropriate thinning operations which replace the scalar multiplications by a fraction in the Gaussian ARMA framework of time series with continuous data (see e.g. Al-Osh andAlzaid (1987, 1988), [START_REF] Mckenzie | Autoregressive-moving average processes with negative binomial and geometric marginal distributions[END_REF][START_REF] Mckenzie | Some ARMA Models for Dependent Sequences of Poisson Counts[END_REF][START_REF] Mckenzie | Discrete variate time series[END_REF], and [START_REF] Joe | Multivariate Models and Dependence Concepts[END_REF]). [START_REF] Quddus | Time series count data models: An empirical application to tra¢ c accidents[END_REF] and [START_REF] Gourieroux | Heterogeneous INAR(1) model with application to car insurance[END_REF] apply the class of INAR models for the time series analysis of car accident count data. [START_REF] Freeland | Statistical analysis of discrete time series with applications to the analysis of workers compensation claims data[END_REF] and [START_REF] Freeland | Analysis of low count time series data by Poisson autoregression[END_REF] analyze a collection of time series of claim counts at the Worker' s Compensation Board of British Columbia. Empirical studies of the INMA model include notably the one of Brännas, [START_REF] Brännäs | A new approach to modelling and forecasting monthly guest nights in hotels[END_REF] on the tourism demand and the one of Brännas and Quoreshi (2004) on the number of transactions in stocks. [START_REF] Kremer | INAR and IBNR[END_REF] adapts the theory of INAR processes to the context of IBNR-predictions.

Models based on Markov chains. The discrete time process N is itself a Markov chain of order 1 or more (see Mackenzie (2003) and references therein). Markov chains can be used to deal with count data in time series. This approach is reasonable when there are very few possible values for N . When the state space of N becomes too large, these models loose tractability. A good example is the Markov Bernoulli process on which is based the compound Markov binomial model proposed by [START_REF] Cossette | Ruin probabilities in the compound Markov binomial model[END_REF]Cossette et al. ( , 2004a)). [START_REF] Arvidsson | Dependence in non life insurance[END_REF] …t the compound Markov binomial model to allrisk-insurance data from the insurance company Folksam.

Models based on a speci…c conditional distribution with stochastic parameters. The dependence structure is based on an underlying process such as an ARMA time series or a hidden discrete time Markov chain de…ned on a …nite time space (see e.g. [START_REF] Zeger | A regression model for time series of counts[END_REF], [START_REF] Heinen | Modelling Time Series Count Data: An Autoregressive Conditional Poisson Model[END_REF], and [START_REF] Jung | Time series of count data: modeling, estimation and diagnostics[END_REF] and references therein). When the underlying process is a hidden discrete time Markov chain, these models may be also called Markov regime switching models or risk models de…ned in a Markovian environment. Examples of the conditional distributions are the Poisson, the binomial or the negative binomial distributions. [START_REF] Malyshkina | Markov switching negative binomial models: An application to vehicle accident frequencies[END_REF] explore two-state Markov switching count data models to study accident frequencies.

Other models such as models based on copulas, where the marginals are …xed and the dependence structure is based on a copula (see e.g. [START_REF] Joe | Multivariate Models and Dependence Concepts[END_REF] and [START_REF] Frees | Copula credibility for aggregate loss models[END_REF]), could have been considered. A review on time series models for count data can be found in the survey of [START_REF] Mckenzie | Discrete variate time series[END_REF], the monographs of [START_REF] Cameron | Regression Analysis of Count Data[END_REF] and [START_REF] Kedem | Regression Models for Time Series Analysis[END_REF]. All examples considered for N in this paper satisfy the constraints on the process fW k ; k 2 N + g given in [START_REF] Müller | Asymptotic ruin probabilities for risk processes with dependent increments[END_REF].

The paper is structured as follows. In the next three sections, we present risk models based on compound distributions assuming for N a Poisson MA(1) process, Poisson AR(1) process, Markov Bernoulli process, and a Markov switching regime process. For each model, we examine its properties and derive explicit expressions for c n (r) and c(r). Speci…c cases for which an explicit expression can be found for are also presented. Numerical examples are provided to illustrate di¤erent topics discussed in the paper.

Models based on thinning

We begin this section by introducing the operator " " used in models based on thinning. Let M be a non-negative integer-valued random variable and 2 [0; 1]. The -operation of on M is referred to as the binomial thinning of M and is de…ned as

M = M X i=1 Y i ;
where fY i ; i = 1; 2; :::g is a sequence of i.i.d Bernoulli r.v's with mean and independent of M .

Risk Model -Poisson MA(1)

De…nitions and properties

Now let us consider a Poisson MA(1) process for N = fN k ; k 2 N + g whose dynamic is de…ned as

N k =
" k 1 + " k ; k = 1; 2; :::;

where " = f" k ; k 2 Ng is a sequence of i.i.d. r.v.'s following a Poisson distribution with mean 1+ and 2 [0; 1]. Also,

" k 1 = " k 1 X j=1 k 1;j ; k = 1; 2; :::; (6) 
where f k 1;j g is a sequence of i.i.d. Bernoulli r.v.'s with mean . The sequences f k;j ; j = 1; 2; :; ::g (for k = 1; 2; :::) are assumed independent for di¤erent periods k: Given these distribution assumptions, the r.v.

" k 1 is Poisson with mean 1+ . From ( 5) and ( 6), we have

N 1 = " 1 + " 0 X j=1 0;j ; N 2 = " 2 + " 1 X j=1 1;j ;
:::

N k = " k + " k 1 X j=1 k 1;j :
As stated in Al-Osh and Alzaid (1987), the marginal distribution of the model ( 5) is uniquely determined by the distribution of " k . Hence, N k is Poisson distributed with mean

E [N k ] = E [ " k 1 + " k ] = 1 + + 1 + = and
(5) generates a stationary process with a Poisson( ) marginal distribution. If = 0, the behavior of N k is solely explained by " k , which means that the claim number r.v.'s are independent from one period to the other. If = 1, the r.v. N k is equally a¤ected in its behavior by the r.v.'s " k and " k 1 . The number of claims N k in period k is therefore mainly due to the new arrivals between k 1 and k, and a proportion of the new arrivals between k 2 and k 1 de…ned by the thinning procedure.

One can also use the p.g.f. to identify the distribution of N k

P N k (r) = E r N k = E [r " k ] E h r P" k 1 j=1 k 1;j i = e 1+ (r 1) e 1+ ((1 )+ r 1)
= e 1+ ((1+ )r (1+ )) = e (r 1) :

The autocorrelation function of N is

N (h) = 1+ ; h = 1 0; h > 1 ;
(see [START_REF] Mckenzie | Some ARMA Models for Dependent Sequences of Poisson Counts[END_REF]) which implies that N (1) 2 [0; 0:5]. Therefore, 1988), the expression for the joint mass probability function of (N k ; N k 1 ) is given by [START_REF] Mckenzie | Some ARMA Models for Dependent Sequences of Poisson Counts[END_REF][START_REF] Mckenzie | Discrete variate time series[END_REF] for other properties of the Poisson MA(1) model.

Cov (W k ; W k+h ) = (h) E [B] 2 = ( E[B] 2 1+ ; h = 1 0; h > 1 : Also from McKenzie (
Pr (N k = n k ; N k 1 = n k 1 ) = e (2 1+ ) min(n k ;n k 1 ) X j=0 1+ j 1 1+ n k +n k 1 2j n k +n k 1 j j! (n k j)! (n k 1 j)! ; for n k ; n k 1 2 N. See e.g.

Expression for c (r)

We derive the expression of the function c(r) in a risk model which considers a Poisson MA(1) process for the dependence structure of the number of claims. As previously mentioned, the solution to c(r) = 0 is the adjusment coe¢ cient which enables us to examine the riskiness of the suplus process.

Proposition 1 The expression for c (r) is given by

c (r) = (1 ) 1 + M B (r) + (1 + ) M 2 B (r) 1 + r : (7) 
Proof. The m.g.f. of S n is expressed as E e rSn = E h e r(W 1 +:::+Wn) i = M W 1 ;:::;Wn (r; :::; r) :

Let the joint p.g.f. of (N 1 ; :::; N n ) be given by P N 1 ;:::;Nn (t 1 ; :::

; t n ) = E h t N 1 1 t N 2 2 :::t Nn n i :
The expression for the multivariate m.g.f. M W 1 ;:::;Wn (r 1 ; :::; r n ) of (W 1 ; :::; W n ) is de…ned in terms of P N 1 ;:::;Nn (t 1 ; :::; t n ) and the m.g.f. of B M W 1 ;:::;Wn (r 1 ; :::; r n ) = P N 1 ;:::;Nn (M B (r 1 ) ; ::

:; M B (r n )) : (9) 
The expression for P N 1 ;:::;Nn (t 1 ; :::; t n ) is given by

E h t N 1 1 t N 2 2 :::t Nn n i = E t " 1 1 t P " 0 j=1 0;j 1 t " 2 2 t P " 1 j=1 1;j 2 :::t "n n t P" n 1 j=1 n 1;j n = E t P " 0 j=1 0;j 1 E t " 1 1 t P " 1 j=1 1;j 2 :::E t " n 1 n 1 t P" n 1 j=1 n 1;j n E [t "n n ] ; (10)
where

E t P " 0 j=1 0;j 1 = e 1+ ((1 )+ t 1 1) = e 1+ (t 1 1) (11) E [t "n n ] = e 1+ (tn 1) ; (12) and E 
t " n 1 n 1 t P" n 1 j=1 n 1;j n = E " n 1 E t " n 1 n 1 t P" n 1 j=1 n 1;j n " n 1 = E " n 1 t " n 1 n 1 E t P" n 1 j=1 n 1;j n " n 1 = E " n 1 t " n 1 n 1 (1 + t n ) " n 1 = E " n 1 [(t n 1 (1 + t n )) " n 1 ] = e 1+ ((t n 1 (1 + tn)) 1)
= e 1+ ((1 )t n 1 + t n 1 tn 1) : (13) Substituting ( 11), ( 12), and ( 13) into (10), we obtain

E h t N 1 1 t N 2 2 :::t Nn n i = e 1+ (
(1 )+ t 1 1) e 1+ ((1 )t 1 + t 1 t 2 1) :::e 1+ ((1 )t n 1 + t n 1 tn 1) e 1+ (tn 1) :

Combining ( 14), ( 9) and ( 8), we have E e rSn = e 1+ ((1 )+ M B (r) 1) e

(n 1) 1+

((1 )M B (r)+ M B (r) 2 1) e 1+ (M B (r) 1) = e 1+ f(1+ +(n 1)(1 ))M B (r)+(n 1) M B (r) 2 +1 1 n+1 1g = e 1+ f(1+ +(n 1)(1 ))M B (r)+(n 1) M B (r) 2 ng = e (n+ ) 1+ (1+ +(n 1)(1 ))M B (r)+(n 1) M B (r) 2 n+ 1 = e (n+ ) 1+ (n(1 )+2 )M B (r)+(n 1) M B (r) 2 n+ 1 : (15) 
After inserting ( 15) in (3), we obtain

c n (r) = 1 n ln (E [exp (r (S n n ))]) = 1 n 1 + n (n (1 ) + 2 ) M B (r) + (n 1) M B (r) 2 (n + ) o r = (1 ) 1 + M B (r) + 2 n (1 + ) M B (r) + (n 1) n (1 + ) M 2 B (r) (n + ) n (1 + ) r ; which implies c (r) = lim n!1 c n (r) = (1 ) 1 + M B (r) + (1 + ) M 2 B (r) 1 + r :
Remark 2 Given (15), S n = P n k=1 W k follows a compound Poisson distribution i.e. we can express S n as

S n = ( P Mn j=1 C (n) j ; M n > 0 0; M n = 0 ;
where M n has a Poisson distribution with mean (n+ )

1+

and

C (n) 1 ,C (n) 2 , ... is a sequence of i.i.d. r.v.'s distributed as C (n) with F C (n) (x) = (n (1 ) + 2 ) F B (x) + (n 1) F 2 B (x) n + : Note that F n B denotes the n-fold convolution of F B for n 2 N + . If = 0, then E e rSn = e n fM B (r) 1g ;
which correponds to the m.g.f of the aggregate claim amount in the classical discrete time risk model.

Impact of the parameter

To analyze the impact of the dependence parameter , we take the derivative of c (r) with respect to and we obtain @c (r)

@ = 1 + M B (r) (1 ) (1 + ) 2 M B (r) + (1 + ) M 2 B (r) (1 + ) 2 M 2 B (r) + (1 + ) 2 = (1 + ) (1 + ) 2 M B (r) (1 ) (1 + ) 2 M B (r) + (1 + ) (1 + ) 2 M 2 B (r) (1 + ) 2 M 2 B (r) + (1 + ) 2 = 2 (1 + ) 2 M B (r) + (1 + ) 2 M 2 B (r) + (1 + ) 2 = (1 + ) 2 (M B (r) 1) 2 0:
If < 0 , it follows from above that the solutions and 0 to ( 7) are such that > 0 . This implies that the degree of dangerousness represented by the adjustment coe¢ cient increases with the dependence parameter . Given the structure of the model, when the dependence parameter increases, it becomes more likely that claims in period k 1 also lead to claims in period k, which increases the dangerousness of the portfolio.

The impact of the dependence parameter on the Lundberg coe¢ cient could have been studied using the supermodular order. However, after investigation, the proof of this inequality based on supermodular ordering remains an open problem.

An explicit expression for the adjustment coe¢ cient

In the following proposition, we derive an explicit expression for the adjustment coe¢ cient in the case where the claim amount B is exponentially distributed.

Proposition 3 Assume that B Exp ( ) with mean 1 and m.g.f M B (r) = r . Then, we have

= 2 (1 + ) 2 (1 + ) 1 1 + s 4 (1 + ) 1 + + 1 (1 + ) 2 ! : (16) 
Proof. Here, the function c(r) is

c(r) = (1 ) 1 + r + (1 + ) 2 ( r) 2 1 + r (1 + ) = 0 which is equivalent to (1 ) 2 r + 3 ( r) 2 = r (1 + ) , (17) 
with 1 1+ = . Multiplying ( 17) by ( r) 2 , we obtain

(1 ) 2 ( r) + 3 ( r) 2 = r (1 + ) ( r) 2
leading to the equality

r (1 + ) r 2 + ( 2 (1 + )) r + 2 = 0: (18) 
Solution to (18) leads to the desired result.

Note that, when = 0 in ( 16), the adjustement coe¢ cient becomes = 1 + ;

which corresponds to the adjustment coe¢ cient when claim number r.v.'s are assumed to be independent.

To take a look at the impact of on , we di¤erentiate the expression derived for in terms of : We …nd

@ @ = 2 (1 + ) 0 B B @ 1 (1 + ) 2 1 (1 + ) 2 2 (1 + ) 1 1+ r 2 (1 + ) 1 1+ 2 4 (1 + ) 1 C C A : (19) 
Since

2 (1 + ) 1 1+ r 2 (1 + ) 1 1+ 2 4 (1 + ) > 1;
for 2 [0; 1], we have d d < 0. Hence, the adjustment coe¢ cient decreases (as shown in Section 2.1.3) as the dependence parameter increases.

Example 4

We consider an insurance portfolio where the claim amount r.v. has an exponential distribution with mean 1 = 1. The premium income includes a relative risk margin equal to 20%. In 1 clearly con…rm that the adjustment coe¢ cient decreases as the dependence parameter increases. The adjustment coe¢ cient is a measure of dangerousness of the risk portfolio. As the adjustment coe¢ cient decreases, the risk process becomes more dangerous. Based on the approximation of (u) by e u , it means that the initial surplus which is required to have an in…nite ruin probability of 1% increases as the dependence parameter increases. Therefore, we may conclude that if the dependence between the claim number r.v.'s is at a high (low) level then it requires a large (small) amount of initial surplus to satisfy an in…nite time ruin probability of 1%.

2.2 Risk Model -Poisson AR(1)

De…nitions and properties

We suppose here that N = fN k ; k 2 N + g is a Poisson AR(1) process where the r.v. N 1 has a Poisson distribution with mean and the autoregressive dynamic for N 2 , N 3 , ... is given by

N k = " k + N k 1 ; (20) 
for k = 2; 3; :::. We assume that " = f" k ; k 2 N + g is a sequence of i.i.d. r.v.'s following a Poisson distribution with mean (1 ) where 2 [0; 1]. Following [START_REF] Joe | Multivariate Models and Dependence Concepts[END_REF], the dependence structure of the Poisson AR(1) process can be represented as follows

N 2 = N 1 X i=1 21i + " 2 ; N 3 = N 1 X i=1 21i 31i + " 2 X i=1 32i + " 3 ; ::: N k = N 1 X i=1 21i 31i ::: k1i + k 1 X j=2 " j X i=1 k Y l=j+1 l;j;i + " k (k = 3; 4; :::).
The r.v.'s " 2 ; " 3 ::: are i.i.d. and follow a Poisson distribution with mean (( 1) ) and 21 ; 31 ; 32 ; :::; k1 ; :::; k;k 1 are i.i.d. Bernoulli r.v's with mean . Hence, given a sequence of i.i.d. Poisson r.v's " with mean (1 ) ; the model given in (20) yields a stationary sequence of Poisson r.v.'s with mean . The model given by ( 20) may be interpreted in the context of the evolution of a population as the number of people at time k; N k ; beeing the sum of those who arrive in the interval (k 1; k) and survive until time k, i.e. " k , and those who survive from time (k 1) to k, i:e:, N k 1 . In an insurance context, the number of claims in period k; meaning N k , can be viewed as the sum of the new claims during period k, and the claims of period k 1 leading to claims in period k.

As for a classical Gaussian AR(1) model, the autocorrelation function for N is equal to N (h) = h , for h 1 (see [START_REF] Mckenzie | Some ARMA Models for Dependent Sequences of Poisson Counts[END_REF]) with N (1) 2 [0; 1). The expression for the covariance between W k and W k+h corresponds to

Cov (W k ; W k+h ) = h E [B] 2 ;
for h 1. The joint p.m.f. of (N k ; N k 1 ) is given by

Pr (N k = n k ; N k 1 = n k 1 ) = e (2 ) min(n k ;n k 1 ) X j=0 j (1 ) n k +n k 1 2j n k +n k 1 j j! (n k j)! (n k 1 j)! ;
(see, e.g. [START_REF] Mckenzie | Some ARMA Models for Dependent Sequences of Poisson Counts[END_REF]).

Expression for c (r)

The expression for c (r) is provided in the following proposition.

Proposition 5 Assuming that M B (r) < 1, the expression for c (r) is given by

c (r) = (1 ) 2 M B (r) 1 ( M B (r)) (1 ) r = 2 M B (r) 1 ( M B (r)) r ; (21) 
where = 1 .

Proof. We have 

S n = W 1 + ::: + W n = Ln
; M B (r)) = E h M B (r) N 1 :::M B (r) Nn i = E h M B (r) N 1 +:::+Nn i = E h M B (r) Ln i = P Ln (M B (r)) :
We need to …nd the expression for P Ln (t).

Let us develop the expressions for P Ln (t) for periods n = 1; 2; 3; 4. We have P Ln (t) = E t N 1 +:::+Nn = E t N 1 :::t Nn :

For n = 1, we have

P Ln (t) = E t N 1 = e (t 1) :
For n = 2, we have

P Ln (t) = E t N 1 t N 2 = E h t N 1 t P N 1 i=1 21i t " 2 i
= e ( t+ t 2 1) e (t 1) :

For n = 3, we …nd

P Ln (t) = E t N 1 t N 2 t N 3 = E t N 1 t n P N 1 i=1 21i + P N 1 i=1 21i 31i o t " 2 t f P " 2 i=1 32ig t " 3 = E t N 1 t n P N 1 i=1 21i + P N 1 i=1 21i 31i o E h t " 2 t f P " 2 i=1 32ig i E [t " 3 ]
= e (( 2 + )t+ t 2 + 2 t 3 1) e ( t+ t 2 1) e (t 1) :

For n = 4, we begin with

P Ln (t) = E t N 1 t N 2 t N 3 t N 4 = E t n N 1 + P N 1 i=1 21i + P N 1 i=1 21i 31i + P N 1 i=1 21i 31i 41i o t f"2+ P " 2 i=1 32i + P " 2 i=1 32i 42ig t f"3+ P " 3 i=1 43ig t " 4 = E t n N 1 + P N 1 i=1 21i + P N 1 i=1 21i 31i + P N 1 i=1 21i 31i 41i o E h t f"2+ P " 2 i=1 32i + P " 2 i=1 32i 42ig i E h t f"3+ P " 3 i=1 43ig i E [t " 4 ] = E t n N 1 + P N 1 i=1 21i + P N 1 i=1 21i 31i + P N 1 i=1 21i 31i 41i
o e (( 2 + )t+ t 2 + 2 t 3 1) e ( t+ t 2 1) e (t 1) :

Given ( 22), we need to …nd the expression for

E t n N 1 + P N 1 i=1 21i + P N 1 i=1 21i 31i + P N 1 i=1 21i 31i 41i o
and we obtain the following

E t n N 1 + P N 1 i=1 21i + P N 1 i=1 21i 31i + P N 1 i=1 21i 31i 41i o = E t N 1 E t n P N 1 i=1 21i o E t n P N 1 i=1 21i 31i o E t n P N 1 i=1 21i 31i 41i o jN 1 ; 2i ; 3i jN 1 ; 21i jN 1 = E " t N 1 E " t n P N 1 i=1 21i o E " t n P N 1 i=1 21i 31i o N 1 Y i=1 + t n 21i 31i o jN 1 ; 21i # jN 1 ## = E " t N 1 E " t n P N 1 i=1 21i o E " N 1 Y i=1 t f 21i 31i g + t f2 21i 31i g jN 1 ; 21i # jN 1 ## = E " t N 1 E " t n P N 1 i=1 21i o N 1 Y i=1 + t 21i + + t 2 21i jN 1 ## = E " t N 1 E " N 1 Y i=1 t 21i + t 21i + t 21i + t 2 21i jN 1 ## = E " t N 1 E " N 1 Y i=1 2 t 21i + t 2 21i + t 21i + 2 t 3 21i jN 1 ## : ( 23 
)
Further manipulations lead to

E " t N 1 E " N 1 Y i=1 2 t 21i + t 2 21i + t 21i + 2 t 3 21i jN 1 ## = E " t N 1 N 1 Y i=1 2 ( + t) + + t 2 + ( + t) + 2 + t 3 # = E h t N 1 2 ( + t) + + t 2 + ( + t) + 2 + t 3 N 1 i = e (( 3 +2 2 + 2 )t+( 2 + 2 )t 2 + 2 t 3 + 3 t 4 1) : (24) 
Finally, combining ( 24) and ( 22), we obtain

P L 4 (t) = E t N 1 t N 2 t N 3 t N 4 = e f( 3 +2 2 + 2 )t+( 2 + 2 )t 2 + 2 t 3 + 3 t 4 1g
e f( 2 + )t+ t 2 + 2 t 3 1g e f t+ t 2 1g e f(t 1)g and r) 1g :( 25)

M S 4 (r) = P L 4 (M B (r)) = e f( 3 +2 2 + 2 )MB(r)+( 2 + 2 )MB(r) 2 + 2 M B (r) 3 + 3 M B (r) 4 1g e f( 2 + )MB(r)+ M B (r) 2 + 2 M B (r) 3 1g e f M B (r)+ M B (r) 2 1g e fM B (
In ( 25), we observe that

2 + = ( + ) = 2 + 2 = ( + ) = 3 + 2 2 + 2 = ( + ) 2 = etc:
Consequently, we deduce the following general form for M Sn for n = 2; 3; :::

M Sn (r) = P Ln (M B (r)) = e f M B (r) P n k=0 ( M B (r)) k + n (M B (r)) n ng e f nM B (r) P n k=0 ( M B (r)) k +M B (r) P n k=0 ( M B (r)) k M B (r) P n k=0 (k+1)( M B (r)) k ng = e M B (r) 1 ( M B (r)) n 1 M B (r) + n (M B (r)) n n (26) e nM B (r) 1 ( M B (r)) n 1 M B (r) +M B (r) 1 ( M B (r)) n 1 M B (r) M B (r) n( M B (r)) n 1 (1 M B (r)) + 1 ( M B (r)) n (1 M B (r)) 2 n :
From ( 26), we …nd this expression for c n (r)

c n (r) = 1 n ln n E h e r(Sn ) io = 8 > > < > > : M B (r) 1 ( M B (r)) n 1 M B (r) + n (M B (r)) n 1 + M B (r) n 1 ( M B (r)) n 1 M B (r) + 1 ( M B (r)) n 1 M B (r) n( M B (r)) n 1 (1 M B (r)) 1 ( M B (r)) n (1 M B (r)) 2 n n r 9 > > = > > ; n : (27) 
Assuming that M B (r) < 1 and taking the limit of ( 27), we obtain the desired result

c (r) = lim n!1 c n (r) = 2 M B (r) 1 ( M B (r)) r :
Note that, given (26), S n follows a compound Poisson distribution.

Combining ( 4) and ( 21), is the strictly positive solution to

Impact of the parameter

To have an idea of the in ‡uence of the dependence parameter on the Lundberg coe¢ cient, we take the derivative of c (r) de…ned by ( 21) with respect to

dc (r) d = 2 (1 ) M B (r) 1 ( M B (r)) + M B (r) (1 ) 2 M B (r) (1 ( M B (r))) 2 + 0:
If < 0 , then the solutions and 0 to (21) are such that > 0 since dc(r) d 0. It means that the degree of dangerousness represented by the adjustment coe¢ cient increases with the dependence parameter .

An explicit expression for the adjustment coe¢ cient

A nice expression for the Lundberg coe¢ cient is provided in the next proposition when the claim amount r.v. B follows an exponential distribution.

Proposition 6 Assume that B Exp ( ) with mean 1 and m.g.f M B (r) = r . Then, we have

= 1 + = (1 ) 1 + ; (28) 
where 2 [0; 1).

Proof. When B follows an exponential distribution, (21) becomes

2 r 1 r r = 0;
which can be rewritten as follows

2 r r = 2 r r (1 + ) E [B] = 0; or 2 2 (1 + ) r + r + r 2 (1 + ) E [B] = 0:
After some rearrangements, we …nd the desired result.

As expected, if = 0 (i.e. the independence case), the expression (28) for the Lundberg coe¢ cient is reduced to = 1 + :

Example 7 For an insurance portfolio, we assume that the claim amount r.v. B has an exponential distribution with mean 1 = 1 and that the premium income includes a relative risk margin of 20%. In Results in Table 2 illustrate the dramatic impact of the dependence parameter on the adjustment coe¢ cient . The risk process becomes more dangerous as the dependence (represented by the parameter ) between the claim number r.v.'s become more signi…cative. Therefore, it requires a larger (smaller) amount of initial surplus to satisfy an in…nite time ruin probability of 1% as the dependence parameter increases (decreases).

Comments

One can carry a similar analysis for a Poisson moving average or a Poisson autoregressive model of order greater than 1, and also for a Poisson autoregressive moving average process. Other marginals such as the negative binomial distribution could be considered.

Markov Bernoulli Process

De…nitions and properties

We assume that the claim number process N is a Markov Bernoulli process i.e. N is a Markov chain with state space f0; 1g and with transition probability matrix

P = 1 (1 ) q (1 ) q (1 ) (1 q) + (1 ) q = p 00 p 01 p 10 p 11 ; (29) 
where can be seen as the dependence parameter, introducing a positive dependence relation between the claim numbers r.v.' s. In this risk model, at most one claim can occur over a period. The initial probabilities associated to P are Pr (N 0 = 1) = q = 1 Pr (N 0 = 0) ; where 0 < 1 and 0 < q < 1: When tends to 1, a period with a (no) claim will be likely followed by a period with a (no) claim. If = 0, the claim number process N becomes a sequence of i.i.d. r.v.'s.

The covariance between N k and N k+h is given by Cov (N k ; N k+h ) = Pr (N k+h = 1; N k = 1) Pr (N k+h = 1) Pr (N k = 1) = q Pr(N k+h = 1 j N k = 1) q 2 = q(1 q) h ; for k = 1; 2; ::: and h = 0; 1; 2; ::: . Also, we know that Cov (W k ; W k+h ) = E [B] 2 Cov (N k ; N k+h ) for k = 1; 2; ::: and h = 1; 2; ::: which implies that

(h) = E [B] 2 q(1 q) h V ar (B) q + E [B] 2 q (1 q) = E [B] 2 (1 q) V ar (B) + E [B] 2 (1 q) h ;
for h = 1; 2; ::: . Hence, the autocorrelation function (h) decreases exponentially. A special case of this model is examined in [START_REF] Cossette | Ruin probabilities in the compound Markov binomial model[END_REF]Cossette et al. ( , 2004a, b), b). In the latter model, it is assumed that the premium rate is equal to 1 and the claim amount distribution is de…ned over N + . Here, the claim amount distribution is de…ned over R + .

Expression for c (r)

The next proposition gives the function c (r) when N is a Markov Bernoulli process. 2-state space f 1 ; 2 g with transition probabilities

p ij = Pr ( k+1 = j j k = i ) ;
for k 2 N + . We assume that the conditional p.m.f. of (N k j k = j ) (k 2 N + ) is f N j = j , the conditional c.d.f. is F N j = j and the corresponding conditional m.g.f. is M (j) N (r). Assume that the conditional distribution of (N k j k = j ) is Poisson with mean j (j = 1; 2) with 1 2 . The frequencies in the two di¤erent states are generated by separate counting processes. For example in [START_REF] Malyshkina | Markov switching negative binomial models: An application to vehicle accident frequencies[END_REF] they consider two di¤erent states of roadway safety to model vehicule accident frequencies. Other discrete distributions for (N k j k = j ) (e.g. negative binomial, binomial, etc.) could be considered.

We suppose that the transition probability matrix P of is Note that the claim amounts are assumed not to be a¤ected by the Markovian process.

The expression for the conditional m.g.f. of W k given k = j is given by

E e rW k j k = j = E h e N k ln(M B (r)) j k = j i = M (j) N (ln (M B (r))) = M (j)
W (r) = e j (M B (r) 1) :

Expression for c (r)

The function c (r) is provided in the following proposition. where (p 11 p 22 p 12 p 21 ) = :

Proof. We de…ne the matrix M (r) where the entries are

m ij (r) = p ij M (j) W (r) e r
for i; j 2 f1; 2g and some r 0. We …nd c (r) in a similar way as in the previous section based on the eigenvalues of M (r). They are the solution to det (M J) = 0;

where J is the identity matrix. Therefore,

M J = p 11 M (1) 
W (r) e r p 12 M

(2)

W (r) e r p 21 M (1) W (r) e r p 22 M (2) W (r) e r
! and its determinant is

h ( ) = 2 e r p 11 M (1) W (r) + p 22 M (2) W (r) + e 2 r M (1) W (r) M (2) 
W (r) (p 11 p 22 p 12 p 21 ) :

The maximal solution to h ( ) = 0 is (r) = e r p 11 M

(1)

W (r) + p 22 M (2) W (r) + r p 11 M (1) 
W (r) + p 22 M (2) W (r) 2 4M (1) W (r) M (2) W (r) (p 11 p 22 p 12 p 21 ) 2 : (31) 
The desired result is obtained by taking the natural logarithm on both sides of (31).

Remark 11 We could have assumed to be de…ned over a m-state space f 1 ; :::; m g. However, the expression for c (r) would no longer be analytic.

Example 12 We assume that 1 = 1, 2 = 2, = 3 4 , and that the claim amount follows an exponential distribution with mean 1 = 1. The relative security margin is equal to 50%. In Table 4, we compute the Lundberg coe¢ cient for di¤ erent values of the dependence parameter = 0:25; 0; 0.25, 0.5, 0.75. Using the approximation (u) ' e u we compute the amount of surplus required to have an in…nite time ruin probability of 1%.

- The dependence parameter monitors the dependence relation between the claim number r.v.' s. As the parameter increases, the risk process for the portfolio becomes riskier. Therefore, to meet an objective of an in…nite-time ruin probability of 1%, one requires to set aside a higher initial reserve as increases.

5 Weak dependence properties of the Poisson AR(1) model

In [START_REF] Cossette | Adjustment coe¢ cient for risk processes in some dependent contexts[END_REF], we give an estimation procedure for the adjustment coe¢ cient for processes satisfying some weak dependence properties, such as the -dependence or -dependence. For completeness, we …rst recall the de…nition of -dependence (see [START_REF] Dedecker | Weak Dependence: With Examples and Applications[END_REF] for a review on weak dependence). We then examine the weak dependence properties of the Poisson AR(1) model more speci…cally.

-dependence

Let X = fX k ; k 2 Ng be a stochastic process. The -dependence is de…ned in terms of the coe¢ cients of the process X which are de…ned as follows.

De…nition 13 Let k k 1 denotes the sup norm and kgk L = max(kgk 1 ;lip(g)) denotes the Lipschitz norm of a Lipschitz function g (where lip(g) denotes the Lipschitz constant of g). For k 2 N, we de…ne coe¢ cient (k) by (k) = sup jCov(f (X i 1 ; : : : ; X iu ); g(X j 1 ; : : : ; X jv ))j vkf k 1 kgk L ;

where the supremum is taken over multi-indices i = (i 1 ; : : : ; i u ), j = (j 1 ; : : : ; j v ) such that

i 1 < < i u i u + k j 1 < < j v
and all functions f : R u ! R, g : R v ! R are bounded and satisfy the Lipschitz property, with respect to the following distance:

d(x; y) = p X i=1
jx i y i j; x = (x 1 ; : : : ; x p ); y = (y 1 ; : : : ; y p ):

De…nition 14 A stochastic process X is said to be -dependent if the sequence f (k); k 2 Ng is summable.

Because a Poisson M A(1) model is 1-dependent, it is easily seen that it is -dependent. For the Poisson AR(1) model some computations are required to show that we have the dependence.

-dependence for the Poisson AR(1) model

Here we show that the process W = fW k ; k 2 N + g as de…ned in (1) is -dependent. We …rst need to bound the quantities Cov(f (W 0 ); g(W k )); for bounded functions f and g, and k 2 N + . A simple computation gives (n 2 + E(N 2 0 )) Pr(N 0 = n)

X j 1 1 j 2 X m j Pr k 1 X i=0 i " k i = m j ! 3 5 k 2E(N 2 0 ) X j 1 1 j 2 :
Consequently, for any bounded functions f and g, we have that for some constant C > 0,

Cov(f (W 0 ); g(W k )) Ckf k 1 kgk 1 k :

A similar computation for Pr(N i 1 = n 1 ; : : : ; N iu = n iu ; N j 1 = m j 1 ; : : : ; N jv = m jv )

Pr(N i 1 = n 1 ; : : : ; N iu = n iu Pr(N j 1 = m j 1 ; : : : ; N jv = m jv )

for multi-indices i 1 < < i u i u + j 1 < < j v implies that we have, for some constant C > 0, jCov(f (W i 1 ; : : : ; W iu ); g(W j 1 ; : : : ; W jv ))j Ckf k 1 kgk 1 k :

Then, it follows that (k) C k and the sequence f (k); k 2 Ng is summable, meaning that the process W = fW k ; k 2 N + g is -dependent. Consequently, the process fW k ; k 2 N + g associated to the risk model based on the Poisson AR(1) process is also -dependent which implies that the estimation procedure proposed by Cossette et al. (2009) is applicable in the context of this risk model.

Let us recall the estimation procedure for the adjustment coe¢ cient. For r 2 N, let

Y r = r X j=0 (X j
) :

The function E(e tSr ) may be estimated by its empirical moment version: for k 2 N,

M r k (t) = 1 k k 1 X i=0 e tZ r i ;
where Z r i = P r j=1 X j+ir . Then we de…ne b r as the positive solution of 1 r ln M r k (t) = 0. We have that under the condition of weak dependence and on the existence of the adjustment coe¢ cient , b r is a consistent estimator of , provided we take r = o(ln k).

  N 1 + N 2 + ::: + N n and C 1 , C 2 , ... form a sequence of i.i.d. r.v.'s distributed as B. Also, we have M Sn (r) = P N 1 ;:::;Nn (M B (r) ; :::

Proposition 8

 8 The expression for c (r) is given by c (r) = ln (p 00 + p 11 M B (r)) + q (p 00 + p 11 M B (r)) 2 4M B (r) (p 00 p 11 p 10 p 01 ) ln 2 r; where (p 00 p 11 p 10 p 01 ) = : Proof. According to Example 2 of Nyrhinen (1998), c (r) is the natural logarithm of the maximal real eigenvalue of the matrix M (r) M (r) = m 00 (r) m 01 (r) m 10 (r) m 11 (r) whose entries are m i0 (r) = p i0 e r m i1 (r) = p i1 M B (r) e r ; for i 2 f0; 1g and some r 0. The eigenvalues of M (r) are the solution to det (M (r) J) = 0;

Proposition 10

 10 Proposition. The expression for c (r) is given by

h:

  (N 0 = n; N k = m) Pr(N 0 = n) Pr(N k = m)] :Thus, we are left to bound[Pr(N 0 = n; N k = m) Pr(N 0 = n) Pr(N k = m)] :Following Al-Osh and Alzaid (1987), we know that(N 0 ; N k ) L = N 0 ; k N 0 + 0 = n; N k = m) = Pr(N 0 = n) Prk n + denotes the sum of n i.i.d Bernoulli r.v.'s with parameter k ( = dependence parameter). We havePr(N 0 = n; N k = m) Pr(N 0 = n) Pr(N k = m) = Pr(N 0 = n) m X j=1 Pr( k n = j) Pr( k N 0 = j)For j 1, we easily getPr( k n = j) E([ k n] 2 ) j 2 and Pr( k N 0 = j) E([ k N 0 ] 2 ) j 2 : Also, E([ k n] 2 ) n 2 k and E([ k N 0 ] 2 ) 0 = n; N k = m) Pr(N 0 = n) Pr(N k = m)

Table 1 ,

 1 we provide values of computed with (16) for di¤ erent values of . Using (2), we approximate the in…nite time ruin probability (u) by e u and, based on this approximation, we …nd the amount of initial surplus required to have an in…nite time ruin probability of 1%.

		0	0.25	0.5	0.75	1
		0.1667	0.1396	0.1265	0.1186	0.1134
	u =	1 ln (0:01) 27.6310 32.9835 36.4174 38.8272 40.6162

Table 1 .

 1 Values of the Lundberg coe¢ cient in the Poisson MA(1) risk modelResults in Table

Table 2 .

 2 Table 2, we apply (28) to compute values of assuming di¤ erent values of dependence parameter . Using (2), we approximate the in…nite time ruin probability (u) by e u and, based on this approximation, we …nd the amount of initial surplus required to have an in…nite time ruin probability of 1%. Values of the Lundberg coe¢ cient in the Poisson AR(1) risk model.

		0	0.25	0.5	0.75	0.995
		0.1667	0.125	0.0833	0.04167	0.00083
	u =	1 ln (0:01) 27.6310 36.8414 55.2620 110.5241 5526.2042

Table 4 .

 4 Values of the Lundberg coe¢ cient in the risk model de…ned in a Markovian environment.

		0.25	0	0.25	0.5	0.75
		0.064595843 0.063320997 0.061352843 0.0578554	0.049905485
	u =	1 ln (0:01) 71.29205177 72.72737976 75.06042046 79.59793168 92.27783595

M B (r) 1 ( M B (r)) r (1 + ) E [B] = 0;in which the parameter does not appear.
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where J is the identity matrix. Therefore, M (r) J = p 00 e r p 01 M B (r) e r p 10 e r p 11 M B (r) e r and its determinant is h ( ) = 2 p 00 e r + p 11 M B (r) e r + e 2 r M B (r) (p 00 p 11 p 10 p 01 ) :

The maximal solution to h ( ) = 0 is (r) = (p 00 e r + p 11 M B (r) e r ) + 

Taking the natural logarithm on both sides of (30) leads to the desired result.

Example 9 In the context of this particular risk model, we assume that the probability of occurrence of a claim q is equal to 0:1 and that the claim amount r.v. B has an exponential distribution with mean 1 = 1. The relative security margin is equal to 20%. In the following table, we provide values of the Lundberg coe¢ cient for the dependence parameter = 0, 0.25, 0.5, 0.75, 0.995. Approximating (u) by e u , we …nd the amount of surplus such that (u) = 1%. 0 0.25 0.5 0.75 0.995 0.175383924 0.133977918 0.091008226 0.046379157 0.000948 u =

1 ln (0:01) 26.2576528 34.37260609 50.60169187 99.29396004 4857.774458 Table 3. Values of the Lundberg coe¢ cient in the Markov Bernoulli risk model As the dependence parameter becomes larger, the positive dependence relation between the claim numbers r.v.'s increases. It implies that the risk process for the portfolio becomes riskier which requires a higher initial reserve to maintain an in…nite-time ruin probability of 1%.

4 Risk model de…ned in a Markovian Environment

De…nitions and properties

We assume that the claim number process N = fN k ; k 2 N + g is in ‡uenced by an underlying Marvovian environment represented by the time homogeneous Markov chain de…ned over the