

Fuzzy-PID control for multisource energy management in buildings

B. Paris, J. Eynard, F. Thiéry, A. Traoré, T. Talbert and S. Grieu

Thursday, December 11th 2008, Session 4 Eco-Conception 2 : ECO-SOLUTIONS

Summary

- Introduction
- Prototype building modelling
- Control strategies
- Control based on PID controller
- Control based on Fuzzy-PID controller
- Optimization results
- Conclusion

organized by

MONTPELLIER, FRANCE 10-11 DECEMBER, 2008

Introduction
Modelling
Control
strategies
PID
controller
Fuzzy-PID
controller
Results
Conclusion

Introduction

- Building and energy
 - 46% of total energy consumption in France
 - 25% of greenhouse gases emissions
 - Need to save fossil energy
 - Development of more efficient control strategies

Modelling
Control
strategies
PID
controller
Fuzzy-PID
controller
Results
Conclusion

Prototype building modelling

- Fabrication of a building prototype
 - Scale: 1/24
 - Material: Plasterboard, tile floor, polystyrene et polyane
 - Complete, versatile and easy to install instrumentation
 - Development of a monitoring system (ARM9, data acquisition and control)
 - 2 energy sources available for heating :
 - Renewable (Main source)

Introduction
Modelling
Control
strategies
PID
controller
Fuzzy-PID
controller
Results
Conclusion

Prototype building modelling

- Modelling and Identification
 - Choice of an overall equation structure
 - Identification problem formalization (prediction-error minimization)
 - Curve-fitting between experimental and modeled data
 - ◆ Coherent results : mean of all curve-fitting is about 90%

$$T_{i}(k+1) = \alpha_{i}T_{i}(k) + \beta_{1i}u_{1}^{\rho_{1i}}(k) + \beta_{2i}u_{2}^{\rho_{2i}}(k) + \gamma_{i}T_{out}(k)$$

$$\min_{\alpha,\beta_{1},\beta_{2},\rho_{1},\rho_{2},\gamma} \left[J = \sum_{k=1}^{N} (T_{mes}(k) - T_{mod}(k))^{2} \right]$$

s.a.
$$\begin{cases} 7 \text{ indoor thermal equations} \\ -1 < \alpha < 1 \\ -10 < \beta_1 < 10 \\ -10 < \beta_2 < 10 \\ 0 < \rho_1 < 1 \\ 0 < \rho_2 < 1 \\ -10 < \gamma < 10 \end{cases}$$

$$\mathit{fit} = \! 100 \times \! \left(1 - \frac{\left\| T_{\mathit{mod}} - T_{\mathit{mes}} \right\|}{\left\| T_{\mathit{mes}} - \! < T_{\mathit{mes}} > \right\|} \right)$$

Modeled variables	Curve-fitting [%]		
T°C South East	92.22		
T°C South West	91.52		
T°C North East	88.80		
T°C North West	91.45		
T°C middle East	90.69		
T°C middle West	86.59		
T°C middle ceiling	91.15		

Modelling **Control** strategies PID controller **Fuzzy-PID** controller Results Conclusion

Control strategies

- Control scenarios specifications
 - Based on occupancy scenarios and temperature set-point (THCE 2005 rules)
 - Office: medium time occupancy and medium temperature levels
 - Accommodation: long time occupancy and high temperature levels
 - 8 days of temperature set-point « packed in tight » on 24 hours to have a ratio between transitory phase and stationary phase representative of a real building

Introduction
Modelling
Control
strategies
PID
controller
Fuzzy-PID
controller
Results
Conclusion

Control strategies

- Constraints and criteria specification
 - Heating power constraints
 - Temperature set-point constraints
 - Temperature set-point criterion
 - Fossil consumption criterion
 - Global performance criterion
 - Objectives
 - Maximize the performance criterion
 - Respect the constraints

$$\begin{cases} u_{RE} < U_{\text{max_RE}} & s.a. \quad U_{\text{max_RE}} = 80 \, W \\ u_{FE} < U_{\text{max_FE}} & s.a. \quad U_{\text{max_FE}} = 34 \, W \\ U_{\text{max}} = U_{\text{max_RE}} + U_{\text{max_FE}} = 114 \, W \end{cases}$$

$$C_{1:10} : \left| T_{sp}(j) - T_{mean}(j) \right| < 0.1^{\circ}C$$

$$j \in \{1h; 3h; ...; 17h; 21h\}$$

$$I_{C[\%]} = 100 \times \left(1 - \frac{\|T_{sp} - T_{mean}\|}{\|T_{sp} - T_{sp} > \|}\right)$$

$$\%_{FE} = 100 \times \frac{E_{FE}}{E_{Tot}}$$

$$I_P = (I_C - \%_{FE})$$

Modelling Control strategies **PID** controller **Fuzzy-PID** controller Results **Conclusion**

PID controller

- PID is the classical controller →
- Heating power repartition
- Optimal PID controller
 - Optimization of PID gains
 - Maximization of performance criterion
 - Constraints respect
 - Building model
 - PID equations
 - Power constraints
 - Set-point constraints

$$\begin{aligned} u_{RE_PID} &= u_{sat_PID} \\ u_{FE_PID} &= 0 \\ if \quad u_{RE_PID} > U_{\max_RE} \quad then \\ u_{RE_PID} &= U_{\max_RE} \\ u_{FE_PID} &= u_{sat_PID} - U_{\max_RE} \\ if \quad u_{FE_PID} > U_{\max_FE} \quad then \quad u_{FE_PID} = U_{\max_FE} \end{aligned}$$
 end
$$\begin{aligned} \max_{K,K_i,K_d} \left(I_p = I_C - \%_{EF}\right) \end{aligned}$$

7 indoor thermal equations PID controller $1000 < K_p < 0$ s.a. $1 < K_i < 0$ $1 < K_A < 0$ 10 set – point constraints C_{110}

Fuzzy Logic Controlle

MONTPELLIER, FRANCE 10-11 DECEMBER, 2008

Modelling Control strategies PID controller **Fuzzy-PID** controller Results **Conclusion**

Fuzzy-PID controller

- Fuzzy logic control
- Fuzzy-PID structure
- Optimal fuzzy-PID controller
 - Optimization of the fuzzy-PID gains
 - Maximization of the performance criterion
 - Constraints respect
 - **Building model**
 - **Fuzzy-PID equations**
 - Power constraints
 - Set-point constraints

Modelling **Control** strategies PID controller **Fuzzy-PID** controller Results **Conclusion**

Optimization results

 Fuzzy-PID: identical set-point tracking but 7% of fossil energy saving

PID			Fuzzy-PID					
Кр	Ki	Kd	Kp	Ki	Kd	Kfc		
Gains for office temperature set-point								
51.3	0.391	1.00	52.8	0.223	1.00	761		
(ains for a	accommo	dation te	mperatur	e set-poi	nt		
80.0	0.993	0.596	52.3	0.378	1.00	60.8		

	RE [Wh.m ⁻²]	FE [Wh.m ⁻²]	%FE	lc [%]	lp [%]		
Office temperature set-point							
PID	7500	533	6.64	71.9	65.3		
FC-PID	7555	494	6.14	72.0	65.8		
Accommodation temperature set-point							
PID	7431	882	10.6	69.8	59.2		
FC-PID	7496	819	9.9	69.5	59.7		

20

Introduction
Modelling
Control
strategies
PID
controller
Fuzzy-PID
controller
Results
Conclusion

Conclusion

- Fabrication of a building prototype and a monitoring system
- Creation of a thermal model of the building
- Definition of criteria for the control strategy
- Performance comparison between two kind of controllers (PID et fuzzy-PID)
- Results: 7% of fossil energy saving with a fuzzy-PID

Fuzzy-PID control for multisource energy management in buildings

- Thank you for your attention
- Please feel free to ask any questions

