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Introduction 

In France, 25% of greenhouse gases emissions and 

46% of global energy consumption are nowadays 

due to buildings. So, for trying to overcome the 

actual energy crisis, French government has 

published legal documentation [1] [2] with the aim of 

both regulating energy consumption in buildings and 

comparing different buildings, using a global energy 

indicator: kWh.m
-2

.year
-1

. However, the above-

mentioned documentation is not sufficient for 

efficiently promoting energy savings. Indeed, this 

documentation is only about reducing energy by 

means of construction materials, design…A more 

efficient energy management needs appropriately 

controlling energy facilities to achieve energy 

savings, especially concerning heating installations. 

Thus, energy management entails reducing fossil 

energy consumption and enhancing renewable 

energy supply using different heating controllers [3].   

 

For enhancing energy management according to a 

better control of heating energy facilities, a 

simulation model is used. First, a building mock-up 

has been modelled and, secondly, PID and fuzzy-

PID controllers have been designed and 

characterized by indicators. The paper presents the 

developed simulation model, the PID, fuzzy and 

fuzzy-PID theories and the obtained results using 

the above-mentioned controllers. A conclusion ends 

the paper.    

 

Simulations model 

The opportunity to instrument a real building with a 

set of sensors for testing heating controls is rare. In 

addition, the flexibility in sensors and heat sources 

localizations in a building mock-up is a real 

advantage. The lack of thermal inertia promotes the 

reactivity, and avoids energy waste: just a few of 

electricity is consummated to heat the mock-up. 

Thus a building mock-up was built [4]. 

 

The design of the mock up is based on (i) its scale, 

(ii) the building materials, and (iii) the possibility of 

easily knowing the thermal losses of the 

construction. The mock-up is build with polystyrene 

insulation, plasterboard for the walls and polyane for 

the glasses. The length is about 60 cm, the width is 

30 cm and the height is 15 cm. In addition, the 

instrumentation is composed of 8 temperature 

sensors (1 outdoor and 7 indoor) and two heat 

sources represented by electrical resistors. The first 

represents the renewable energy resource (RE) and 

the second, the fossil one (F). 

 

Modelling the building mock-up to develop a 

numerical model for simulations needs both 

temperature and heat power data sets. Several 

trainings to heat the mock-up were carried out, 

according to different powers and different time 

periods. Figure 1 shows an example of temperature 

acquisition during heat tests (around twenty days). 
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Figure 1. Mock-up temperature acquisition and 

power supply. 

 

According to the measurements, indoor temperature 

behaviours show the same response time with 

different amplitudes. Theirs behaviours seem to be 

similar to a first order in reply to a power step or an 

outdoor temperature change. In addition, the more 

the power is, the less the temperature variations 

are. For modelling this specific comportment, a 



power parameter ρ is added to the heat power 

influence such as 0<ρ<1. The study of the thermal 

mock-up behaviour, corresponding to several heat 

powers, leads to the model structure depicted by 

Equation 1. So, the model is composed of seven 

equations, one for each temperature. 
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Equation 1. 

 

Table 1. References for model equations. 

 
T Indoor temperature °C 

i i
th
 sensor  

β Heat power influence  
α Temperature inertia  
γ Outdoor temperature influence  
k Time index  

Ts Sampling time 60 s 
u Heat power W 

Tout Outdoor temperature °C 
ρ Heat power influence  

 

The main objective is to identify for each 

temperature the optimal , 1 , 2 , 1 , 2  and 

  parameters which minimize an error criterion J  

as defined in Equation 2. Optimization is completed 

thanks to a classical iterative algorithm of 

minimization. 
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Equation 2. 

 

mesT  is the measured temperature and modT  is the 

indoor temperature given by the thermal model. k  

represents the time index on which is computed the 

error. 

 

Once optimization is done, a curve-fitting is 

computed (Equation 3) to highlight clearly how each 

model temperature fits the experimental one. Curve-

fitting results are given in Table 2. 
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Table 2. Modelling fits. 

 

Modeled variables fit  [%] 

EastSouthT _  92.22 

WestSouthT _  91.52 

EastNorthT _  88.80 

WestNorthT _  91.45 

EastMiddleT _  90.69 

WestMiddleT _  86.59 

CeilingMiddleT _  91.15 

 

With a mean of similarity above 90%, the 

identification results are very significant. The 7 

equations are afterwards used in simulation for 

estimating the average indoor temperature of the 

mock-up. For example, South West temperature 

parameters are: 

 98.0  

 019.0  

 033.01   

 48.01   

 019.02   

 54.02   

 

Data simulation sets 

External temperatures are recorded at an office of 

the University of Perpignan during a few years. 

Temperature sensors are placed on north of the 

building and these data are used in simulation to 

deal with real external conditions. A sample of 8 

days of 2008 allowed carrying out the simulations 

presented in this paper. For more realistic results 

and balance the lower thermal inertia of the mock-

up, the 8 days of the external temperature variations 

are condensed in 24 hours. With this time 

acceleration, the proportion between transitory and 

stationary stage are closer of a real building 

behavior. 

In addition, temperature set-point instructions are 

required to test the different heating controllers. The 

study of the French legal documentation gives 

answers. Once again, the aim is to be as realistic as 

possible. Thus, two temperature set-point 

instructions are defined: (i) office temperature 

instructions, (ii) accommodation temperature 

instructions (Table 3). 

 

Table 3. Temperature set-points. 

 

Hours for set-points changing 

0 2 4  6  8 10 12 14 16 18 24 
 

19 16 19 16 19 16 19 16 19 7 

21 18 15 18 21 18 15 18 21 7 

Temperature set-points [°C] 



Strategies criteria 

Two different kinds of controllers are compared in 

this paper, classical PID and fuzzy-PID using 

objective criteria. 

 

The global energy indicator used in legal 

documentation in several countries and labels is 

already presented: kWh.m
-2

.year
-1

. It only displays 

the global energy consumption, per square meter of 

the building, during a year of functioning. However, 

this indicator is not sufficient for comparing the 

different heating controllers. That is why new 

indicators were created. The first one, the %FE 

criterion, is the percentage of the fossil energy 

consumed in comparison to the total energy used 

(Equation 4): 
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Equation 4. 

 

The second one, the Ic comfort criterion represents 

how the mean of the indoor temperatures fit the set-

point temperature (Equation 5).
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Equation 5. 

 

Finally, the Ip criterion focuses on the performance 

of the controller comparing the two previously-

mentioned criteria (Equation 6). 

 

 FECP II %  

Equation 6. 

 

To ensure that indoor temperatures correctly follow 

the temperature set-points, 10 constraints were 

added. They assure that at the middle of each step 

of the temperature set-points, the indoor mean 

temperature is equal to the set-point (Equation 7). 
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Equation 7. 

 

Table 4. References for criteria definition. 

 
EFE Fossil energy kWh.m

-2
 

ERE Renewable energy kWh.m
-2
 

ETot Total energy kWh.m
-2
 

%FE Fossil energy index % 
Ic Comfort index % 
Ip Performance index % 

Tmean Mean temperature of the 
model 

°C 

Tsp Temperature set point °C 

Then, constrains on energy resources are added: 

each warmer can put a limited power out. The 

renewable one can only afford 80 W and the fossil 

one only 34 W. So the model is constrained by 

Equation 8. 
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Equation 8. 

 

Proportional Integral Derivate (PID) 

Standard PID controller corresponds to the 

“classical” heating controller in engineering of 

buildings [5]. Thus it serves of reference. So, its 

standard structure for discrete time control with anti-

windup considerations is just reminded (Equation 9). 
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Equation 9. 

 

Power repartition between renewable enegy and 

fossil energy is made as follow (Equation 10): 
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Equation 10. 

 

Parameters pK , iK , and dK  that maximized the 

pI  criterion according to the following optimization 

problem have to be found (Equation 11). 
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Equation 11. 



Optimization results are introduced in the last part of 

the paper and compared to the fuzzy-PID controller 

described in the following part. 

 

Fuzzy control 

The general structure of a fuzzy logic controller 
(FLC), or fuzzy controller (FC), consists of three 
basic portions: the fuzzification unit at the input 
terminal, the inference engine built on the fuzzy 
logic control rule base in the core, and the 
defuzzification unit at the output terminal [6] [7] 
(Figure 2). 
 
The Fuzzification Module transforms the physical 
values of the process signal, e.g. the error signal 
which is an input to the fuzzy logic controller, into a 
normalized fuzzy subset. This subset consists of a 
interval for the range of the input values and a 
normalized membership function describing the 
degree of confidence of the input belonging to this 
range.  It selects reasonable and good, ideally 
optimal, membership functions (noted μX) under 
certain convenient criteria meaningful to the 
application. 
 

 
Figure 2. General structure of a fuzzy logic 

controller. 
 

The fuzzy logic rule base 

Designing a good fuzzy logic rule base is key to 
obtaining a satisfactory controller for a particular 
application. Classical analysis and control strategies 
should be incorporated in the establishment of a 
rule base. A general procedure in designing a fuzzy 
logic rule base includes the following: 
 
 determining the process states and control 

variables, 

 determining input variables to the controller, 

 establishing a fuzzy logic IF-THEN rule base, 

 establishing a fuzzy logic inference engine. 

The defuzzification module 

The defuzzification module is in a sense the reverse 
of the fuzzification module: it converts all the fuzzy 
terms created by the rule base of the controller to 
numerical values. Then it sends them to the 
physical system, so as to execute the control of the 
system. The defuzzification module performs the 
following functions: 
 
 it creates a control signal, u, by combining all 

possible control outputs from the rule base into 

a weighted average formula, 

 it transforms the control output, u, obtained in 

the previous step, to the corresponding 
physical values.  

This converts the fuzzy logic controller’s numerical 
output to a physical means that can actually drive 
the given plant to produce the expected outputs. 

There are several defuzzification formulas, and the 
most commonly used is the “center of gravity” 
formula, and the discrete-time version is the 
following one (Equation 12). 
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Equation 12. 

 

Where iu  are fuzzy subsets consisting of some 

bounded intervals with their associated membership 
functions μXi. 
 
Fuzzy-PID 

Fuzzy control showed its effectiveness when it is 
applied only but also makes it possible to regulate 
the existing parameters of regulation. Studies in 
applied research show that it is even more 
interesting to combine the use of fuzzy logic with 
traditional controllers in order to make these 
controllers more robust. It is a question, for 
example, of working on a existing PI or PID loop on 
processes which one knows the behavior in closed 
loop. The fuzzy order makes it possible to improve 
the behavior in closed loop directly, while being 
superposed on the existing controller. 
 
A certain number of controllers are actually only 
fuzzy PID, i.e. the coefficients of the PID are taken 
as fuzzy variables, so as to increase the 
effectiveness by it. This work concentrates on the 
improvement of the performances of the previous 
existing PID controller, while adding to the control, a 
fuzzy control, having for goal to act on the residual 
error. Fuzzy controller inputs are then defined in the 
derivative successive space of the closed-loop 
error. Figure 3 illustrates an example of fuzzy-PID 
composite control loop [8]. 
The objective of this work is improving the use of 
renewable energy, so the fuzzy controller 
contribution is only added to RE_PID output. This 
makes it possible increasing the performance of the 
PID controller and providing an optimal control. 
 

 
Figure 3. Fuzzy PID control example. 

 
It is necessary to work with a closed loop stabilized 
system and with a small error. The goal of this 
control is to increase the behavior in regulation. The 
methodology of this type of control is the following: 
  
 determining a controller in closed loop (PI or 

PID, etc.), 



 determining the fuzzy rules starting from the 
knowledge of the operator on the controlled 
system, to refine the corrector by regulating 
the parameters of the fuzzy control. 

 
So another parameter Kfc is useful to maximize the 
Ip criterion and it becomes (Equation 13): 

 

 






























10:1

d

,,,

 sconstraintpoint set  10

20001

0K1

01

01000

controller  PID-Fuzzy

equations rmalindoor the 7

..

%min

C

K

K

K

as

II

fc

i

EFCp
fcKdKiKK

 

Equation 13. 
 
This gain comes from the fuzzy controller output, 
and makes it possible to let the fuzzification of the 
variable unchanged while optimizing the range of 
the output values. 
 
The standard structure for discrete-time control 
becomes (Equation 14): 
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Equation 14. 
 

Results for optimization 

The fuzzy controller is a MISO controller type : 
 
 Input 1 : error, ε(t) = c(t)-y(t) 
 Input 2 : d_error, Δε(t) = ε(t) – ε(t-1) 
 Output : out (eq. 12) 
 
Fuzzy controllers achieve fuzzification of the control 
inputs using two triangular memberships functions 
(Positive: Pos, and Negative: Neg) and using three 
for the output (Positive: Pos, Zero, Negative: Neg). 
Recent literature has suggested that other forms of 
input, like gaussian for instance, can be used to 
provide different properties for the controller. 
However, the triangular membership functions 
provide an ideal means of developing control 
capability and are so used in general. 
 
Fuzzy rules can be expressed as follows : 
 

R1 : IF ε is Neg AND Δε is Neg THEN out is Neg 
R2 : IF ε is Neg AND Δε is Pos THEN out is Zero 
R3 : IF ε is Pos AND Δε is Neg THEN out is Zero 
R4 : IF ε is Pos AND Δε is Pos THEN out is Pos 

 
Figure 4 shows rules surface of the fuzzy controller. 
All of the inputs and output variables are described 
in a [-1 1] range because of the small error on the 
closed loop PID structure. 
This is modified and so optimized by the Kfc gain at 
the fuzzy controller output. 
 

 
Figure 4. Fuzzy control rules surface. 

 
Table 6 presents the optimal gains found with the 
optimization procedure for the two temperature set-
points exposed in Table 3.  
 
Table 6. Optimal gains for PID and fuzzy-PID. 
 

PID Fuzzy-PID 

pK  iK  dK  pK  iK  dK  fcK  

Gains for office temperature set-point 

51.3 0.391 1.00 52.8 0.223 1.00 761 

Gains for accommodation temperature set-point 

80.0 0.993 0.596 52.3 0.378 1.00 60.8 

 
Coefficients are substantially different for the two 
temperature set-points. 
 
Results for temperature instructions 

Simulations are done with the optimal gains for PID 
and fuzzy-PID controllers. Results for criteria and 
energy consumptions are given in Table 7. 
 
Table 7. Criteria for PID and fuzzy-PID controllers. 
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FE%  
 %CI

 
 %pI  

Office temperature set-point 

PID 7500 533 6.64 71.9 65.3 

FC-PID 7555 494 6.14 72.0 65.8 

Accommodation temperature set-point 

PID 7431 882 10.6 69.8 59.2 

FC-PID 7496 819 9.9 69.5 59.7 

 
This table shows that fuzzy-PID and PID have 

almost the same cI  criterion. However, the 

pI criterion is quite better for the fuzzy-PID. This 

result can be explained by a lower FE%  for the 

fuzzy-PID. 
 
The more interesting result is the Fossil Energy 
consumption. Indeed, for the office simulation, 7.4% 
of fossil energy is saved with a fuzzy-PID; this 
represents 39 Wh.m

-2
 less than with the PID 

controller that consumes 533 Wh.m
-2

. For the 
accommodation simulation the result is quite 
identical, 7.1% of fossil energy is saved by the 
fuzzy-PID which consumes 63 Wh.m

-2
 less than the 

PID (882 Wh.m
-2

).  
 
Figure 5 shows the comparison of the indoor 
temperature controlled by a PID and a fuzzy-PID, 
subject to an outdoor perturbation temperature. 
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Figure 5. Office indoor temperatures for PID and 

fuzzy-PID controllers with temperature set-point and 
outdoor temperatures. 

 
As it is shown by Figure 5 and Table 7, PID and 
fuzzy-PID controllers have similar behaviors in term 
of temperature set-point tracking. Differences 
appear on the energy consumption repartition 
between renewable and fossil resources. Figure 6 
and 7 present both renewable energy and fossil 
power supplied by a system controlled using PID 
and fuzzy-PID regulator respectively. 
 

 
Figure 6. Warmer power for PID control. 

 

 
Figure 7. Warmer power for fuzzy-PID control. 

 
Conclusion 

The aim of the present paper is proposing an 

heating control strategy for efficiently managing 

energy in buildings. This management focuses on 

promoting both (i) energy savings and (ii) renewable 

energy. For reaching this objective, a building mock-

up model has been developed using both 

temperature and heating power recorded data sets. 

PID and fuzzy-PID controllers have been designed 

and tested with the above-mentioned model 

according to temperature set-points. The legal 

energy indicator (kWh.m
-2

.year
-1

) being insufficient 

for comparing and optimizing the controllers, some 

additional criteria based on both part of fossil energy 

consumed and comfort were created.  

In comparison to a classical PID controller, the 

obtained results allow highlighting that the fuzzy-PID 

controller is able to save 7% of fossil energy without 

any set-point tracking degradation. So, using a 

performance criterion based on energy consumption 

and tracking is essential for optimizing regulator 

parameters in the field of building warming. It also 

allows comparing different kinds of controllers and 

concluding that fuzzy-PID is a valid option. Future 

work will focus on testing the developed controllers 

on real buildings. 
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