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ABSTRACT 

A new supervised learning algorithm using naïve Bayesian classifier is presented in this paper, which calculates the prior 
and conditional probabilities from a given training data and classifies the training examples using these probabilities. If 
any training example is misclassified then the algorithm calculates the information gain of attributes of the training data 
and chooses one attribute from training data with maximum information gain value. After the algorithm splits the training 
data into sub-datasets depending on the attribute values of the selected attribute, and again calculates the prior and 
conditional probabilities for each sub-dataset and classifies the examples of the each sub-dataset using their respective 
probabilities. The process will continue until all the training examples are correctly classified. Finally, the algorithm 
preserves the probabilities of each dataset for the future classification of unknown examples, whose attributes value are 
known but class value is unknown. The proposed algorithm addresses the problem of classifying the large dataset and it 
has been successfully tested on a number of benchmark problems, which achieved high classification rates using limited 
computational resources.  
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1. INTRODUCTION 

The naïve Bayesian classifier (NB) is one of the most popular data mining algorithms for classifying the 
large dataset. It has been successfully applied to the different problem domains of classification task such as 
intrusion detection, image and pattern recognition, weather forecasting, medical diagnosis, loan approval and 
bioinformatics etc [Hastie 2001], [Duda 2000], [Chai 2002]. The classification task is to map the set of 
attributes of sample data onto a set of class labels, and naïve Bayesian classifier particularly suitable as 
proven universal approximates. The NB classifier is a probabilistic approach for performing supervised 
learning that provides an optimal way to predict the class of an unknown example [Kononenko 1990], 
[Langely 1992]. In NB class conditional probabilities for each attribute values are calculated from the given 
training data, and then these probabilities are used to classify the known or unknown examples. 

In this paper, we proposes a new learning algorithm which calculates the prior and conditional 
probabilities from a given training data and classifies the training examples using these probabilities, if any 
training example is misclassified then the algorithm calculates the information gain for attributes of training 
data and chooses one attribute of training data with maximum information gain value. After the algorithm 
splits the dataset into sub-datasets depending on the attribute values of chosen attribute, and again calculates 
the prior and conditional probabilities for each sub-dataset and classifies the examples of the each sub-dataset 
using their respective probabilities. The algorithm will continue this process until all the training examples 
are correctly classified. Finally, the algorithm preserves the prior and conditional probabilities of each dataset 
for the future classification of unknown examples. The attributes value of unknown examples is known, but 
class value is unknown. We tested our proposed algorithm on a number of benchmark datasets and the 



experimental result shows that our proposed algorithm achieved high classification rates compared to the 
existing naive Bayesian classifier on different problem domains. 

The remainder of this paper is organized as follows. Section 2 describes the naïve Bayesian classifier. 
Section 3 provides our proposed algorithm. Section 4 provides the experiment analysis with benchmark 
datasets. Finally, section 5 makes some concluding remarks along with suggestions for further works. 

2. NAÏVE BAYESIAN CLASSIFIER 

Naïve Bayesian (NB) classifier is a simple probabilistic classifier based on probability model, which can 
be trained very efficiently in a supervised learning [Margaret 2005]. The NB classifier is given as input a set 
of training examples each of which is described by attributes A1 through Ak and an associated class, C. The 
objective is to classify an unseen example whose class value is unknown but values for attributes A1 through 
Ak are known and they are  a1, a2,.…, ak respectively. The optimal prediction of the unseen example is the 
class value c such that P(C=ci|A1=a1,…Ak=ak) is maximum. By Bayes rule this probability equals to: 
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Where, P(C=ci) is the prior probability of class ci, P(A1=a1,…Ak=ak) is the probability of occurrence of 
the description of a particular example, and P(A1=a1,…Ak=ak|C=ci)  is the class conditional probability of the 
description of a particular example ci of class C. The prior probability of a class can be estimated from 
training data. The probability of occurrence of the description of particular examples is irrelevant for decision 
making since it is the same for each class value c. Learning is therefore reduced to the problem of estimating 
the class conditional probability of all possible description  of examples from training data. The class 
conditional probability can be written in expanded from as follows: 

     P(A1=a1,…Ak=ak|C=ci) 
           = P(A1=a1| A2=a2 ^…Ak=ak ^ C=ci) 
      * P(A2=a2| A3=a3 ^…Ak=ak ^ C=ci) 
       * P(A3=a3| A4=a4 ^…Ak=ak ^ C=ci) 

        * P(A4=a4 ^…Ak=ak ^ C=ci)                             (2) 

In NB, it is assumed that outcome of attribute Ai is independent of the outcome of all other attributes Aj, 

given c. Thus class conditional probabilities become: P(A1=a1,…Ak=ak|C=ci) = ∏
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the above value is inserted in equation “1” it becomes: 
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In Naïve Bayesian classifier, the probability values of equation “3” are estimated from the given training 
data. These estimated values are then used to classify unknown examples. 

3. PROPOSED LEARNING ALGORITHM 

Given a training data, the proposed algorithm estimates the prior probabilities P(Cj) for each class by 
counting how often each class occurs in the training data and conditional probabilities P(Aij|Cj) for each 
attribute values Aij from the training data by counting how often each value occurs in the class in training 
data. After calculating prior and conditional probabilities the algorithm classifies the training examples using 
these prior and conditional probabilities. When classifying an example in the training data, the prior and 
conditional probabilities generated from the training data are used to make the prediction. This is done by 
combining the effects of the different attribute values from the training examples. Suppose the training 



example ei has independent attribute values {Ai1, Ai2,…,Aip}, we know P(Aik | Cj), for each class Cj and 
attribute Aik. We then estimate P(ei | Cj) by 

P(ei | Cj) = P(Cj) ∏k=1→p P(Aij | Cj)                        (4) 

To classify the example, we can estimate the likelihood that ei is in each class. The probability that ei is in 
a class is the product of the conditional probabilities for each attribute value with prior probability for that 
class. The posterior probability P(Cj | ei) is then found for each class. Then the example classifies with the 
highest posterior probability for that training example. If any training example is misclassified, then the 
algorithm calculates the information gain for attributes Ai in the training data. After calculating the 
information gain values for attributes in training data the algorithm chooses one of the one best attribute from 
the training data with the highest information gain value and splits the training data into sub-datasets 
depending on the attribute values of selected attribute. The algorithm again estimates the prior and 
conditional probabilities for each sub-dataset and classifies the examples of sub-datasets using their 
respective probabilities. If any example of a sub-dataset is misclassified then the algorithm calculates the 
information gain of attributes for that sub-dataset and chooses one attribute with highest information gain 
value and splits the sub-dataset into sub-sub-datasets. The algorithm will continue this process until all the 
examples of training data are correctly classified. When the algorithm correctly classifies all the training 
examples, then the algorithm terminates and the prior and conditional probabilities for each sub/sub-datasets 
are preserved for future classification of unseen examples. The main procedure of proposed algorithm is 
described as follows. 

Algorithm   
Input: Training Data, D 
Output: Classification Model 
Procedure:  

1. Calculate the prior probabilities P(Cj) for each class Cj from  D by counting how often Cj occurs in 
D.  

2. Calculate the conditional probabilities P(Aij|Cj) for  each attribute values Aij from D by counting 
how often each Aij value occurs in the class in D.  

3. Classify the examples in D with the highest posterior probability, P(ei | Cj) = P(Cj) ∏ P(Aij | Cj).  
4. If any example in D is misclassified then calculate the information gain for attributes Ai in D. 

Information Gain (D, C) = H (D) - ∑
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5. Select one best attribute Ai in D with maximum information gain value. 
6. Split the dataset D into sub-datasets Di based on attribute values Aij of selected attribute Ai. 
7. Continue step 1 to 5 until all the examples in D are correctly classified. 
8. Preserved all the prior and conditional probabilities for each sub/sub-datasets Di for future 

classification of unseen examples. 

4. EXPERIMENT WITH BANCHMARK DATASET 

First we tested our proposed algorithm on Tic-Tac-Toe benchmark dataset [Tic-Tac-Toe 1991], which 
encodes the complete set of possible board configurations at the end of Tic-Tac-Toe games, where “x” is 
assumed to play first. The target concept is “win of x” (i.e., true when “x” has one of 8 possible ways to 
create a “three-in-a-row”). In Tic-Tac-Toe dataset, there are total 958 instances/examples (626 positive 
examples and 332 negative examples), number of classes: 2 (positive and negative), and the number of 
attributes: 9 (each attribute corresponding to one tic-tac-toe square and has 3 attribute values x, o, and b), 
which follows: 

1. A1= top-left-square: {x,o,b} 
2. A2= top-middle-square: {x,o,b} 
3. A3= top-right-square: {x,o,b} 
4. A4= middle-left-square: {x,o,b} 
5. A5= middle-middle-square: {x,o,b} 



6. A6= middle-right-square: {x,o,b} 
7. A7= bottom-left-square: {x,o,b} 
8. A8= bottom-middle-square: {x,o,b} 
9. A9= bottom-right-square: {x,o,b} 
The prior and conditional probabilities are calculated for each class and each attribute values using the 

Tic-Tac-Toe dataset, which are shown in table 1 and table 2. 

Table 1 Prior probabilities of Tic-Tac-Toe dataset 

Prior probabilities Value 
P(Class=Positive) 0.65344 
P(Class=Negative) 0.34655 

Table 2 Conditional probabilities for each attribute values in Tic-Tac-Toe dataset 

Conditional Probabilities Value Conditional Probabilities Value 
P(A1=x | Class=Positive) 0.47124 P(A2=x | Class=Positive) 0.35942 
P(A1=x | Class=Negative) 0.37048 P(A2=x | Class=Negative) 0.46804 
P(A1=o | Class=Positive) 0.30191 P(A2=o | Class=Positive) 0.36581 
P(A1=o | Class=Negative) 0.43975 P(A2=o | Class=Negative) 0.30421 
P(A1=b | Class=Positive) 0.22683 P(A2=b | Class=Positive) 0.27476 
P(A1=b | Class=Negative) 0.18975 P(A2=b | Class= Negative) 0.23493 
P(A3=x | Class=Positive) 0.47124 P(A4=x | Class=Positive) 0.35942 

P(A3=x | Class= Negative) 0.37048 P(A4=x | Class= Negative) 0.46084 
P(A3=o | Class=Positive) 0.30191 P(A4=o | Class=Positive) 0.36581 

P(A3=o | Class= Negative) 0.43975 P(A4=o | Class= Negative) 0.30421 
P(A3=b | Class=Positive) 0.22683 P(A4=b | Class=Positive) 0.27476 

P(A3=b | Class= Negative) 0.18975 P(A4=b | Class= Negative) 0.23493 
P(A5=x | Class=Positive) 0.58466 P(A6=x | Class=Positive) 0.35942 

P(A5=x | Class= Negative) 0.27710 P(A6=x | Class= Negative) 0.46084 
P(A5=o | Class=Positive) 0.23642 P(A6=o | Class=Positive) 0.36581 

P(A5=o | Class= Negative) 0.57831 P(A6=o | Class= Negative) 0.30421 
P(A5=b | Class=Positive) 0.17891 P(A6=b | Class=Positive) 0.27476 

P(A5=b | Class= Negative) 0.14457 P(A6=b | Class= Negative) 0.23493 
P(A7=x | Class=Positive) 0.47124 P(A8=x | Class=Positive) 0.35942 

P(A7=x | Class= Negative) 0.37048 P(A8=x | Class= Negative) 0.46084 
P(A7=o | Class=Positive) 0.30191 P(A8=o | Class=Positive) 0.36581 

P(A7=o | Class= Negative) 0.43975 P(A8=o | Class= Negative) 0.30421 
P(A7=b | Class=Positive) 0.22683 P(A8=b | Class=Positive) 0.27476 

P(A7=b | Class= Negative) 0.18975 P(A8=b | Class= Negative) 0.23493 
P(A7=x | Class=Positive) 0.47124 P(A8=x | Class=Positive) 0.35942 
P(A9=x | Class=Positive) 0.47124 P(A9=o | Class= Negative) 0.43975 

P(A9=x | Class= Negative) 0.37048 P(A9=b | Class=Positive) 0.22683 
P(A9=o | Class=Positive) 0.30191 P(A9=b | Class= Negative) 0.18975 

Then classify all 958 examples of Tic-Tac-Toe dataset using the prior and conditional probabilities of 
table 1 and table 2. Among 958 examples, total 943 examples are correctly classified, but 15 examples are 
misclassified. So, calculate the information gains of 9 attributes in Tic-Tac-Toe dataset [ info_Total = 0.93, 
info_A1 = 0.91, info_A2 = 0.92, info_A3 = 0.91, info_A4 = 0.92, info_A5 = 0.84, info_A6 = 0.96, info_A7 
= 0.91, info_A8 = 0.92, and info_A9 = 0.91]. Therefore, the information gains (info gain = info_Total – 
info_A) of 9 attributes are A1= 0.02, A2= 0.01, A3= 0.02, A4= 0.01, A5= 0.09, A6= -0.03, A7= 0.02, A8= 
0.01, and A9= 0.02. The information gain value of attribute A5 is greater than other attributes. So, the Tic-
Tac-Toe dataset will be divided into 3 sub-datasets A, B, and C as attribute A5 has 3 attribute values x, o, and 
b. Table 3 provides the details of Dataset A, B, and C. 

Table 3 Details of Dataset A, B, and C 

Dataset Attribute Value Total Examples Positive Examples Negative Examples 
Dataset A A5= “x” 458 366 92 
Dataset B A5= “o” 340 148 192 
Dataset C A5= “b” 160 112 48 

 

 



Figure 1 Tree using attribute A5 of Tic-Tac-Toe dataset 
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Then the prior and conditional probabilities are calculated for each sub-dataset Dataset A, B, and C, that 
are shown in table 4 and table 5. 

Table 4 Prior probabilities of Dataset A, B, and C 

Prior probabilities Dataset A Dataset B Dataset C 
P(C=Positive) 0.79912 0.43529 0.7 
P(C=Negative) 0.20087 0.56470 0.3 

Table 5 Conditional probabilities of Dataset A, B, and C 

Conditional 
Probabilities 

Dataset 
A 

Dataset 
B 

Dataset 
C 

Conditional 
Probabilities 

Dataset 
A 

Dataset 
B 

Dataset 
C 

P(A1=x | C=Positive) 0.39344 0.58783 0.57142 P(A2=x | C=Positive) 0.34426 0.41216 0.33928 
P(A1=x | C=Negative) 0.30434 0.42187 0.29166 P(A2=x | C=Negative) 0.36956 0.48958 0.52083 
P(A1=o | C=Positive) 0.34972 0.22297 0.25 P(A2=o | C=Positive) 0.38797 0.27702 0.41071 
P(A1=o | C=Negative) 0.54347 0.36458 0.54166 P(A2=o | C=Negative) 0.35869 0.28645 0.27083 
P(A1=b | C=Positive) 0.25683 0.18918 0.17857 P(A2=b | C=Positive) 0.26775 0.31081 0.25 
P(A1=b | C=Negative) 0.15217 0.21354 0.16666 P(A2=b | C= Negative) 0.27173 0.22395 0.20833 
P(A3=x | C=Positive) 0.39344 0.58783 0.57142 P(A4=x | C=Positive) 0.34426 0.41216 0.33928 

P(A3=x | C= Negative) 0.30434 0.42187 0.29166 P(A4=x | C= Negative) 0.36956 0.48958 0.52083 
P(A3=o | C=Positive) 0.34972 0.22297 0.25 P(A4=o | C=Positive) 0.38797 0.27702 0.41071 

P(A3=o | C= Negative) 0.54347 0.36458 0.54166 P(A4=o | C= Negative) 0.35869 0.28645 0.27083 
P(A3=b | C=Positive) 0.25683 0.18918 0.17857 P(A4=b | C=Positive) 0.26775 0.31081 0.25 

P(A3=b | C= Negative) 0.15217 0.21354 0.16666 P(A4=b | C= Negative) 0.27173 0.22395 0.20833 
P(A6=x | C=Positive) 0.34426 0.41216 0.33928 P(A7=x | C=Positive) 0.39344 0.58783 0.57142 

P(A6=x | C= Negative) 0.36956 0.48958 0.52083 P(A7=x | C= Negative) 0.30434 0.42187 0.29166 
P(A6=o | C=Positive) 0.38797 0.27702 0.41071 P(A7=o | C=Positive) 0.34972 0.22297 0.25 

P(A6=o | C= Negative) 0.35869 0.28645 0.27083 P(A7=o | C= Negative) 0.54347 0.36458 0.54166 
P(A6=b | C=Positive) 0.26775 0.31081 0.25 P(A7=b | C=Positive) 0.25683 0.18918 0.17857 

P(A6=b | C= Negative) 0.27173 0.22395 0.20833 P(A7=b | C= Negative) 0.15217 0.21354 0.16666 
P(A8=x | C=Positive) 0.34426 0.41216 0.33928 P(A9=x | C=Positive) 0.39344 0.58783 0.57142 

P(A8=x | C= Negative) 0.36956 0.48958 0.52083 P(A9=x | C= Negative) 0.30434 0.42187 0.29166 
P(A8=o | C=Positive) 0.38797 0.27702 0.41071 P(A9=o | C=Positive) 0.34972 0.22297 0.25 

P(A8=o | C= Negative) 0.35869 0.28645 0.27083 P(A9=o | C= Negative) 0.54347 0.36458 0.54166 
P(A8=b | C=Positive) 0.26775 0.31081 0.25 P(A9=b | C=Positive) 0.25683 0.18918 0.17857 

P(A8=b | C= Negative) 0.27173 0.22395 0.20833 P(A9=b | C= Negative) 0.15217 0.21354 0.16666 

Now classify all examples of Dataset A, B, and C with their respective probabilities. All examples of 
Dataset A and C are correctly classified. But for Dataset B 254 examples are correctly classified and 86 
examples are misclassified. So, again calculate the information gain of attributes in Dataset B [info_ B_Total 
= 0.987, info_ B_A1 = 0.954, info_B_A2 = 0.976, info_B_A3 = 0.954, info_B_A4 = 0.976, info_B_A6 = 
0.976, info_B_A7 = 0.954, info_B_A8 = 0.976, and info_B_A9 = 0.954]. So the information gains of 8 
attributes in Dataset B are B_A1= 0.033, B_A2= 0.011, B_A3= 0.033, B_A4= 0.011, B_A6= 0.011, B_A7= 
0.033, B_A8= 0.011, and B_A9= 0.033. The information gains of attributes A1, A3, A7, and A9 in Dataset B 
are equal, also maximum than other attributes. So, we consider A1 and the Dataset B will be divided into 3 
sub-sub-datasets D, E, and F as attribute A1 has 3 attribute values x, o, and b. Table 6 provides the details of 
Dataset D, E, and F.  

Table 6 Details of Dataset D, E, and F 

Dataset Attribute Value Total Examples Positive Examples Negative Examples 
Dataset D A1= “x” 168 87 81 
Dataset E A1= “o” 103 33 70 
Dataset F A1= “b” 69 28 41 
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Figure 2 Tree after dividing Dataset B 
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Again the prior and conditional probabilities are calculated using the Dataset D, E, and F that are shown 
in table 7 and table 8. 

Table 7 Prior probabilities of Dataset D, E, and F 

Prior Probabilities Dataset D Dataset E Dataset F 
P(Class=Positive) 0.51785 0.32038 0.40579 
P(Class=Negative) 0.48214 0.67961 0.59420 

Table 8 Conditional probabilities of Dataset D, E, and F 

Conditional 
Probabilities 

Dataset 
A 

Dataset 
B 

Dataset 
C 

Conditional 
Probabilities 

Dataset 
A 

Dataset 
B 

Dataset 
C 

P(A2=x | C=Positive) 0.52873 0.30303 0.17857 P(A3=x | C=Positive) 0.57471 0.63636 0.57142 
P(A2=x | C=Negative) 0.37037 0.61428 0.51219 P(A3=x | C= Negative) 0.30864 0.55714 0.41463 
P(A2=o | C=Positive) 0.22988 0.27272 0.42857 P(A3=o | C=Positive) 0.24137 0.15151 0.25 
P(A2=o | C=Negative) 0.38271 0.15714 0.31707 P(A3=o | C= Negative) 0.48148 0.2 0.41463 
P(A2=b | C=Positive) 0.24137 0.42424 0.39285 P(A3=b | C=Positive) 0.18390 0.21212 0.17857 

P(A2=b | C= Negative) 0.24691 0.22857 0.17073 P(A3=b | C= Negative) 0.20987 0.24285 0.17073 
P(A4=x | C=Positive) 0.52873 0.30303 0.17857 P(A6=x | C=Positive) 0.26436 0.63636 0.60714 

P(A4=x | C= Negative) 0.37037 0.61428 0.51219 P(A6=x | C= Negative) 0.41975 0.6 0.43902 
P(A4=o | C=Positive) 0.22988 0.27272 0.42857 P(A6=o | C=Positive) 0.35632 0.15151 0.17857 

P(A4=o | C= Negative) 0.38271 0.15714 0.31707 P(A6=o | C= Negative) 0.37037 0.14285 0.36585 
P(A4=b | C=Positive) 0.24137 0.42424 0.39285 P(A6=b | C=Positive) 0.37931 0.21212 0.21428 

P(A4=b | C= Negative) 0.24691 0.22857 0.17073 P(A6=b | C= Negative) 0.20987 0.25714 0.19512 
P(A7=x | C=Positive) 0.57471 0.63636 0.57142 P(A8=x | C=Positive) 0.26436 0.63636 0.60714 

P(A7=x | C= Negative) 0.30864 0.55714 0.41463 P(A8=x | C= Negative) 0.41975 0.6 0.43902 
P(A7=o | C=Positive) 0.24137 0.15151 0.25 P(A8=o | C=Positive) 0.35632 0.15151 0.17857 

P(A7=o | C= Negative) 0.48148 0.2 0.41463 P(A8=o | C= Negative) 0.37037 0.14285 0.36585 
P(A7=b | C=Positive) 0.18390 0.21212 0.17857 P(A8=b | C=Positive) 0.37931 0.21212 0.21428 

P(A7=b | C= Negative) 0.20987 0.24285 0.17073 P(A8=b | C= Negative) 0.20987 0.25714 0.19512 
P(A9=x | C=Positive) 0.29885 1.0 1.0 P(A9=o | C= Negative) 0.18518 0.71428 0.12195 

P(A9=x | C= Negative) 0.51851 0.21428 0.58536 P(A9=b | C=Positive) 0.32183 0.0 0.0 
P(A9=o | C=Positive) 0.37931 0.0 0.0 P(A9=b | C= Negative) 0.29629 0.07142 0.29268 

 
Now all examples of the Dataset D, E, and F are correctly classified using their respective probabilities 

and finally the probabilities for each dataset A, C, D, E, and F are saved for future classification of known or 
unknown examples. 

4.1 Experimental Analysis 

To evaluate the performance of our proposed algorithm with naïve Bayesian classifier on different 
problem domains, we performed experiments on 7 datasets as obtained from UCI repository that provided in 
table 9. The experimental results in table 9 illustrate that our proposed algorithm achieved better 
classification rates than naïve Bayesian classifier.  
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Table 9 Classification rates (%) for NB classifier and proposed algorithm 

Dataset No. of Class No. of Attributes No. of Cases NB classifier Proposed algorithm 
Tic-Tac-Toe 2 9 958 98.43 100 

Soybean 19 35 683 97.65 99.35 
Iris 3 4 151 92.43 96.55 

Monk 3 2 6 554 93.11 97.20 
Zoo 7 16 101 98.69 99.47 

Diabetes 2 8 768 96.70 98.27 
Vehicle 2 18 946 94.68 99.19 

5. CONCLUSION 

In this paper we have concentrated on the development of the classification rates for naïve Bayesian 
classifier by splitting the training data into sub-datasets based on the best attributes of training data, which 
improves the prior and conditional probabilities value. The naïve Bayesian classifier has several advantages 
such as it is easy to use and only one scan of training data is required. The naïve Bayesian classifier can 
easily handle the missing values by simply omitting the probability when calculating the likelihoods of 
membership in each class. The future research issue will be to build a hybrid supervised learning algorithm 
by merging with other data mining algorithms and also apply this algorithm in real world problem domains. 
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