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Abstract: In prognostic's field, the lack of knowledge on the behavior of equipments can impede the 
development of classical dependability analysis, or the building of effective physic-based models. 
Following that, artificial neural networks (ANNs) appear to be well suited since they can learn from data 
gathered from equipments. In this paper, an approach combining a Recurrent Radial Basis Function 
network (RRBF) and an AutoRegressive with eXogenous inputs model (ARX) is proposed in order to 
perform the prediction step of prognostics: the ARX attempts to correct the error of predictions of the 
RRBF. Moreover, since performances of an ANN can be closely related to initial parameterization of the 
network, a criterion is defined to quantify the reproducibility of predictions and thereby a priori estimate 
the usefulness of neural network structure. The whole aims at improving the prediction step of 
prognostics, which is critical with respects to real applicative conditions. 
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1. INTRODUCTION 

Although there are some divergences in literature, prognostic 
can be defined as proposed by the International Organization 
for Standardization: it is "the estimation of time to failure and 
risk for one or more existing and future failure modes" (ISO, 
2004). It is thereby a process whose objective is to predict the 
remaining useful life (RUL) before a failure occurs given the 
current machine condition and past operation profile (Jardine 
et al., 2006). A central problem can be pointed out from this: 
the accuracy of a prognostic system is related to its ability to 
approximate and predict the degradation of an equipment, 
and the prediction phase is thereby a critical one. A wide 
variety of approaches can be used for that purpose (Byington 
et al., 2002, Vachtsevanos et al., 2006). Their applicability is 
however limited by classical constraints of the system under 
study: available data, knowledge or experiences, dynamic and 
complexity of the system, implementation requirements 
(precision, computation time, etc.), available monitoring 
devices. Following that, data-driven have been increasingly 
applied to prognostics. These approaches use real data to 
approximate and track features revealing the degradation of 
components and to forecast the global behavior of a system. 
Indeed, in many applications, measured input/output data is 
the major source for a deeper understanding of the system 
degradation. Within data-driven approaches, artificial neural 
networks (ANNs) appear to be very promising prognostic 
tools: they learn from examples and attempt to capture the 
subtle relationship among data even if the underlying 
relationships are unknown or hard to describe (by a learning 
process). Actual developments confirm the interest of using 

ANNs in forecasting applications (Andalib et al., 2009, 
Graves et al., 2009, Pisoni et al., 2009). 

In this context, the purpose of the work is to propose a 
nonlinear forecasting model based on ANN and to improve 
its prediction performances. The recurrent radial basis 
function network (RRBF) proposed by Zemouri et al. (2003) 
is presented as a candidate to ensure a first level of 
prediction, and an AutoRegressive with eXogenous inputs 
model (ARX) is used to improve its accuracy by correcting 
the error of predictions. Moreover, since performances of an 
ANN are partially depending on an initial randomly 
parameterization of its structure, criteria are proposed to 
quantify the precision, the accuracy, and the reproducibility 
of predictions. It enables to a priori estimate the usefulness of 
a neural network structure. Note that the proposition of this 
paper does not cover all aspects of prognostics, but only 
emphasizes on the prediction step. Indeed, in order to 
perform prognostic, one should also integrate the ways of 
considering various failure modes, maintenance actions, 
performance threshold models… 

The paper is organized as follows. In section 2, the main 
theoretical backgrounds of RRBF networks and ARX models 
are presented. On this basis, the whole prediction architecture 
is proposed. Let call it a NARX model (Nonlinear ARX). The 
next part is dedicated to the proposition of measures to 
quantify the "quality" of NARX-based prediction is 
presented. The whole is finally illustrated and discussed on a 
mainly used prediction benchmark (the Mackey Glass time 
series), and on a real-world prognostics problem concerning 
the prediction of an engine health. 



    

2. PREDICTION ARCHITECTURE 

2.1 The Radial Basis Function Network (RBF) 

The Radial Basis Function network (RBF) is commonly used 
to model uncertain and nonlinear functions. That can be seen 
as an approximation problem in a high-dimensional space. 

A RBF is a two-layers processing structure (Fig. 1.a). The 
hidden layer consists of an array of computing units 
( 1 2, ,... kφ φ φ ). These hidden units provide a set of basis 
functions of the input vectors as they are expanded into the 
higher dimension hidden-unit space. The mapping from the 
input vectors to the outputs of the hidden units is nonlinear, 
whereas that one from the hidden units to the final one is 
linear. In prediction application, the general mapping 
function of the RBF network can be expresses as: 
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where [ ( ), ( 1),...., ( )]Ty t y t y t d= − −y . The second layer of a 
RBF network can be seen as a summation layer with a set of 
weights ( 1 2, , ,p p pkw w w ). The commonly used RBF basis 

function is the Gaussian one. With notations , )j j(c �  and x , 
the centre and width of the radial basis function, and the input 
vector: 

( ) ( )2 2( ) exp / 2j j jφ � �= − −� �� �
x c �x  (2) 

Training a RBF network with linear outputs is very fast and 
is accomplished through two stages. 

– The first stage is unsupervised and accomplished by 
obtaining cluster centers of the training set input 
vectors. A popular method for that purpose is the k-
means clustering. 

– The second stage consists in solving a set of linear 
equations, the solution of which can be obtained by a 
matrix inversion technique such as singular value 
decomposition or least squares method. 
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Fig. 1. a) Radial Basis Function and b) Recurrent Radial 
Basis Function networks, for n-step ahead predictions. 

2.2 The Recurrent Radial Basis Function Network (RRBF) 

The Recurrent RBF neural network considers time as an 
internal representation (Fig. 1.b). The dynamic aspect is 
obtained by the use of an additional self-connection to the 
input neurons with a sigmoid activation function. The RRBF 
network can thus take into account a certain past of the input 
signal. The output of each neuron of the input layer is the 
summation of the current input ix  and its previous output 
weighted by a self-connection iiw : 

( ) ( 1) ( )i ii i ia t w t x tξ= − + ,  ( )( ) ( )i it f a tξ =  (3) 

where ( )ia t , ( )i tξ  and f  are the neuron activation and its 
output at time t , and the sigmoid activation function: 

( ) ( ) ( )1 exp( ) 1 exp( )f x x xκ κ= − − + −  (4) 

The RRBF network was described on (Zemouri et al., 2003). 
A mathematical study of the dynamic behavior of looped 
neuron can be found in (Frasconi et al., 1992). To have the 
longest memory, the self connection weight iiw  and the 
parameter κ  must respect the relation 2iiwκ = . 

2.3 Combining RRBF and ARX: a NARX architecture 

RRBF appears to be a good candidate for time series 
prediction applications (Zemouri et al., 2003). In a general 
way, the prediction ˆ( )y t n+  obtained by the neural network 
can be expressed by a residual prediction error ε as:  

ˆ( ) ( ) ( )t n y t n y t nε + = + − +  (5) 

Considering the prediction ˆ( )y t n+  obtained according to the 
input y(t), the residual error ( )t nε +  can not be calculated 
until the time instant (t+n). The prediction for (t+n) can be 
expressed by the following expression:  

ˆ ˆ( ) ( ) ( ( ))t n y t n f tεΨ + = + +  (6) 

where ( )tε  is the residual error at the instant t, and f is the 
function to find for minimizing the prediction error. In a 
previous work, we used a Proportional-Integral-Derivative 
controller for f (Zemouri et al., 2009). In this paper, the 
prediction ˆ( )y t n+  is combined with an AutoRegressive 
eXogenous to process the residual prediction error. The 
whole results in the NARX model depicted in Fig. 2. 
Predictions obtained through the RRBF network 
( ˆ ˆ ˆ ˆ( ), ( ), ( 1), , ( )y t n y t y t y t m+ − − ) are computed with real 
values ( ( ), ( 1), , ( )y t y t y t m− − ) and the n-step ahead 
prediction obtained by the whole model is: 

[ ]
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Parameters ( , ,i ia bα ) are calculated by linear regression 
(matrix inversion technique). 

Other types of NARX models can be found in (Andalib et al., 
2009, Pisoni et al., 2009, Wei et al., 2007). 
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Fig. 2. The NARX architecture for n-step ahead predictions. 

3. PERFORMANCE CRITERIA FOR PREDICTION 

3.1 Prognostics measures 

There is no general agreement as to an appropriate and 
acceptable set of metrics that can be employed in prognostic 
applications but various measures emerge from literature 
(Vachtsevanos et al., 2006). 1) The main objective of 
prognostic is to provide the efficient information that enables 
the choice of maintenance actions. Thus, a first set of metrics 
are those that quantify the risks incurred by the monitored 
system: the prognostic measures. The mainly pursued is the 
remaining useful life (RUL). 2) Assuming that prognostic is 
in essence an uncertain process, it is useful to be able to judge 
from its "quality" in order to imagine more suitable actions 
and prognostic system performance measures must be built. 
Accuracy and precision of prognostics are usually pointed 
out. They enable to quantify the quality of past prognostics. 
The second set of metrics is closely related to the prediction 
performances of a prognostics system. Nevertheless, this kind 
of metrics can be constructed when the prognostics system 
itself is already established. Thereby, next paragraphs aim at 
proposing a set of measures that can be constructed during 
the building phase of a prognostic system in order to a priori 
test the accuracy of potential prediction models. 

3.2 Prediction performance criteria 

The learning phase of a neural network can be viewed as a 
nonlinear optimization problem in which the goal is to find a 
set of network parameters minimizing a cost function for 
given examples: learning is an optimization process that 
produces an output that is as close as possible to the desired 
output by adjusting network parameters. That said, for a same 
learning set, the network structure or parameters can be 
different at each training run. Indeed, the learning phase starts 
with a random initialization of some parameters, and the 
quality of predictions differs at each running of the training 
algorithm. Thereby, the performances of a prediction model 
can be evaluated only if several running of the "training/test" 
process are processed. 

Suppose that M represents the number of "training/test" 
processes, and that n designates the amount of tests in each 
one. For every running i of the training algorithm, the mean 
prediction error E(i) and the standard deviation std(i) can be 
expressed as follows: 
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where, ( )i jξ  and ( )jζ are the jth output obtained by the ith

neural model and the jth system output. On this basis, at least 
three prediction performance criteria can be built.

1) Overall Average Bias (OAB) can be expressed as the mean 
of the M values of the absolute mean prediction error |E(i)|: 

[ [
1

1 ( ) , 0,
M

i
OAB E i OAB

M =

∈ ∞�=  (9) 

The perfect score is OAB = 0. This criterion enables to 
measure how close predictions of the M potential models are 
to real values. 

2) Overall Average Variability (OAV) can be expressed as the 
mean of the M values of the standard deviation std(i): 

[ [
1

1 ( ), 0,
M

i
OAV std i OAV

M =

∈ ∞�=  (10) 

The perfect score is OAV = 0. This criterion enables to 
measure how close predictions of the M potential models are 
clustered together. 

3) Reproducibility (Rep) can be expressed as a mean distance 
in between all the M prediction models performances: 

( ) [ [22 , 0,
( 1) ij

i j
Rep d Rep

M M <

∈ ∞
− �=  (11) 

where dij is the Euclidian distance in between the ith and jth

prediction models: ( ) ( ) ( )2 2 2( ) ( )ij jd E Ei std j std i− + −= . 
Perfect score is Rep = 0. This criterion enables to measure 
how close the performances of all prediction models are 
grouped together, and thereby to estimate the importance of 
the random initialization of parameters. An illustration is 
proposed in Fig. 3. 

3.3 Interest criteria 

The three prediction criteria (OAB, OAV and Rep) enable to 
judge from the performance of the prediction model and can 
be combined to construct a usefulness criterion. Let call it the 
Interest Criterion (IC) defines as follows: 

] [1 , 0,IC IC
OAB OAV Rep
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+ +

 (12) 

A prediction model is as useful as its overall average bias, its 
overall average variability, and its reproducibility are low. 
Thereby, as high the interest criterion IC is, as high the 
confidence on predictions is. Fig. 4 depicts some examples of 
predictions that can be obtained with their respective 
performance and interest criteria. 
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Fig. 3. Illustration of the reproducibility criterion. 

Model 1: IC = 0,45
OAB is high. Predictions are too far from real data.
Model 2: IC = 0,48
OAV is high. Predictions are not grouped together.
Model 3: IC = 0,56
Rep is high. Results are too much depending on random 
initialization of the model.
Model 4: IC = 1,67
OAB, OAV and Rep are low. The model of prediction is useful as 
it is accurate and precise whatever the initial parameterization is
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it is accurate and precise whatever the initial parameterization is
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Model 3: IC = 0,56
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initialization of the model.
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it is accurate and precise whatever the initial parameterization is
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Fig. 4. Illustration of the prediction and interest criteria. 

4. EXPERIMENTS AND DISCUSSION 

4.1 First data set: Mackey-Glass prediction benchmark 

First experiments have been made on the Mackey-Glass time 
series data set which is a benchmark problem extensively 
used: it's a non periodic and non convergent time series. 
Considering our final applicative objective (prognostic), to be 
capable to carry out predictions on such a signal is of good 
omen: real systems have generally a non-stationary and non-
linear behavior, what makes difficult a modeling phase. The 
time series is governed by eq. 13. Tests aimed at predicting 
future values by using past values (eq. 14). 

( ) ( ) , with , , ,
1 ( )

dy y t y t
dt y t τ

δβ α α β δ τ
δ

−= − ∈ℜ
+ −

 (13) 

( ) [ ( ), ( 1)]y t n y t y t+ = −F  (14) 

Three sets were used: a training, a validation, and a test set. 
The first set was used in order to train the parameters of the 
neural network (the k centers of the Gaussian nodes and the 
output weights). In order to find the best RRBF structure with 
regard to the k centers, several neural networks models have 
been created by varying the number of basis functions from 2 
to 50 nodes, whereas the basis width parameter of the nodes 
was fixed to 1. The k-means training algorithm has been used 
to find the best Gaussian centers for each k-structure. The 
neural network trained with the first set is validated in the 
second one. Validation uses data different from the training 
set, thus the validation set is independent from the estimated 
model. This helps to select the best one among the different 
model parameters. To avoid overfitting or underfitting, the 
optimal model parameters should be selected so as to have 
the best performance measure associated with the validation 
set. Since this dataset is independent from the estimated 
model, the generalization error obtained is a fair estimated. 
The model which gives the best mean prediction error in the 
validation set is then selected and tested in the third set (the 
test set). The model with the best generalization performance 
is then selected with the crossvalidation technique. All data 
have been normalized by range [-1,+1]. In order to measure 
the stability of results in time, predictions were performed 
from "t+1" to "t+10" by increments of 1 as described in (15). 
Once the best RRBF model is found, the second step is to 
find the NARX model parameters (a, b, c, d, e) by linear 
regression on the second set (the validation set). 
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Simulation test has been run 1000 times: i = 1 to M = 1000. 
At each simulation running i, the mean prediction error E(i)
and the standard deviation of the error of prediction std(i) 
were calculated in order construct the performance criteria (9, 
10 and 11). The whole was used to evaluate the interest 
criterion of the model of prediction (12). Fig. 5 and 6 shows 
the prediction performances (OAB, OAV and Rep) and the 
interest criterion (IC) obtained for: 1) the RRBF as a 
predictor in itself. Let call it PredRRBF, 2) the complete 
NARX model composed of the RRBF and the 
AutoRegressive model. Let call it PredNARX. 

In Fig. 5, one can observe that the performances of the RRBF 
are significantly boosted by the uses of the non-linear NARX 
approach: predictions appear to be more accurate, precise, 
and reproducible: more closed to real values (OAB), more 
grouped together (OAV), and more independent from random 
initialization of the neural network parameters (Rep). This 
conclusion is reinforced by results shown in Fig. 6: the 
interest criterion of the PredNARX model is much higher than 
that one of the PredRRBF model (even if this comparison of the 
prediction models decreases as the horizon of prediction 
increases). More over, confidence on predictions increases 
whereas the effect of human intervention or of random 
initialization of parameters is much more reduced (the whole 
prediction system is more immune to initial 
parameterization). 
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An other point of interest is that one of the complexity of the 
model and of the relative importance of the RRBF component 
with respect to the AutoRegressive process. Fig. 7 and 8 
depict the number of basis functions of the RRBF and the 
evolution of the NARX parameters in (15) with regards with 
the horizon of prediction. That enable to judge from the 
complexity of the models. According to Fig. 7 the complexity 
of the RRBF is quite unchanged when the horizon of 
prediction increases. This result points out that there is no 
interest in trying to improve the accuracy of predictions by 
building more complex neural models. Linking it with the 
results depicted in Fig. 5 and 6, a better manner to build 
efficient prediction models is to complete the capability of 

the RRBF with approaches like this one proposed in this 
paper (by building a NARX model) in order to correct the 
error of prediction of the neural model. Finally, in Fig. 8, one 
can observe that the influence of the RRBF network seems to 
increase as the horizon of prediction does: the absolute values 
of parameters a, b, and c, that are related to the predictions of 
the RRBF (equation 15) grow with the horizon of prediction, 
whereas they turn around zero for short term predictions. 
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Fig. 8. Mackey Glass dataset - NARX parameters a, b, c, d, e. 

4.2 Second data set: prediction of an engine health

The second illustration is made on the challenge dataset of 
diagnostic and prognostics of machine faults from the first 
International Conference on Prognostics and Health 
Management (Saxena et al., 2008). The dataset consisted of 
multiple multivariate time series (26 variables) with sensor 
noise (like in Fig. 9). Each time series was from a different 
engine of the same fleet and each engine started with 
different degrees of initial wear and manufacturing variation 
unknown to the user and considered normal. The engine was 
operating normally at the start and developed a fault that 
grew in magnitude until system failure. 

For this paper, only feature number 3 has been considered. 
The same simulation procedure has been used as for the 
Mackey-Glass dataset: 10 data series were used for learning, 
10 for validation and 10 for test. As for the regressors, both 
the PredRRBF and thePredNARX models were built with the 
following inputs: ( )y t  and ( 1)y t − . In order to limit the plan 
of test, and since the engine health is a huge dataset, the 
number k centers (radial basis functions) has been set to 25. 

Results are shown in Fig. 10. Even if differences in between 
predictions obtained with the neural network model and the 
NARX model are not so significant as for the Mackey-Glass 



    

dataset, predictions appear to be improved with the proposed 
procedure: whatever the horizon of prediction is, OAB, OAV, 
Rep and IC criteria are always slightly better with the NARX 
model. Note also that differences would have been greater if 
the number of k centers would not have been fixed. 
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Fig. 9. Health engine dataset - Example of degradation. 

1 2 3 4 5 6 7 8 9 10
0.01

0.015

0.02

0.025

0.03

O
A
B

Pred
NARX

Pred
RRBF

1 2 3 4 5 6 7 8 9 10
0.06

0.08

0.1

0.12

O
A
V

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8
x 10-4

R
ep

1 2 3 4 5 6 7 8 9 10
6

8

10

12

14

IC

Fig. 10. Health engine dataset - Prediction performances and 
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5. CONCLUSIONS 

In maintenance field, prognostic is recognized as a key 
feature since the estimation of the remaining useful life of an 
equipment allows avoiding inopportune maintenance 
spending. However, it can be difficult to define and 
implement an adequate and efficient prognostic tool that 
includes the inherent uncertainty of the prognostic process. 
Indeed, an important task of prognostic is that of prediction. 
In this context, the purpose of the work of this paper is to 
point out an accurate prediction technique and to propose a 
way to improve its prediction performances. According to the 
global requirements that can be expected from a forecasting 
tool, the neural network RRBF has been presented as a 

candidate to support this activity. An improvement of this 
neural network has also been proposed by combining it with 
a AutoRegressive model. Moreover, since performances of an 
ANN are partially depending on an initial randomly 
parameterization of its structure, criteria have been proposed 
to quantify the precision, accuracy, and reproducibility of 
predictions. It enables to a priori estimate the usefulness of a 
neural network structure. Results show that the proposed 
prediction structure enables the forecasting to be a more 
robust task without increasing complexity of treatments. The 
whole is of good omen for prognostic purpose. 
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