
HAL Id: hal-00503859
https://hal.science/hal-00503859

Preprint submitted on 19 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quasi-total absorption peak by use of a backed rigid
frame porous layer with circular periodic inclusions

embedded
Jean-Philippe Groby, Olivier Dazel, Aroune Duclos, Laurens Boeckx, Walter

Lauriks

To cite this version:
Jean-Philippe Groby, Olivier Dazel, Aroune Duclos, Laurens Boeckx, Walter Lauriks. Quasi-total
absorption peak by use of a backed rigid frame porous layer with circular periodic inclusions embedded.
2010. �hal-00503859�

https://hal.science/hal-00503859
https://hal.archives-ouvertes.fr
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The acoustic properties of a porous sheet of medium resistivity backed by a rigid

plate in which are embedded a periodic set of circular inclusions is investigated.

Such a structure behaves like a multi-component diffraction gratings. Numerical

results show that this structure presents a quasi-total absorption peak below the

essential spectrum, i.e. below the frequence of the fundamental quarter-wavelength

resonance of the porous sheet in absence of inclusions. This result is explained either

by the excitation of a complex trapped mode, or by the increase of viscous loss

associated with a larger velocity gradient inside the layer at the modified quarter-

wavelength resonance frequency. When more than one inclusion per spatial period

are considered, additional quasi-total frequency peak are observed. The numerical

results as calculated with the help of the mode-matching method described in the

paper agree those as calculated with the help of a Finite Element method.
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I. INTRODUCTION

This work was initially motivated by a design problem connected to the determination of

the optimal profile of discontinuous spatial distribution of porous materials and geometric

properties for the absorption of sound. Porous materials (foams) suffer from a lack of

absorption at low frequencies, when compared to their efficiency at higher frequencies. The

purpose of the present article is to inverstigate an alternative to multi-layering by considering

periodic inclusions embedded in a porous sheet attached on a rigid plate. This configuration

results in a diffraction grating and possibly a sonic-crystal used in reflection.

The influence of a volumic heterogeneity addition on absorption and transmission of a

porous layer was previously investigated by use of the multipole method in1,2, by embedding

a periodic set of high-contrast inclusions, whose sizes are comparable to the wavelength,

in a macroscopically-homogeneous porous layer whose thickness and weight are relatively

small. This leads either to an increase of the absorption coefficient in the case of one

layer of inclusions or to band-gaps and a total absorption peak in case of multi-layered

set of inclusions (sonic crystal). The influence on the absorption was explained by mode

excitation of the configuration enabled by the periodic inclusions, whose structure leads

to energy entrapment. Other works related to volumic heterogeneities in macroscopically

homogeneous porous material were carried out essentially by means of the homogeneization

procedure3,4, and possibly leading to double porosity materials5.

The influence of the irregularities of the rigid plate on which are often attached porous

sheets on the absorption coefficient was previsouly investigated by use of the multi-modal

method in2, by considering periodic rectangular irregularities filled with air. This partic-

ularly leads in the case of one irregularity per spatial period to a total absorption peak

associated with excitation of the fundamental modified mode of the backed plate. The lat-

ter is excited thanks to the surface grating. Other works related to surface irregularities

were carried out, notably related to local resonances associated with fractal irregularities6,7.

Local resonance and trapped modes are an other possibility to localize the field. Trapped

mode were largely studied in guided waves8 or in periodic structures9. Here, we investigate

theoretically and numerically the influence on the absorption coefficient of the embedding

of multiple inclusions grating in a rigid frame porous layer glued against a rigid wall. The

effects of the modified mode of the plate and Bragg interference are clearly visible on the
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FIG. 1. Cross-sectional plane view of the configuration.

absorption curve, while a quasi-total absorption is obtained for a frequency below the one of

the fundamental quarter-wavelength resonance of the backed porous sheet. The latter peak

presents some of the specific features of a trapped mode excitation.

II. FORMULATION OF THE PROBLEM

A. Description of the configuration

Both incident plane acoustic wave and plate are assumed to be invariant with respect

to the Cartesian coordinate x3. A cross-sectional x1−x2 plane view of the 2D scattering

problem is shown in figure 1.

Before the addition of the cylindric inclusions, the layer is made of a porous material

saturated by air (e.g., a foam) which is modeled (by homogenization) as an (macroscopically

homogeneous) equivalent fluid M [1]. The porous sheet is backed by a rigid surface. The

upper and lower flat and mutually-parallel boundaries of the layer, whose x2 coordinates

are H and 0, are designated by ΓH and Γ0 respectively. M [0] and M [1] are in firm contact

through ΓH , i.e. the pressure and normal velocity are continuous across ΓH ([p(x)] = 0

and [ρ−1∂np(x)] = 0, wherein n denotes the generic unit vector normal to a boundary and

∂n designates the operator ∂n = n · ∇). Γ0 is rigid (Neumann type boundary conditions,

∂np(x) = 0).

N c inclusions with a common spatial periodicity d are embedded in the porous layer,

that create a diffraction grating in the x1 direction. Depending on the arrangement of

the N c inclusions in the unit cell, a diffraction grating or a sonic-crystal of period dc can be

formed (dc ≤ d). The set of indices by which the cylinders within the unit cell are identified is
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denoted by N c ∈ N. The j-th inclusion occupies the disk Ω[2(j)] of radius R(j) and is centered

at x(j) = (x
(j)
1 , x

(j)
2 ), j ∈ N c. The inclusions are infinitely rigid (Neumann type boundary

conditions on Γ(j)), i.e. the contrast between the elastic material M [2] and M [1] is very large.

This also means that the inclusions can consist in tubes or holes posteriorly proofed for

acoustic waves. Two subspaces Ω[1±] ∈ Ω[1] are also defined respectively corresponding to

the upper and lower part of the plate not without inclusions.

The total pressure, wavenumber and wave speed are denoted by the generic symbols p,

k and c respectively, with p = p[0], k = k[0] = ω/c[0] in Ω[0] and p = p[1], k = k[1] = ω/c[1] in

Ω[1].

Rather than to solve directly for the pressure p̄(x, t) (with x = (x1, x2)), we prefer to

deal with p(x, ω), related to p̄(x, t) by the Fourier transform p̄(x, t) =

∫ ∞

−∞

p(x, ω)e−iωtdω.

Henceforth, we drop the ω in p(x, ω) so as to denote the latter by p(x).

The wavevector ki of the incident plane wave lies in the sagittal plane and the angle

of incidence is θi measured counterclockwise from the positive x1 axis. The incident wave

propagates initially in Ω[0] and is expressed by pi(x) = Aiei(k
i
1x1−k

[0]i
2 (x2−H)), wherein ki

1 =

−k[0] cos θi, k
[0]i
2 = k[0] sin θi and Ai = Ai(ω) is the signal spectrum.

The plane wave nature of the incident wave and the periodic nature of
⋃

j∈N c

Ω[2(j)] imply

the Floquet relation

p(x1 + qd, x2) = p(x1, x2)e
iki1qd ; ∀x ∈ R

2 ; ∀q ∈ Z . (1)

Consequently, it suffices to examine the field in the central cell of the plate.

The uniqueness of the solution to the forward-scattering problem is ensured by the radi-

ation condition:

p[0](x)− pi(x)∼outgoing waves; |x| → ∞, x2>H . (2)

B. Material modeling

Rigid frame porous material M is modeled using the Johnson-Champoux-Allard model.

The compressibilty K and density ρ, linked to the sound speed through c =
√

1/ (Kρ)
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are10,11
1

K
=

γP0

φ

(
γ − (γ − 1)

(
1 + i

ω′
c

Prω
G(Prω)

)−1
) ,

ρ =
ρfα∞

φ

(
1 + i

ωc

ω
F (ω)

)
,

(3)

wherein ωc = σφ/ρfα∞ is the Biot frequency, ω′
c = σ′φ/ρfα∞, γ the specific heat ratio,

P0 the atmospheric pressure, Pr the Prandtl number, ρf the density of the fluid in the

(interconnected) pores, φ the porosity, α∞ the tortuosity, σ the flow resistivity, and σ′ the

thermal resistivity. The correction functions G(Prω)12 and F (ω)13 are given by

G(Prω) =

√

1− iηρfPrω

(
2α∞

σ′φΛ′

)2

,

F (ω) =

√

1− iηρfω

(
2α∞

σφΛ

)2

,

(4)

where η is the viscosity of the fluid, Λ′ the thermal characteristic length, and Λ the viscous

characteristic length. The “thermal resistivity” is related to the thermal characteristic length

through σ′ = 8α∞η/φΛ′2,12.

The configuration is similar to but also more complex than those already studied in1,14,

in sense the porous sheet is backed by a rigid plate, but also in sense the unit cell can be

composed of more than one non overlapping inclusion, when the x2-coordinates of the center

of two inclusions are separated by a distance lower than the sum of their radii. In this latter

case, the interaction between these inclusions can not be modeled as exposed in1 and a more

complex interaction model should be employed15. The method of solution is also briefly

summarized hereafter.

C. Field representations in Ω[0] and Ω[1±]

The continuity relations across the interfaces ΓH and Γ0 are first considered in section

IIIA. The field representations in Ω[0], and Ω[1±] are needed as the first step. The continuity

conditions across Γ(j), ∀j ∈ N c will be treated in section IIIB.

Separation of variables, the radiation condition, and the Floquet theorem lead to the

representation:

p[0](x) =
∑

q∈Z

[
e−ik

[0]
2q (x2−H)δq +Rqe

ik[0]2q (x2−H)
]
eik1qx1, ∀x ∈ Ω[0] , (5)
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wherein δq is the Kronecker symbol, k1q = ki
1 + 2qπ/d, k

[0]
2q =

√
(k[0])2 − (k1q)2, with

Re
(
k
[0]
2q

)
≥ 0 and Im

(
k
[0]
2q

)
≥ 0. Rq is the reflection coefficient of the plane wave denoted

by the subscript q.

It is first convenient to use Cartesian coordinates (x1, x2) to represent the field in

Ω[1±]. The latter are composed of the diffracted field in the plate and the fields scat-

tered by the inclusions, whose form depends on the position of x, either below or above the

inclusions16. Refering to1, whatever the arrangement of the inclusions, x2 is always larger

than maxj∈N c

(
x
(j)
2 +R(j)

)
in Ω[1+], while x2 is always smaller than minj∈N c

(
x
(j)
2 −R(j)

)

in Ω[1−]. The total field in Ω[1±] can be written in Cartesian coordinates as

p[1
±](x) =

∑

q∈Z

(
fqe

−ik[1]2q x2 + gqe
ik[1]2q x2

)
eik1qx1

+
∑

q∈Z

∑

j∈N c

∑

l∈Z

K±
qlB

(j)
l e

i
(
k1q

(
x1−x

(j)
1

)
±k

[1]
2q

(
x2−x

(j)
2

))

, (6)

wherein B
(j)
l are the coefficients of the field scattered by the j-th cylinder of the unit cell, fq

and gq are the coefficients of the diffracted waves inside the layer associated with the plane

wave denoted by q, and K±
ql = 2(−i)le±ilθq/dk

[1]
2q with θq such that k[1]eiθq = k1q + ik

[1]
2q ,

15.

III. DETERMINATION OF THE ACOUSTIC PROPERTIES OF THE

CONFIGURATION

A. Application of the continuity conditions across ΓH and Γ0

Applying the continuity of the pressure field and of the normal component of the velocity

across ΓH and the Neumann condition on Γ0, introducing the proper field representation

therein, Eqs.(5) and (6), and making use of the orthogonality relation

∫ d
2

− d
2

ei(k1n−k1l)x1dx1 =

dδnl, ∀(l, n) ∈ Z
2 give rise to a linear set of equations. After some algebra and rearrange-

ments, this linear set reduces to a coupled system of equations for solution of Rq, fq and gq

in terms of B
(j)
l .
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B. Application of the multipole method

The expressions of fq and gq in terms of B
(j)
l are introduced in the so-denoted diffracted

field inside the layer. The latter field accounts for the direct diffracted waves inside the

layer and for the reflected waves at the boundaries Γ0 and ΓH previously scattered by each

inclusions. This expression when compared with the expression of the direct scattered field

by the inclusions, is valid in the whole domain Ω[1]. To proceed further, the Cartesian form

of this field is converted to the cylindrical harmonic form in the polar coordinate system

attached to each inclusion, as stated for example in1. Effectively, central to the multipole

method are the local field expansion or multipole expansions around each inclusion.

The pressure field in the vicinity of the J-th inclusion in the polar coordinate system

attached to this inclusion and introducing A
(J)
L the coefficient of the locally-incident field,

reads as

p[1](rJ) =
∑

L∈Z

B
(J)
L H

(1)
L

(
k[1]rJ

)
eiLθJ

+
∑

L∈Z

[
∑

l∈Z

SL−lB
(J)
l +

∑

j 6=J

∑

l∈Z

S
(J,j)
L−l B

(j)
l +

∑

j∈N c

∑

l∈Z

∑

q∈Z

Q
(J,j)
Llq B

(j)
l +

∑

q∈Z

F
(J)
qL

]
JL
(
k[1]rJ

)
eiLθJ

=
∑

L∈Z

[
B

(J)
L H

(1)
L

(
k[1]rJ

)
+ A

(J)
L JL

(
k[1]rJ

)]
eiLθJ , (7)

with

F
(J)
qL =

2δqα
[0]
q

Dq

cos
(
k
[1]
2qx

(J)
2 − Lθq

)
eik

[1]
1q x

(J)
1 ,

SL−l =
∞∑

i=1

H
(1)
L−l

(
k[1]id

) [
eik

i
1id + (−1)L−l e−ik

i
1id
]
,

Q
(J,j)
Llq =

2(−i)l−Leik1q(x
(J)
1 −x

(j)
1 )

dk
[1]
2pDp

[(
α[1]
q − α[0]

q

)
eik

[1]
2qH cos

(
k
[1]
2q

(
x
(j)
2 − x

(J)
2

)
− (l − L)θq

)

+α[1]
q cos

(
k
[1]
2q

(
x
(j)
2 + x

(J)
2 −H

)
− (l + L)θq

)
+ iα[0]

q sin
(
k
[1]
2q

(
x
(j)
2 + x

(J)
2 −H

)
− (l + L)θq

)]

Dq = α[0]
q cos

(
k
[1]
2qH

)
− iα[1]

q sin
(
k
[1]
2qH

)
,

(8)

wherein SL−l is the lattice sum often refered to as Schlömilch series for non-dissipative

material, H
(1)
L is the L-th order Hankel function of first kind and JL is the L-th order Bessel

7



function. The terms S
(J,j)
L−l accounts for the coupling between the multiple inclusions inside

the unit cell and take the form:

S
(J,j)
Ll =

∑

q∈Z

(−i)L−l2e±i(L−l)θq

dk
[1]
2q

e
i
(
k1q(x

(J)
1 −x

(j)
1 )±k

[1]
2q (x

(J)
2 −x

(j)
2 )

)

(1− δJj) , (9)

wherein the signs + and − correspond to xJ
2 ≥ xj

2 and xJ
2 ≤ xj

2 respectively, which can be

found in1 when |x(J)
2 − x

(j)
2 | ≥ R(j) +R(i) or

S
(J,j)
Ll =

[
B

(j)
l H

(1)
L−l

(
rjJ
)
ei(l−L)θj

J+
∑

o∈Z

So−lB
(j)
l JL−o

(
k[1]rjJ

)
ei(o−L)θj

J

]
(1− δJj) , (10)

when |x(J)
2 − x

(j)
2 | ≥ R(j) + R(i). This latter form agrees with the one found in15 when the

inclusions are aligned inside the unit cell, i.e. x
(j)
2 = x

(J)
2 , ∀j ∈ N c, which imposes θjJ = 0 or

θjJ = π. In Eq.(10), (rjJ , θ
j
J) is the coordinate of x

(j) in the polar coordinate system attached

to the J-th inclusions, i.e. centered at x(J).

Finally, it is well known that the coefficients of the scattered field and those of the locally-

incident field are linked by a matrix relation derived from the boundary condition on Γ(J)

only, i.e., B
(J)
L = V

(J)
L A

(J)
L , wherein V

(J)
L are the cylindrical harmonic reflection coefficients.

These coefficients takes the form V
(J)
L = −Ḣ

(1)

L

(
k[1]R(j)

)
/J̇L

(
k[1]R(j)

)
in case of Neumann

type boundary condition, with χ̇(x) = dχ/dx, χ being either Hankel or Bessel functions.

Introducing the expression of A
(J)
L derived from Eq.(7) in the previous relation gives rise to

the linear system of equations for the solution of B
(j)
L . This linear system may be written

in the matrix form, when denoting by B the infinite column matrix of components B
(j)
L

(I−V (S+Q))B = VF , (11)

wherein F is a vector of components
∑

q∈Z

F
(J)
qL , which accounts for the solicitation of the J-th

inclusion by a wave that is previously diffracted inside the layer, V is a diagonal square

matrix of components V
(J)
L , S and Q are two matrices of components SL−l + S

(J,j)
L−l , which

accounts for the coupling between the J-th and the j-th inclusion inside the layer and
∑

q∈Z

Q
(J,j)
Llq , which accounts for the coupling between the J-th and the j-th inclusion through

waves diffracted by the layer.

The expressions of the components involved in (I−V (S+Q))B = VF are identical to

those found in1, when the half-space behind the layer vanishes and when the center of the

cylinders are defined as they are in the present article.
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C. Evaluation of the fields, reflection and absorption coefficients.

Once the linear system (11) is solved, the expression of Rp in terms of B
(j)
l reads as

Rq =
α[0]i cos

(
k
[1]i
2 L

)
+ iα[1]i sin

(
k
[1]i
2 L

)

Di

+
∑

q∈Z

∑

j∈N c

∑

l∈Z

4 (−i)l α
[1]
q

dk
[1]
2qDp

B
(j)
l cos

(
k
[1]
2qx

(j)
2 − lθq

)
e−ik1qx

(j)
1 . (12)

The first term corresponds to the reflection coefficient in terms of waves in absence of

inclusion, i.e. for q = 0 or for the incident plane component indexed by i, and the second

terms accounts for the inclusions.

Introduced in Eq.(5), the reflected field is expressed as a sum of the field in the absence

of the inclusions with the field due to the inclusions. In case of an incident plane wave with

spectrum Ai(ω), the conservation of energy relation takes the form

1 = R+A , (13)

with R and A the hemispherical reflection and the absorption coefficients. R is defined by

R =
∑

q∈Z

Re
(
k
[0]
2q

)

k
[0]i
2

‖Rq‖2
‖Ai‖2 =

q̃+∑

q=−q̃−

k
[0]
2q

k
[0]i
2

‖Rq‖2
‖Ai‖2 , (14)

wherein q̃∓ are such that q̃∓ < d/2π
(
k[0] ± ki

1

)
< q̃∓ + 1 and the expression of Rp are given

equation (12). A takes the form

A =
1

dk
[0]i
2 ‖Ai‖2

(AD +AS) , (15)

whererin

AD =
ρ[0]

Re (ρ[1])

∫

Ω[1]

Im
((

k[1]
)2) ‖p[1] (x) ‖2dω̄ , (16)

is the inner absorption of domain Ω[1]. dω̄ is the differential element of surface in the sagittal

plane and

AS=Re

∫

Γa

ρ[0]

ρ[1]
Im
(
ρ[1]
)

Re (ρ[1])
p[1]⋆ (x) ν01 · ∇p[1] (x) dγ, (17)

is the surface absorption related to interfaces ΓH . dγ is the differential arc length in the

cross-sectional plane, ν01 is the outward-pointing unit vector to the boundary ΓH , and p∗ is

the complex conjuguate of p.

9



TABLE I. Geometry of the considered configurations.

N d (cm) H (cm) (x
(j)
1 (cm), x

(j)
2 (cm)) R(j) (cm)

C1 1 2 2 (1,1) 0.75

C2 2 2 3.5 (x
(1)
1 , x

(1)
2 ) = (1, 1) R(1) = 0.75

(x
(2)
1 , x

(2)
2 ) = (0.5, 1 +

√
3d/2) R(2) = 0.5

AS accounts for the absorption induced by the viscous dissipation at the interfaces.

Effectively, it is obvious from Eq.(17) that AS does not vanish because of non-vanishing

Im
(
ρ[1]
)
, which is a consequence of the modeling of viscous dissipation phenomenon17.

Because of the complicated shape of Ω[1] and the non-vanishing term AS, A will not be

calculated by the expression given in (15), but rather by A = 1−R.

IV. NUMERICAL RESULTS, VALIDATION AND DISCUSSION

The infinite sum
∑

q∈Z over the indices of the k1q depends on the frequency and on

the period of the grating. An empirical truncation rule is employed, inspired from1,2,14

and determined by performing a large number of numerical experiments
∑Q+

q=−Q−
such that

Q∓ = int
(
d/2π

(
3Re

(
k[1]
)
± ki

1

))
+10. In the latter equations, int (a) represents the integer

part of a.

The infinite sum
∑

m∈Z over the indices of the modal representation of the diffracted field

by a cylinder is truncated18 as
∑M

m=−M such that M = int
(
Re
(
4.05×

(
k[1]R

) 1
3 + k[1]R

))
+

10.

Finally, the infinite sum (lattice sum) embedded in SL−l in equations (8) and (10)
∑∞

i=1 is

found to be slowly convergent, particularly in the absence of dissipation, and is found to be

strongly dependent on the indice L− l. A large literature exists on this problem19,20. Here,

the fact that the mediumM [1] is dissipative greatly simplifies the evaluation of the Schlömilch

series. The superscript I in S
{I}
L−l identifies the integer over which the sum is performed, i.e.

∑I

i=1. This sum is carried out until the conditions
∣∣∣Re

((
S
{I+1}
L−l − S

{I}
L−l

)
/S

{I}
L−l

)∣∣∣ ≤ 10−5

and
∣∣∣Im

((
S
{I+1}
L−l − S

{I}
L−l

)
/S

{I}
L−l

)∣∣∣ ≤ 10−5 are reached14.

Numerical calculations have been performed for various geometrical parameters whose

values are reported in Table I, and whithin the frequency range of audible sound, particularly

10



TABLE II. Parameters of the porous foam used in the article.

φ α∞ Λ (µm) Λ′ (µm) σ (Ns.m−4) νc (Hz)

0.95 1.42 180 360 8900 781

at low frequencies. For all calculations, the ambient and saturating fluid is air (ρ[0] =

ρf = 1.213 kg.m−3, c[0] =
√
γP0/ρf , with P0 = 1.01325 × 105 Pa, γ = 1.4, and η =

1.839 × 10−5 kg.m−3.s−1). One of the main constraints in designing acoustically absorbing

materials are the size and weight of the configuration. A particular attention is paid on

the dimension, i.e. thickness, and the frequencies of the absorption gain, which have to be

commonly as small as possible. The absorption gain is defined by reference to the absorption

of the same configuration without inclusion embedded. The initial configuration consists in a

2 cm thick porous sheet of Fireflex (Recticel, Belgium) backed by a rigid plate. The material

characteristics are reported in Table II and were determined by use of traditional methods10.

Circular cylinders of 7.5 mm radius are embedded with a spatial periodicity of 2 cm.

A. One inclusion per spatial period

We first consider only one inclusion centered in the unit cell, i.e. (x
(1)
1 , x

(1)
2 ) = (d/2, H/2) =

(1 cm, 1 cm). The first two modified modes of the plate, which are excited because of the

periodic arrangement of the inclusions, Appendix A, stand around ν(1,1) ≈ 14 kHz and

ν(2,1) ≈ 16 kHz. The attenuation associated with both modes is relatively large, figure3.

Different type of waves corresponds to each kind of mode related to the grating, i.e.

mode of the grating (MG) and modified mode of the backed layer (MMBL): evanescent

waves in Ω[1] (and also in Ω[0]) for the MG, and evanescent waves in Ω[0] and propagative

waves in Ω[1] for the MMBL. In order to determine which type of mode is excited by the

plane incident wave, we have plotted in Figure 2 the transfer function as calculated by

TF (ν) = p(x, ω)/p[0]i(x, ω) on Γ0 (x2 = 0) at 1 cm from the center of the inclusion (between

two inclusions), when excited at normal incidence. The tranfert function is separated on the

different intervals corresponding to the different type of waves that are involved in the total

pressure calculation: TF (ν) is the total transfer function, TF1(ν) is the contribution of the

propagative waves in both Ω[0] and Ω[1], TF2(ν) is the contribution of the evanescent waves

11
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FIG. 2. Configuration C1 - Transfer function, TF (—), on Γ0 at 1 cm from the center of the

inclusion (between two inclusions), and its different contributions when the configuration is excited

at normal incidence : (−−) TF1, (−·) TF2, and (··) TF3.

in Ω[0] and propagative ones in Ω[1], and TF3(ν) is the contribution of the evanescent waves

in both Ω[0] and Ω[1]. The transfer function possesses a large peak at ≈ 15 kHz, around

ν(1,1) and ν(2,1). This also proves that the MMBL are the most excited modes related to the

grating, at least around these frequencies. The peak results from a continuous drop between

evanescent waves in both material to evanescent waves in the air medium. This also means

that this peak is neither a MMBL nor a MG, but result from a complex combination of these

two types of mode, with a structure closer to the one of the MMBL. Because of this stucture,

the energy is trapped in the layer leading to an increase in the absorption coefficient. The

translation of the excitation of these modes in terms of absorption, i.e. the peak around

17 kHz figure 3, is smaller than the one depicted in2, because the attenuation associated

with the modes in the present configuration is larger and because the flow resistivity of the

foam considered here is larger. The design of a struture composed of a layer with inclusions

embedded is more based on compromises than with irregularities of the rigid backing2. These

compromises relate the spatial periodicity, the radius of the inclusion or better the ratio R/d

which can not be too small and which constrains the layer thickness and the properties of

the latter.

Figure 3 depicts the absorption coefficient as calculated for this geometry. This result

was validated numerically by matching the absorption coefficient as calculated with the

present method with the one as calculated with a Finite Element method. Quadratic finite

element were used to approximate the pressure inside the unit cell, thereby leading to a

12



discretized problem of 2196 elements and 1238 nodes. The periodicity relation, i.e. the

Floquet condition, were applied on both sides of the discretized domain, i.e. at each nodes

of x1-coordinate 0 and d. For this periodicity relation to be correctly implemented these

two sides were discretized with similar nodes, i.e. idential x2-coordinate. The results match

well, thus validating the described method, figure 3.

Because of the rigid backing, which acts as a perfect mirror, the response of the con-

figuration possesses some particular features related to multi-layered grating. We also in-

troduce d2 = 2x
(1)
2 the distance between the center of the circular cylinder and the center

of its image. Each grating is going to interfere with one another at the Bragg frequencies

νb
(n) = nπRe

(
c[1]
)
/d2. In particular, the first Bragg frequency is νb

(1) ≈ 6 kHz. The lat-

ter frequency is largely employed to determine the central frequency of the band gaps for

phononic crystals and corresponds to the maximum of reflected energy and so to a minimum

of transmitted energy -band gaps- in case of phononic crystal. The absorption coefficient

also presents a minimum at νb
(1).

A particular feature of the response of this configuration is that the absorption coefficient

presents a peak close to unity at a low frequency νt below the so-called fundamental quarter-

wave resonance frequency, i.e. below what can be associated with an essential spectrum.

A sensitivity analysis, performed by varying one parameter while the other are kept

constant at their value, shows that the radius of the inclusion has a large influence on νt and

on the amplitude of the corresponding absorption peak. The radius R was varied from 1 mm

to 9.5 mm. In terms of amplitude of the absorption peak, R = 75 mm is the optimal value,

while νt decreases when R increases. In the opposite, d = 2 mm is the optimal value in terms

of the amplitude of the peak, but νt increases when d increases from 1.75 cm to 3.75 cm. The

spatial periodicity of the arrangement acts inversely on νt than it does on the frequencies

of the modes closely related to d like the MMBL and the MG, Appendix A. In fact, the

amplitude of the absorption peak increases with the filling ration R/d until being close to

unity and drastically decreases after this value because the wave can no more propagate in

the layer towards the rigid backing and is mainly reflected on the cirular grating, or because

the density of inclusion becomes insignificant. In the same way, when the angle of incidence

decreases [π/2; π/6], the νt increases in the opposite to the frequencies of the MMBL and of

the MG. The amplitude of the peak is quite close to unity until π/6. For smaller values of

incidence angle, the amplitude of this low frequency peak begins to decrease.

13
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FIG. 3. Configuration C1 - Absorption coefficient of a H = 2 cm thick porous sheet of Fireflex

backed by a rigid plate (− − −) without inclusion embedded and (—) with a R = 75 mm radius

circular cylinder embedded per spatial period d = 2 cm. The Finite Element result is plotted with

(o). The absolute value of the determinant of the propagation matrix D = I−V (S+Q) is plotted

on top of the figure.

When R = 75 mm and d = 20 mm, νt is all the smaller that the inclusion is distant from

the rigid backing, i.e. that x
(1)
2 , the center of the inclusion, is large. The amplitude of the

peak is close to unity whatever x
(1)
2 , in [0.8 cm; 1.2 cm] the range conditionned by the layer

thickness and the inclusion radius.

The features of this low frequencies absorption peak sounds like phenomena that are

related to trapped modes in wave guides8 or embedded Rayleigh-Bloch waves9,21. These

modes has finite energy and corresponds to a solution which decays down away from the

perturbation. Figure4 shows a snapshot of the module of the pressure field at νt. The

latter clearly exibits a maximum on the side of the rigid plate and a minimum on the side

of Γ0, which is typical of a trapped mode. Everything seems to happen like if a Dirichlet

wave guide of thickness 2H presents, necessarily, symetric obstacles formed by the inclusion

and its image. In our case, these trapped modes are complex, because the boundaries of

the wave-guide are not Dirichlet conditions but continuity conditions, and because M [1] is

a dissipative medium. The determinant as calculated for the configuration C1, figure 3,

present a minima at νt, which suggests that a complex (trapped) mode CTM stands at

14
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FIG. 4. Configuration C1 - Snapshot of the module of the pressure field inside the porous sheet at

νt = 2674 Hz.

this frequency. In the opposite, it is clear from figure2, that the peak around νt is mainly

associated with propagative waves in both domains, a small part of it being associated

with evanescent waves in the layer which entraps the energy. This phenomena was already

encountered in22 and attributed to the periodicty of the configuration. An other explanation

of the quasi-absorption peak is related to the modification of wave path and structure global

properties inside the porous sheet. For a particular ratio R/d, the pressure gradient, which

is a cause of viscous loss, is larger inbetween the inclusions and between the inclusions

and the rigid backing. This loss phenomenon results from a continuous modification of the

quarter-wavelength resonance when the inclusion radius increases.

Other layer thicknesses were tested. It was found that for each layer thickness, in the

suitable range for the application, and a centered (x
(1)
1 , x

(1)
2 ) = (d/2, H/2) inclusion, a couple

(R(1), d) exists for which a quasi-total absorption peak exists below the quarter-wavelength

resonance frequency.

Finally, because the parameters of a foam are often difficult to predict before its polymer-

ization, a sensitivity analysis has been performed with regards to the acoustic and structural

parameters of the porous sheet. The amplitude and frequency of the CTM is quasi indepen-

dant from a variation of φ, Λ and Λ′. When α increases from 1.02 to 1.42, the sound speed

in the material decreases and νt decreases, while the amplitude of the associated peak stands

close to one. The resisgtivity σ particularly influences the amplitude of the peak. When

15



it increases, the amplitude admits a maximum and the peak is wider, while νt increasse.

The resistivity σ ([3900 Ns.m−4; 12900 Ns.m−4]) is the parameter that mostly influences the

results and its value has to be close to the one used in the simulations, i.e. in our case, a

value inbetween 7000 Ns.m−4 to 11000 Ns.m−4 is acceptable.

B. Two or more inclusions per spatial period

Various configurations were tested, involving two or more inclusions per spatial period.

The frequency band investigated stands below the quarter-wavelength resonance frequency

of the associated porous sheet or at least below the first Bragg frequency, i.e. below the

frequency of the first modified mode of the porous sheet. The lowest frequency boundary is

naturally the solid-fluid decoupling frequency or at least the Biot frequency.

Two absorption peaks close to unity were found for aH = 3.5 cm thick porous sheet, when

a second circular cylinder of radius R(2) = 5 mm is added to the configuration C1, figure 5.

The center of this cylinder is such that r21 = d = 2 cm and θ21 = π/3. The configuration C2

was derived from a triangular lattice by reducing the radius of the upper cylinder to decrease

the structure thickness. The first absorption peak stands around ν
(1)
t ≈ 1850 Hz just below

the first quarter-wavelength resonance frequency of the H = 3.5 cm thick porous sheet,

and the second stands around ν
(2)
t ≈ 4120 Hz. These two peaks correspond to minimum

of |det (D) | and can therefore be explained by excitation of trapped modes, shifted in the

complex plan.

When the inclusions are inversely placed, i.e. the center of the first inclusion is

(1 cm, 2.5 cm) and r(12) = d = 2 cm and θ12 = −π/3, results are not identical and no

quasi-total absorption peak is encoutered. This means that the configuration are not re-

versible.

The procedure was ran a second time with the addition of a third inclusion of radius

R(3) = 2.5 mm to the configuration C2, r32 = d = 2 cm and θ32 = 2π/3. Three quasi-

total absorption peaks were encoutered around ν
(1)
t ≈ 1500 Hz, ν

(2)
t ≈ 3300 Hz, and ν

(3)
t ≈

5000 Hz. This phenomenon was already encountered in23, where N trapped modes were

found when N cylinders were place across a wave tank. Nevertheless, this configuration

imposes use of H = 5 cm thick plate and the absorption gain was considered unsignificant

over the whole frequency range considered.
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FIG. 5. Configuration C2 - Absorption coefficient of a H = 3.5 cm thick porous sheet of Fireflex

backed by a rigid plate (− −−) without inclusion embedded and (—) with a R1 = 75 mm radius

circular cylinder and a R2 = 5 mm radius circular cylinder embedded with d = 2 cm.

The addition of inclusions that imposes increasing the thickness of the structure is rapidly

of non practical use because of the large absorption of the porous layer itself.

Based on the fact that the frequency ν
(1)
t decreases when x

(1)
2 increases, several attempts

were followed to construct a porous sheet with a unit cell composed of varying x
(j)
2 central

coordinate circular cylinder arranged in a kind of garland. For example, the absorption

coefficient of a 8 circular cylinders per unit cell embedded in a 2 cm thick porous sheet

was studied. The radius of the 8 cylinders was R(j) = 75 mm and the projection of the

center-to-center distance between two adjacent cylinders x
(j,j+1)
1 was 2 cm. The x

(j)
2 were

chosen such that x
(1)
2 = 1.1 cm, x

(2)
2 = 1.05 cm, x

(3)
2 = 1 cm, x

(4)
2 = 0.95 cm, x

(5)
2 = 0.9 cm,

x
(6)
2 = 0.95 cm, x

(7)
2 = 1 cm, and x

(8)
2 = 1.05 cm. The absorption peak at νt was no more

total and no particular increase of its width was noticed. This means that the periodicity

has a large influence on the results and that the phenomenon can not be simply explained by

trapped modes but rather by complex embedded Rayleigh-Bloch waves. A similar procedure

was followed by decreasing the radius and the center-to-center distance, the cylinders being

aligned, without particular effects on the absorption.
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V. CONCLUSION

The influence of embedding periodic circular inclusions on the absorption of a porous

sheet attached on a rigid plate was studied theoretically and numerically. In addition to

the absorption features related to excitation of modified mode of the plate and to Bragg

interference, it is shown that the structure, in case of one array of cylinders embedded in

a porous sheet, whose thickness and parameters, mainly the flow resistivity, are correctly

chosen, possesses a quasi-total absorption peak below the quarter-wavelength resonance

frequency. This particular feature enable the design of small dimension absorption packages

and was explained by complex trapped mode excitation and by increase of the pressure

gradient inside the layer. This quasi-total absorption peak was validated by use of Finite

Element method, thus validating the described method and results.

In case of more than one circular cylinder per spatial period, it was found that N c

quasi-total absorption peak can be obtained for particular arrangement along the porous

thickness, i.e. close to triangular lattice. Nevertheless, this rapidly leads to a large thickness

of the stucture and the embedding of the additional inclusions become useless. Garland

arrangment were also tested without particular effect, or at least without as spectacular

effect as the one already observed for one inclusion per spatial period.

The method offers an alternative to multi-layering and double porosity materials for the

design of sound absoprtion packages.

Appendix A: Modal analysis of the configuration

The modes of the configuration without inclusions embedded (i.e. a rigid porous layer

backed with a planar rigid wall), whose dispersion relation is

Di = α[0]i cos
(
k
[1]i
2 H

)
− iα[1]i sin

(
k
[1]i
2 H

)
= 0 , (A1)

cannot be excited by a plane incident wave initially traveling in the air medium2. Effectively,

figure 6 depicts the real and the imaginary parts of the roots c⋆(n)(ω) = ω/k⋆
1,(n)(ω) of Eq.

(A1), as calculated for a H = 2 cm thick porous layer, whose acoustical characteristics are

those used in section IV. Under the rigid frame assumption and for frequencies higher than

the Biot frequency (and lower than the diffusion limit), a porous material can be considered

as a modified fluid, its associated dissipation being considered as a perturbation of a fluid.
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For Eq.(A1) to be true without dissipation, k
[0]
2 should be purely imaginary while k

[1]
2 should

be purely real. Under the previous assumptions, this implies that Re
(
c⋆(n)

)
should stand in

[Re
(
c[1]
)
, c[0]], i.e. |ki

1| should stand in [k[0]; Re
(
k[1]
)
]. Or for a plane incident wave initially

propagating in the air medium |ki
1| is always smaller than k[0]. It is also necessary to note

that in the diffusion regime, i.e. for frequencies largely below the Biot Frequency, any mode

exists. This fact constitutes the major difference when compared with a traditional fluid.

Effectively, largely below the Biot frequency, k[1] is purely imaginary. This implies that k
[1]
2

is also purely imaginary whatever the value of ki
1 and that Di never vanishes.

When inclusions are periodically embedded in the porous sheet, the dispersion relation of

the modes of the configuration is det (I−V (S+Q)) = 0. The roots of the latter dispersion

relation are difficult to determine because of the complex nature of the matrix I−V (S+Q).

Here, we focuse on the case of only one grating, i.e. N c = 1 in order to emphasis the

excitation of the modified mode of the backed layer (MMBL),2. Proceeding as in14, an

iterative scheme can be employed to solved (11). The equation is re-written in the form

(1− VLMLL)BL = VLFL + VL

∑
l∈Z MLlBl(1− δLl). The iterative scheme reads as





B
{0}
L = VLFL/ (1− VLMLL)

B
{n+1}
L =

(
VL

∑

l∈Z

MLlB
{n}
l (1− δLl)+VLFL

)

/ (1− VLMLL)

, (A2)

from which it becomes apparent that the solution B
{n}
L , to any order of approximation, is

expressed as a fraction, the denominator of which not depending on the order of approxi-

mation can become small for certain couples (k1q, ω), so as to make B
{n}
L , and possibly the

field large.

When this happens, a natural mode of the configuration, comprising the inclusions and

the plate, is excited, this taking the form of a resonance with respect to B
{n}
L , i.e., with

respect to a plane wave component of the field in the plate relative to the inclusions. As

B
{n}
L is related to fp, gp and Rp, the structural resonance manifests itself for the same (k1q, ω),

in the fields of the plate and in the air.

The approximate dispersion relation

DL = 1− VL

(
S0 +

∑

q∈Z

QLLq

)
= 0 , (A3)
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is the sum of a term linked to the grating embodied in VLS0 with a term linked to the plate

embodied in VL

∑
q∈Z QLLq, whose expressions are give in (8).

This can be interpreted as a perturbation of the dispersion relation of the gratings by

the presence of the plate. The zeroth order lattice sum can be re-written20 in the form
∑

q∈Z 2/dk
[1]
2q (additional constants are neglected). Introducing this expression into (A3)

gives

DL = 1− VL

∑

q∈Z

2NLq

dk
[1]
2qDq

= 0 , (A4)

with

NLq = α[1]
q cos

(
k
[1]
2qH

)
− iα[0]

q sin
(
k
[1]
2qH

)
+ α[1]

q cos
(
k
[1]
2q

(
2x

(1)
2 −H

)
− 2Lθq

)

+ iα[0]
q sin

(
k
[1]
2q

(
2x

(1)
2 −H

)
− 2Lθq

)
. (A5)

It is then convenient, for the clarity of the explanations, to consider i) M [1] to be a

non-dissipative medium (a perfect fluid) and ii) the low frequency approximation of VL,

valid when k[1]R(1) << 1. The latter hypothesis ensures that the VL reduces to Vl ≈
(−1)lπ(k[1]R(1))2/i4 +O

(
(k[1]R(1))2

)
, l = −1, 0, 1. Equation (A4) then reduces to

Dl ≈ 1−
∑

q∈Z

(−1)l(k[1]R(1))2

2idk
[1]
2qDq/Nlq

= 0 , l = −1, 0, 1 . (A6)

By referring to Cutler mode24, but also to the modal analysis carried out in14, the latter

dispersion relation is satisfied (in the non-dissipative case) when the denominator of Eq. (A6)

is purely imaginary and vanishes. These conditions are achieved when |k1q| ∈ [k[0],Re
(
k[1]
)
]

and when either Dq = 0 or α
[1]
q = 0 (i.e. k

[1]
2q = 0), which respectively corresponds to modified

modes of the backed-layer (MMBL) and to modes of the grating (MG). Both of them are

determined by the intersection of c1q = ω/k1q respectively with c⋆(n)(ω) as calculated for the

backed-layer and with Re
(
c[1]
)
. The MMBL are pointed out by the dots on figure 6. The

associated attenuation of each mode can then be determined by the values of Im
(
c⋆(n)

)
and

Im
(
c[1]
)
at the frequencies at which the modes are excited. The attenuation associated with

MG is also higher than the one associated with MMBL for all frequencies. Moreover, MG

corresponds to the highest boundary of |k1q| for Eq.(A6) to be true. This implies that MG

should be difficult to excit. The latter type of mode can only be poorly excited by a plane

incident wave, particularly at low frequencies.
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FIG. 6. Real and imaginary part of the root of the dispersion relation in absence of inclusions c⋆(n),

n = 1, 2. Real part of the modified mode of the backed layer c⋆(n,q), n = 1, 2, q = 1, 2, for d = 2 cm

are pointed out by dot.
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