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Abstract. In this paper, we present the implementation of Bloch oscillations in an atomic interferometer
to increase the separation of the two interfering paths. A numerical model, in very good agreement with
the experiment, is developed. The contrast of the interferometer and its sensitivity to phase fluctuations
and to intensity fluctuations are also calculated. We demonstrate that the sensitivity to phase fluctuations
can be significantly reduced by using a suitable arrangement of Bloch oscillations pulses.
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1 Introduction

Atom interferometry is nowadays a corner stone in high
precision measurement. It has been used to determine the
fine structure constant [1,2], as well as the Newton’s grav-
itational constant [3,4], to test general relativity [5] and to
measure gravity [6,7]. In these applications, the interfer-
ometers rely on momentum exchange between light and
atoms to split and recombine atomic wave-packets. The
sensitivity of the measurements is proportional to the spa-
tial separation of the wave-packets in the interferometer.
As the beamsplitters are performed with two photon Ra-
man transition, the velocity difference between the arms
of the interferometer δv is equal to 2vr (where vr = ~k/m
is the recoil velocity, k is the wavenumber of light and m
the mass of the atoms). The sensitivity of the interferom-
eter is thus proportional to 2vrT where T is the typical
duration of the interferometer1.

Until recently, the main way to improve the sensitiv-
ity of interferometers in order to achieve higher precision
measurements was to increase the duration T . However,
it requires a careful control of phase noise of the lasers as
well as vibrations in order to keep a good signal to noise
ratio. Transversal spread of the atomic cloud or motion
of the cloud inside the science chamber set a limit to this
interaction time. Interaction times of the order of several
hundreds of ms are achieved [6].

Another method to increase the separation of the wave-
packets and so the sensitivity of the interferometer con-
sists in using a large momentum transfer pulse with a
separation δv > 2vr. High order Bragg diffraction of mat-

1 For a gravimeter, the velocity change due to gravity is also
proportional to T , which leads to a sensitivity to gravity scaling
as T 2

ter wave can be used to increase δv [8]. However, the laser
power required for Bragg diffraction increases sharply with
δv [9]. Recently, a double-diffraction technique has been
proposed to enhance the area of a Raman atom interfer-
ometer [10]. Increasing δv can be also done with Bloch
oscillations. It has been suggested and demonstrated by
the group of W.D. Phillips on a Bose Einstein conden-
sate [11]. The coherence of the acceleration with Bloch
oscillations (BO) is a key point of the process [12]. More
recently, a group at Stanford/Berkeley and our group have
implemented this method by inserting the so called large
momentum transfer beam splitter (LMTBS) in an atom
interferometer [13,9].

The large momentum transfer beam splitter (LMTBS)
is realized with a suitable combination of two processes.
The first one, realized with usual methods (Bragg pulse
in the group of Stanford/Berkeley and Raman pulses in
ours), implements a separation between two wavepackets.
The second process is used to selectively and coherently
accelerated only one of the wavepackets with Bloch oscil-
lations in order to increase δv. This separation keeps the
coherence between the two wave packets.

Our experiment where we demonstrate the realisation
of a LMTBS has been described in a letter [13]. In this
paper, we present a model that help us to calculate pre-
cisely the efficiency of the LMTBS (first part) and also the
phase of the interferometer (second part). The calculation
of this phase is a key point to understand the sensitivity
of the interferometer (third part).

2 Bloch oscillations

In this section we describe the Bloch oscillation process
that is used to increase the separation of atoms in the
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interferometer. The phenomenon of Bloch oscillation is a
well understand tool to coherently accelerate ultra-cold
atoms[14]. In order to realise a LMTBS, the difficulty is
not only to efficiently accelerate atoms but to be able to
accelerate only atoms from on arm of the interferometer,
keeping the coherence between the two arms.

2.1 Phenomenological description of the acceleration

The Bloch oscillation acceleration is based on coherent
transfer of momentum between an accelerated optical lat-
tice and atoms. The optical lattice results from interfer-
ence of the two lasers beams of the same intensity I, de-
tuned by∆ from the one photon transition. The amplitude
of the resulting standing wave is 4I. Atoms endure a pe-
riodic potential U(x) due to light-shift (a.c. stark effect)
which can be expressed as:

U(x) =
U0

2
(1 + cos(2kx)) , (1)

where k = 2π/λ = 2πν/c is the wavevector of the laser,

U0 = h Γ 2

8∆
I
IS

with Γ representing the natural linewidth
of the excited state and IS its saturation intensity. In the
following, the constant part U0/2 which does not play any
role for the explanations is removed from every equation.
Because of the periodicity of the potential, the eigenener-
gies of the system show a band structure [15]. Each eigen-
state is described by a band index n and a quasimomen-
tum q defined modulo 2~k [16]. The Fig. 1 represents this
band structure, where the first Brillouin zone is unfolded.
The splittings between bands at the center (q = 0) and at
the edge (q = ~k) of the first Brillouin zone occurs where
atoms are resonantly coupled by U(x).

In a quantum optics view, the avoided crossing (Bragg
resonance) between the first and second bands is con-
nected to the resonance of the two photon transition be-
tween states of momentum p = ±~k. Similarly, the split-
ting between the second and third bands is due to a reso-
nant four photon transition between states of momentum
p = ±2~k, and so on for the nth and (n+ 1)th band. The
order of the transition grows with the band index, thus
the higher the band index is, the weaker is the splitting
between the bands.

When the atoms in the first band are subjected to
a constant and uniform force, their quasimomentum in-
creases linearly with time. If the force is weak enough to
induce adiabatic transition, the atoms stay in the first
band and therefore have a periodic motion (Bloch oscil-
lations [17]). The time necessary for a variation of the
quasimomentum of 2~k is the period of the oscillations.
For atoms in higher band, for a constant acceleration, the
probability to make an adiabatic transition (stay in the
same band) will be higher for low values of the band in-
dex.

Bloch oscillations were initially introduced in the case
of a lattice and a uniform force. In our experiment, a
constant acceleration is applied to the lattice. This ac-
celeration acts like a force in the frame of the lattice (see

Fig. 1. Band structure of the optical lattice. This graph repre-
sents the band energy in the frame of the lattice as a function
of the quasi-momentum. Because quasi-momentum is defined
modulo 2~k, one can think of this graph as an unrolled cylinder
where the vertical dot-dashed lines are overlapping.

Ref. [12]), and an equivalent of Bloch oscillations can be
observed [14]: the adiabatic transition corresponds to a
change of velocity of 2 recoils, whereas a non-adiabatic
transition does not change the velocity of the atom (free
particle).

In our LMTBS, one wavepacket is loaded in the first
band (A, see Fig. 1) and the second in the third band (B).
The acceleration is small enough so that atoms in the first
band are likely to make an adiabatic transition, but strong
enough so that atoms initially in the third band change
band. The atoms in the first band are periodically acceler-
ated by 2 recoils momentum. In the same time, atoms in
the third band are not accelerated. This process allows us
to selectively accelerate atoms depending on their initial
velocity.

Note that in our experiment, atoms with different ve-
locities have also different internal states because of the
Raman transition used to create the initial splitting. The
amplitude of the lattice is then different for the two wavepack-
ets. This effect could be used to select the wavepacket
which is going to be accelerated. However for our experi-
mental parameters, the difference in light shift is negligible
and so the selection of the accelerated wavepacket relies
only on its initial velocity and not its internal state.

2.2 Theoretical description of LMTBS

In order to optimize the efficiency of the LMT beamsplit-
ter, the evolution of the atomic system has been com-
puted. In the laboratory frame, the Hamiltonian of the
particle is:

H =
p̂2

2m
+ V (x̂, t) (2)

where V (x, t) is the accelerated periodic potential. If we
denote by U0(t) the amplitude of the lattice and by δν(t)
the frequency difference between the two laser beam. Then
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v(t) = 2kδν(t) is the velocity of the lattice and

V (x, t) =
U0(t)

2
cos

(

2k

(

x−
∫ t

v(t′)dt′
))

(3)

We should note that, even if the lattice is accelerated,
in the laboratory frame, this Hamiltonian is still periodic
in space. Therefore the quasimomentum is still a good
quantum number and is conserved. This Hamiltonian can-
not be solved efficiently, because of the fast time variation
of the potential. One could write the Hamiltonian in the
accelerated frame. This Hamiltonian will be time inde-
pendent, but will no longer be periodic, and the quasi-
momentum will not be conserved.

We use another and convenient transformation which
consists in translating the wave function in position space

by the quantity X =
∫ t
v(t′)dt′:

x′ = x+X(t) (4)

ψ′(x′) = ψ(x) (5)

The Hamiltonian becomes:

H(t) =
(p̂−mv(t))2

2m
+
U0(t)

2
cos (2kx̂) , (6)

where the energy shift mv(t)2/2 is left out. This Hamil-
tonian described the Bloch oscillation in the ”solid-state
physics” point of view [12]. The advantage of this presen-
tation is that the Hamiltonian is time independent when
the lattice is moving at a constant velocity.

If we start with a plane wave of momentum p0 (and
therefore of quasi-momentum q0 = p0 modulo 2~k)), the
wavefunction will remain in the subspace of states of quasi-
momentum q0. We therefore choose to solve the problem
in the basis of the plane wave of momentum p0 + 2l~k,
l ∈ Z which is a basis of this subspace.

To solve numerically the problem i npractice, the mo-
mentum basis is restricted to a finite number of l, |l| ≤
Ncut. The value of Ncut is set by the maximal velocity
of atoms in the optical lattice. It results from the sum
of the number of oscillations (velocity of the atom) and
the width of the velocity distribution of the Bloch states
(∆p/~k). This width ∆p is set by the Wannier function in
momentum space[18] which is given by the wave function
of an atom trapped in a single well without tunnelling be-
tween sites. The frequency ω of the trap is proportional
to

√

|U0|Er. For the ground state of an harmonic oscilla-

tor, ∆p =
√

~mω/2. We obtain that ∆p/~k ≃ 4
√

U0/Er

[18,19]. In our calculation, we have used Ncut = 10 for 2
oscillations and U0 ≃ 8Er .

The Hamiltonian is calculated using the dimensionless

parameters κ = U0/8Er (where Er = ~
2k2

2m is the recoil
energy) and p(t) = (p0 + mv(t))/~k. All the units are
scaled so that ~ = k = m = 1.

The expression of the Hamiltonian H and the ket |ψ〉
are reduced to :

H =
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(7)

where pl = p(t) + 2l. Each coefficient cl represents the
amplitude of probability for the state to be in the plane
wave of momentum 2l~k.

The LMT pulse is switched on (and off) adiabatically
to maximize the number of atoms transferred from an
atomic state with well known momentum p0 (plane wave)
to a Bloch state with a quasimomentum q0 = p0 in the
band n (and reciprocally)[18]. In between, the lattice is
accelerated to transfer a given number of recoils to one
component of the wavefunction. We denote by tadiab the
duration of the linear ramp used to switch on and off the
lattice, Tacc the duration of the acceleration, 2N the num-
ber of transferred recoils, U0 the maximal amplitude of the
lattice and p0 the initial momentum of the atoms.

2.3 Optimization of the acceleration

The optimization of the acceleration results from a com-
promise between an adiabatic acceleration of the atoms in
the first band and a strong enough (non-adiabatic) accel-
eration of the atoms in the third band. Reciprocally, for
a given acceleration, the amplitude of the lattice should
be in a given range in order to satisfy this latest compro-
mise. In our experiment, it is easier to vary the amplitude
of the lattice. Therefore, we have plotted on the Fig. 2
the probability for an atom to stay in its band as a func-
tion of the lattice amplitude κ for the first (solid line) and
third (dashed line) bands. There is clearly an intermediate
regime where the probability η11 for an atom to stay in
the first band is high whereas the probability η34 for an
atom to leave the third band (and reach the fourth one)
is also high. The efficiency of the LMT is calculated as

η = η11η34. (8)

It sets the contrast of the interference pattern of the two
wavepackets. The value of η is plotted on Fig. 2. For our
experimental parameters (an acceleration of 2 recoils in
200 µs), the maximum efficiency is about 98% for κ =
1. This maximum ηmax, and the optimal value κopt of κ
depends upon Tacc. The values of ηmax and κopt versus
Tacc are plotted on Fig. 3. For an infinite duration of Tacc,
the efficiency is closed to one while the value for κopt is
nearby zero.



4 Cladé et al.: Large Momentum Beamsplitter using Bloch Oscillations

Fig. 2. Transfer probability as a function of the maximal op-
tical depth κ = U0/8Er of the lattice. The acceleration is in
200 µs for N=2 recoils. Solid line: transfer probability for the
first band η11; dashed line: for the third band, η33 ≈ 1 − η34;
diamond: Efficiency of the LMT pulse, η = η11η34.

This behavior is understandable using the Landau-
Zener criteria which can be used to calculate transition
probabilities in the weak binding limit (κ≪ 1), [12]:

η11 = 1− exp

(

−πκ
2

a

)

(9)

η34 = exp

(

−π κ6

768a

)

(10)

where a = m2/~2k3 dv/dt, is the dimension-less acceler-
ation of the lattice. We clearly see that for a small value

of κ, there is a value of a so that κ6

768a ≪ 1 and κ2

a ≫ 1
leading to efficiencies η11 and η34 close to one. In fact,
there is no theoretical limitation to the weakness of κ.
There is always a suitable value of a which sets η close
to unity. However, this suitable value of a becomes very
small, which means that an infinite amount of time is re-
quired for the acceleration. In an other way, with a given
value of a, the higher is a, the lower is η with an optimized
κ.

In the experimental point of view, the duration of LMT
pulse can not be extend as much as we want. This dura-
tion has to be smaller than the time separation between
the π/2 pulses of our interferometer. The time separa-
tion between π/2 pulses results from a compromise be-
tween the narrowest width of the atomic fringes (and so
the resolution of the interferometer) and the vibrations
of the experimental set up. Practically, the comparison of
the theoretical and experimental results presented in this
paper is done with Tacc = 0.2 ms (for two oscillations).
We will briefly explain at the end of this paper a way to
transfer a larger number of recoils using a non constant
acceleration.

2.4 Adiabatic loading of atoms in the lattice

In the previous section, the efficiency η of the separation
has been calculated assuming that atoms are initially in a

Fig. 3. Efficiency of the LMT pulse as a function of the total
duration of the acceleration for two Bloch oscillations. For each
value of the duration, we calculate the value κopt of the ampli-
tude κ of the lattice that optimizes the efficiency. This value is
plotted in the inset of the figure. The ”saw tooth” shape of κopt

(and therefore of ηopt) is due to small oscillations between the
bands. They do not appear in the Landau-Zener model which
doesn’t take into this effect (lost atoms cannot go back into
their initial band).

well defined Bloch state. Yet, in our experiment, we deal
with a subrecoil velocity distribution, thus the best de-
scription of the initial state is in a plane wave basis. To
load the atoms into a Bloch state, the lattice depth is in-
creased adiabatically. Atoms in an initial momentum p0
are loaded into the Bloch state |n, p0〉, where the band
index n is the nearest integer above |p0/~k|.

The amplitude of probability ηt to load atoms in a
given band is defined as |〈ψ | n, p0〉| where |ψ〉 is the wave
function and |n, p0〉 the Bloch wave function. This proba-
bility depends upon the loading time tadiab, the final depth
of the lattice U0 (the amplitude of the lattice is linearly
increased) and the momentum p0. The Fig. 4 shows, as
functions of the duration tadiab, the probabilities ηt to
load atoms either in the first or in the third band. With
an initial quasi-momentum q0 = 0.5, the probability ηt is
higher for the third band than for the first one because the
coupling with the lattice gets weaker with the increase of
band index.

On Fig. 5, this efficiency ηt is plotted versus the initial
quasi-momentum for tadiab = 150 µs and for U0 = 8Er.

In the case of atoms loaded in the first band, the effi-
ciency is maximum at the center of the first Brillouin zone
(p0 = 0). At the edge of the first Brillouin zone (p0 = ~k),
ηt is exactly 50%. In this situation, it is indeed not possible
to adiabatically transfer the atoms into the optical lattice,
because the initial state is degenerate. The same phenom-
ena occurs on the two edges of the third zone (p0 = 2~k
and p0 = 3~k). The same difficulty happens at the end
of the LMT pulse when the atoms are transferred back
from the lattice to a well defined momentum state (plane
wave).
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Fig. 4. Transfer probability for the loading of atoms in the
optical lattice as a function of loading time tadiab. The quasi-
momentum is q0 = 0.5 and the final amplitude of the lattice is
U0 = 8Er.

Fig. 5. Transfer probability for the loading of atoms in the
optical lattice as a function of the initial quasi-momentum q0
in unit of ~k for atoms in the first and third band of the lattice,
tadiab = 150 µs and κ = 1.

2.5 Total efficiency of the LMT

We have calculated the total efficiency ηtot with the fol-
lowing parameters: tadiab = 150 µs, Tacc = 200 µs, N = 2,
U0 = 8Er. Those parameters correspond to an optimiza-
tion of the efficiency, keeping the total time (defined as
2tadiab + Tacc) constant but varying the amplitude of the
lattice and tadiab (see Fig. 6).

The total efficiency is plotted as a function of the ini-
tial momentum p0 on Fig. 7. It is computed including the
contributions of the adiabatic loading (and unloading) of
the atoms in the lattice. In the first band, the state of
initial quasimomentum q0 = 1 and in the third bands,
the states of initial quasi-momentum q0 = 0 and q0 = 1
are degenerated states. Therefore these atoms cannot be
adiabatically loaded in the lattice. Consequently, it is im-
portant to optimize the width of the initial momentum
distribution such that it fits in the range where the process
is very efficient. However, the wider is the initial velocity
distribution loaded into the LMT pulse, the higher is the

Fig. 6. Time evolution of the amplitude κ = U0/8Er of the
lattice and of the velocity v of the lattice for a beam splitter
with 2 oscillations. These parameters correspond to an accel-
eration of about 100 m.s−1.

Fig. 7. Total efficiency ηtot of the LMT pulse as a function of
the initial momentum p0.

number of atoms that contributes to the interferometer
and so the larger is the signal to noise ratio. Nevertheless,
note that the total efficiency is larger than 95% on a wide
range of p0.

3 Phase shift of the interferometer

In the preceding section, we have calculated the efficiency
of the LMT beamsplitter. This efficiency is one of the key
parameter for calculating the contrast of the interferome-
ter. Another parameter of the interferometer, is the phase
shift. In the following section, we describe in detail how it
can be calculated.

3.1 Ramsey-Bordé interferometer

Let us briefly recall the principle of a Ramsey Bordé in-
terferometer realized with Raman pulses (see Fig. 8). It
is based on a succession of four π/2 Raman pulses (or,
a succession π/2-π-π/2). Each Raman pulse couples two
states (labeled |g1〉 and |g2〉) of the hyperfine structure of
the ground state of the atom via a two photon transition
in a Λ scheme. The two laser used for the transition are
counterpropagating, therefore, the two states have differ-
ent velocities. This allow us to split the initial wave packet
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in two. The relative phase between the two states is deter-
mined by the phase of the laser beams used for the Raman
transition. The second and third pulse are used as mirror
to modify the trajectory of atoms and the fourth pulse is
used to recombine the two wavepackets.

A simple way to precisely understand the output fringes
pattern of the interferometer is to consider the contribu-
tion of each pair of π/2 pulses. After the first pair of π/2-
pulses, the velocity distribution of atoms in state |g2〉 fol-
lows a Ramsey fringes pattern (see Fig. 8). Thanks to
the Doppler effect, the frequency difference between Ra-
man beams sets the center of the Ramsey fringes pattern
and select the most populated velocity class in the initial
velocity distribution. Atoms which have not been trans-
ferred are eliminated. The second set of π/2 pulses, also
Doppler sensitive, is used to probe the selected velocity
distribution. The resulting signal of the interferometer is
the product of these two Ramsey distributions. By scan-
ning the frequency difference of the lasers used for the
second set of pulses, the second Ramsey pattern is trans-
lated in velocity space. The resulting signal versus laser
frequency difference is the convolution of the two distri-
butions created with each pair of π/2 pulses. The center
of this convolution profile gives access to the velocity of
the selected atoms.

The resolution of the velocity measurement is given
by the fringe width. For a counterpropagating Raman
transition, the Doppler shift of an atom at velocity v is
2kv. The frequency splitting of the fringes in the convo-
lution profile is 2π/TRamsey, i.e. λ/2TRamsey in velocity
space. This expression can also be understood as resulting
from the interference of two selected wave packets: they
are spatially separated by ∆X = 2vrTRamsey. In velocity
space, the interference produces fringes with a separation

h
m∆X = λ

2TRamsey
.

There are different ways of modelling an atomic inter-
ferometer. One can, for example, use the Feynman path
integral method [20,21]. However, this method does not fit
very well with the description of Bloch oscillation made in
the first section of this paper, where we use plane wave.

We therefore describe the atom interferometer using
also a plane wave basis. We will first introduce how this
description can be used for a regular Ramsey-Bordé inter-
ferometer and then extend it to the LMT interferometer.

3.2 Modelisation of the interferometer

We are going to calculate the evolution of a wave packet
through the interferometer. This wavepacket will be de-
scibed as a superposition of plane waves with a mean mo-
mentum p0. During the interferometer the packet will be
split into two paths (labeled A and B). Looking only to
the evolution of a plane wave one can calculate the in-
terference fringes and also the positions of the center of
the wave-packet, given by the derivative of the phase with
respect to the momentum p0.

Fig. 8. Scheme of the usual Ramsey Bordé interferometer. A
first set of two π/2 pulses, separated by a delay TRamsey, se-
lect a Ramsey fringe pattern in velocity space (1). A second
set of two π/2 pulses, with the same delay is used to close
the interferometer. The probability for an atom to be trans-
ferred by the second set of π/2 pulses from one state to the
other is recorded as a function of the difference between the
frequency of the laser during selection δsel and measurement
δmeas (2). This interferometer measure then the velocity vari-
ation between the selection and measurement pulses.

Fig. 9. Scheme of an interferometer using LMT beamsplitters.
With this scheme four LMT Bloch pulses (labelled B) are in-
serted between the Raman π/2 pulses. In the experiment, we
use a more sophisticated scheme described Fig. 10.

The output of the interferometer can be precisely cal-
culated. We have to solve the Schrödinger equation:

i~
∂ |ψ〉
∂t

= H(t) |ψ〉 (11)

where the Hamiltonian H(t) is the sum of the free Hamil-
tonian H0 and the Raman interaction VR(t) with

H0 =
p̂2

2m
+ ~ω12 |g2〉 〈g2| (12)
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where ~ω12 is the energy difference between the two states
|g2〉 and |g1〉 and

VR(t) =
Ω(t)

2

(

ei(φR(t)+keff x̂) |e〉 〈g|+ h.c.
)

(13)

where Ω(t) is equal to the Rabi pulsation of the two pho-
ton Raman transition (Ω0 during the pulses and 0 else-
where), ~keff is the effective recoil transferred by the Ra-
man pulses and φR(t) is the phase difference between the
two lasers.

We choose to solve this Hamiltonian using the plane
wave basis. We then have a two levels system |g1, p0〉 and
|g2, p0 + ~keff〉. We also write the phase of the laser as
φR(t) = ω12t + φ(t) and change the ket |g2〉 to eiω12t |g2〉
(rotating frame). The Hamiltonian is then this 2x2 matrix:

H =

[

p20/2m Ω(t)eiφ(t)/2
Ω(t)e−iφ(t)/2 (p0 + ~keff)

2/2m

]

(14)

This Hamiltonian contains the phase shift induced by the
kinetic energy and the phase transferred from light to
atoms during a Raman transition. Assuming that φ(t) is
almost constant during the pulse, we obtain that from |g〉
to |e〉 we add a phase φ(t) and from |e〉 to |g〉 we remove
this phase.

The final proportion of atoms transferred to state |e〉
will vary as sin(Φ) with Φ = φA−φB is the phase difference
of the two paths with:

φA = φ1 − φ3 + φselA (p0) + φmes
A (p0) (15)

φB = φ2 − φ4 + φselB (p0) + φmes
B (p0) (16)

where φi = φ(ti) are the phases at the time t1,2,3,4 of the

four Raman pulses and φ
sel/mes
A/B (p0) are the phases due to

kinetic energy:

φselA (p0) = φmes
B (p0) = TRamsey

(p0 + ~keff)
2

2m~
(17)

φselB (p0) = φmes
A (p0) = TRamsey

p20
2m~

(18)

The phase can also be written as

Φ = Φlaser + Φkinetic (19)

with Φlaser = (φ1−φ3)−(φ2−φ4) and Φkinetic = (φselA (p0)+
φmes
A (p0))− (φselB (p0) + φmes

B (p0)).
We observe that Φkinetic = 0 when the velocity of

atoms is constant between the pulses. In the case where
there are uniform forces that change p0, we have to inte-
grate the kinetic energy and we obtain that:

Φkinetic =
keff
m

∫ TRamsey

0

(p0(t1 + τ)− p0(t3 + τ))dτ (20)

The phase is a direct measurement of the momentum vari-
ation between the first pair of pulses and the second one.

Let us consider the case where there is a small change
of velocity δv between the second and third pulse. The sen-
sitivity of the interferometer is proportional to the deriva-
tive of Φ with respect to δv.

Using the more general value of Φ, and the fact that
φselA (p0) = φmes

B (p0) and φ
sel
B (p0) = φmes

A (p0), we calculate
that

∂Φ

∂δv
= m

(

∂φselA

∂p
− ∂φselB

∂p

)

(21)

This equation tell us that in order to compute the sen-
sitivity of the interferometer, we need only to calculate
precisely the phase shift accumulated during half of the
interferometer. Provided that the forces are uniform, this
phase can be calculated for plane waves only.

Further more, in quantum mechanics, the mean posi-
tion 〈X〉 of a wave-packet can be calculated as the deriva-
tive of the phase with respect to momentum:

〈X〉 = ~
∂φ

∂p
(22)

The equation 21 shows directly that the sensitivity is pro-
portional to the spatial separation of the wave-packet:

∂Φ

∂δv
=
m

~
(〈XA〉 − 〈XB〉) (23)

4 Large area interferometer

The interferometer based on large momentum transfer
(LMT) Bloch pulses is similar to the usual Ramsey Bordé
interferometer. Raman pulses are used in the same con-
figuration and the LMT Bloch pulses are simply inserted
between the two π/2 pulses used either for the selection or
the measurement of the velocity. A first implementation
consists in accelerating and then decelerating the atoms of
one arm of the interferometer for the selection (and then
the atoms of the other arm for the measurement). The
temporal sequence of such an interferometer is presented
on Fig. 9.

In the following section, we will present how this ac-
celeration is implemented, and then the numerical calcu-
lation of the phase shift Φ of such an interferometer.

4.1 Implementation of LMTBS in the set-up

In our experiment, another arrangement slightly more com-
plicated than the one on Fig. 9 is used: we accelerate suc-
cessively each arm of the interferometer with two LMT
pulses of opposite directions and then decelerate them
with two other pulses. As we will see later, in such a way
the contribution of some systematic effects is reduced be-
cause the two arms are illuminated with Bloch beams in
a more symmetric way. The whole interferometer used in
our experiment is presented on Fig. 10. It is realized with
four Raman π/2 pulses and eight LMT Bloch pulses (la-
beled B on the figure 10): each π/2 pulse is associated
with two LMT pulses used to accelerate selectively each
arm of the interferometer.

After the first π/2 pulse, atoms are in a superposition
of states |g1, p0〉 and |g2, p0 + 2~k〉. A first LMT pulse is
used to accelerate atoms with initial momentum p0+2~k.
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Fig. 10. Temporal sequence of the interferometer for N=2.
From bottom to top: intensity of the Raman (dashed line) and
Bloch (solid line) beams; velocity of the atoms in the first and
second arms of the interferometer; trajectories of atoms in the
two arms.

Their momentum became p0 + 2~k + 2N~k after N os-
cillations. Then atoms with initial momentum p0 are ac-
celerated in the opposite direction. Therefore a superpo-
sition of |g2, p0 + 2~k + 2N~k〉 and |g1, p0 − 2N~k〉 states
is created. After a delay TRamsey, the same sequence of
two LMT pulses is repeated but in reverse order, to bring
back atom states in the initial superposition of |g1, p0〉
and |g2, p0 + 2~k〉. Finally, the sequence is ended with a
second Raman π/2-pulse. The wavefunction of atoms in
the state |g2〉 results from the interference between atoms
transferred during the first π/2 pulse and atoms trans-
ferred during the second one of the selection sequence.

The interferometer is then closed in position space us-
ing a second set of Raman and LMT pulses identical to the
first one. As for the regular interferometer, the resulting
signal of the interferometer (population in |g1〉 and |g2〉)
vary as sin(Φ), where Φ is the phase difference between
the two arms of the interferometer.

On can write Φ as the sum of three phases:

Φ = ΦRaman + ΦBloch + Φkinetic (24)

The Raman and kinetic phase are the same as for the usual
Ramsey-Bordé interferometer. The Bloch phase includes
all the phases shift during the Bloch separation, due to the
phase of the laser, the light shift of atoms in the lattice
and the kinetic energy.

The Bloch phase is the difference between the Bloch

phase Φ
A/B
Bloch accumulated in the path A and B. For a

given sequence of the optical lattice (velocity and ampli-
tude) and an initial momentum p0, we calculate the co-
efficients cl (c.f. eq. 7) corresponding to the evolution of
the state |p0〉 (resp. |p0 + 2~k〉) using the model described
earlier. The contribution of the first pulse to Bloch phase
is deduced from the phases of the coefficients c−N (resp.

Fig. 11. Interference fringes observed using the scheme de-
picted on Fig. 10. On this figure, the main source of noise is
the detection noise.

cN+1). The same method is used for all Bloch pulses. This
allow us finally to calculate the total phase for the 2 first

beamsplitter, Φ
A/B
sel . From this phase we deduce the posi-

tion of the wave packets
〈

XA/B

〉

=
∂Φ

A/B
sel

∂p0
. The sensitivity

of the interferometer can be deduced using equation (23).

4.2 Experimental results

The experimental setup and the main results have been
described in a previous paper [13]. We briefly remind the
results to compare them with the theoretical model. We
use rubidium 87 atoms, consequently the two levels cou-
pled by the Raman transition are the |F = 2〉 and |F = 1〉
hyperfine level of the ground state.

The Fig. 11 shows the proportion of atoms detected
in the internal state F = 1 as a function of the frequency
difference between selection and measurement using the
time sequence reported on Fig. 10.

The periodicity of the fringes (Fig. 11) is about δsep =
50 Hz for the time sequence depicted on Fig. 10.

Quantitatively, δsep can be compared with the period-
icity of fringes of an interferometer without LMT Bloch
pulses. With a delay of 5 ms between the two Ramsey
pulses of the selection, the periodicity would have been
200 Hz. Therefore with LMT pulses, the sensitivity of the
interferometer is improved by about four.

We can define an effective time Teff = 1/δsep, which is
of about 20 ms. Because the fringes spacing depends only
on the separation of the two arms of the interferometer,
the effective time Teff can be viewed as the Ramsey time
in a regular Ramsey-Bordé interferometer which leads to
the same spatial separation of the two wave packets.

More rigorously, Teff and the spatial separation 〈XA〉−
〈XA〉 of the two wave packets are linked through the fol-
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Fig. 12. Effective time Teff as a function of the total time of
the selection. The temporal sequence described Fig. 10 is kept
constant, except for TRamsey. Solid curve: Numerical calcula-
tions. Inset: sensitivity gain of the LMT interferometer com-
pared to a regular Ramsey Bordé interferometer of the same
total duration.

lowing equation:

Teff =
〈XA〉 − 〈XB〉

2vr
. (25)

The dependence of Teff with the duration of the selec-
tion sequence has been also investigated experimentally.
The duration of the time-sequence of the interferometer
is adjusted by changing TRamsey keeping the same π/2-
Bloch-Bloch sequence. The variation of Teff versus TRamsey

is reported again on Fig. 12. There is an excellent agree-
ment between experiment and calculations.

In the inset of the Fig. 12, we have also plotted the gain
in resolution (ratio between the effective time and the real
time) as a function of the duration of the selection. At the
limit where TRamsey is long, the duration of the pulses can
be neglected and the gain will be exactly 2N +1, i.e. 5 for
our parameters. At shorter times, this gain is smaller.

The experimental data fits well with the predicted time
which is a strong evidence that the fringes observed on
Fig. 11 are due to the LMT pulses.

4.3 Light shift in the interferometer

Light shift in the interferometer are one of the main source
of systematic effect. Furthermore they can induce a reduc-
tion of the contrast of interference.

The mean energy of atoms is indeed shifted when the
lattice is switched on. This shift is not the same between
the different bands and it depends on the intensity of the
lattice. Our scheme (see Fig. 10) is on average symmetric:
that is the time spent by atoms in a given energy band
is equal for each arm of the interferometer. Consequently,
there is no associated systematic shift if the intensity seen
by atoms is constant. However, experimentally, this con-
dition is never realized because of temporal fluctuations

of the laser intensity and because of motion of the atoms
through the spatial profile of the laser beam. In the first
case, fluctuations of the intensity will be the same for each
atom, leading to a phase noise in the interference pattern.
In the second case, the light shift contribution will be av-
eraged over all the atoms, leading to a reduction of the
fringes contrast.

The light shift are implicitly included in the phase
ΦBloch obtained by integrating the Schrödinger equation.
This phase depends on the intensity of the laser over time.
For small variation of intensity, one could linearized the
variation of the phase and compute the functional deriva-
tive of the phase with respect to the intensity:

a(t) =
δΦ

δI(t)
(26)

In the experiment the intensity of the laser is modulate
by an acousto-optic modulator. The intensity is therefore
the product of the modulation (M(t)) due to the AOM
and the intensity without modulation I0(t). If we assume
that the modulation for the LMT pulse does not fluctuate
(δM(t) = 0), then the fluctuation of the phase is mainly
due to fluctuations of I0(t) around its constant mean value
I0.

In the following instead of calculating δΦ
δI(t) , we choose

to calculate the functional derivative with respect to the
normalized derivative of I0(t), 1/I0 dI0(t)/dt, that we de-
note by gI(t). We choose to use the derivative, because
it is more convenient numerically and also lead to a di-
mensionless functional derivative. At first order, one can
therefore write that:

δΦ =

∫

∞

−∞

gI(t)
1

I0

dI0
dt
dt . (27)

In the following, gI is referred as the sensitivity function
to the relative derivative of intensity.

Numerically, gI(t) is computed by looking to the varia-
tion of the phase ΦBloch for a small change of the intensity
I0(t

′) for t′ > t (Heaviside function). The temporal evo-
lution of the function gI during the sequence described
previously on Fig. 10 is reported on Fig. 13.

The inset is a zoom of gI at the beginning of the se-
quence. In the inset, the contributions to gI of each arm
(gAI and gBI ) are plotted. In the experiment, atoms that are
in excited band experience on average, the mean potential
of the lattice, U0/2, whereas atoms in the first band, are
in dark region (blue detuned lattice) and less subjected to
light shift.

The phases in the inset of Fig. 13 are calculated with
eq. 6 in which the common light shift U0(t)/2 is left out.
This changes the values of gAI and gBI but not the value of
gI . Within this energy reference, an atom moving fast with
respect to the lattice does not see a phase shift (〈cos(2kx̂)〉 =
0) whereas an atom trapped into the lattice sees a phase
shift (〈cos(2kx̂)〉 ≈ −1). Therefore the main contribution
to the phase shift originates from the lower band. Conse-
quently, it explains why the initial increase of gI princi-
pally arises from the first band.
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Fig. 13. Sensitivity function of the interferometer to the rela-
tive derivative of intensity. The temporal sequence is described
Fig. 10. Inset: zoom on the two first LMT pulses. The contri-
bution from the two arms of the interferometer are displayed
separately. A constant phase shift corresponding to the aver-
age light shift of an atom in the lattice is subtracted from both
curves.

This phase shift is almost compensated by the other
arm during the second LMT pulse. Indeed, the first two
LMT pulses do not act in a symmetric way between the
two arms because non-accelerated atoms are not in the
same excited band during the first and second LMT pulses.
During the first LMT pulse, non-accelerated atoms en-
dure a small light shift (see the variation of gBI , around
t=0.6 ms in the inset of Fig. 13, arrow labeled a). While
during the second LMT pulse, non-accelerated atoms are
moving too fast with respect to the lattice to see a light
shift (see the plot of gAI which remains constant during
the second LMT, at t around 1.2 ms, arrow labeled b).

In the case of the interferometer with only four LMT
pulses (see Fig. 9), the initial phase due to the first LMT
pulse is compensated only at the end of the interferom-
eter, after about 10 ms, whereas in our scheme, 90% of
this phase shift is compensate after 1 ms. The sensitiv-
ity of our interferometer to a linear variation of the phase
(
∫

gI(t)dt) is then reduced by a factor of 10 compared to
an interferometer with four LMT pulses.

From the sensitivity function gI , the reduction of the
contrast due to the motion of atoms during the interfer-
ometer can be precisely calculated. For that, the phase
shift accumulated along a trajectory must be calculated.
At first order, it is expressed as

φ =

∫

gI
1

I0

dI0
dt

dt ≈
(
∫

gIdt

)

1

I0

dI0
dt

∣

∣

∣

∣

t=0

(28)

The contrast C is given by C = e−∆φ2/2 where ∆φ is the
variance of the phase φ. ∆φ is given by:

∆φ = σİ

∣

∣

∣

∣

∫

gIdt

∣

∣

∣

∣

, (29)

where σİ , which represents the relative variance of dI0
dt

over the entire atomic cloud, is calculated with

σİ =
1

I0

√

√

√

√

〈

(

dI0
dt

)2
〉

. (30)

To evaluate σİ numerically, Gaussian distributions are
used to described the position and the velocity of the
atoms. Then σİ can be expressed as:

σİ = 4
√
2σv

σ

w2
L

1

1 + 8 σ2

w2
L

. (31)

in which σ denotes the RMS value of the position of the
atoms in one direction and σv the RMS value of their
velocity, wL represents the waist of the Gaussian laser
beam. With ours experimental parameters (wL = 2 mm,
σ = 600 µm, σv = 2vr), the value of σİ is around 5.9 s−1.

For the eight LMT pulses scheme used in our experi-
ment, we have calculated that:

∫

gIdt ≈ 48× 10−3 rad · s.
Therefore, the values of ∆φ and C are : ∆φ = 0.28 rad
and C = 96%.

With the four pulses scheme, those values become∆φ =
2.8 rad and C = 2%. This clearly shows that in our ex-
periment, the eight LMT pulses scheme must be used to
observe interferences.

We emphasize that there is a correlation between the
velocity and the position of atoms because of the small
time of flight before the beginning of the interferometer.
This results in a biased intensity variation leading to a
systematic effect in the interferometer. This effect can be
canceled by inverting the order of the two LMT pulses for
each beamsplitter because the sign of gI and consequently
the one of φ is reversed.

5 Improving LMT beamsplitter

5.1 Current limitations

The contrast of the fringes observed Fig. 11 is ten times
smaller than the one without LMT pulses. This weak con-
trast can not be explain with light shifts. In the experi-
ment, light shift is under control when the LMT pulses are
used on both arms of the interferometer. Other sources
contribute to this reduction. The main one arises from
inhomogeneities in the initial momentum distribution of
atoms and intensity of the laser. The maximum efficiency
computed has been obtained for an atom with a defined
velocity and a given laser intensity. But in our set-up, the
initial velocity distribution is spread over about 0.5 vr,
consequently the effective efficiency for a LMT pulse is re-
duced from 98% to 95%. Moreover, because of the initial
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size of the cloud and the finite waist of the laser, the varia-
tions of the intensity seen by atoms are in the order of 20%.
As it can be easily see on Fig. 2, this effect pushes away
the efficiency from the optimal configuration by few per-
cents. The contribution of spontaneous emission of atoms
trapped in the lattice is also non negligible. In our regular
experiments with Bloch oscillations [18], atoms, located
at the bottom of the lattice wells, are oscillating in the
first band. As the potential of the lattice is blue detuned,
the spontaneous emission is reduced, because the light in-
tensity is minimal at the position of atoms [18]. Unfortu-
nately, this demonstration does not apply to atoms in the
excited bands. The estimated spontaneous emission rates
of those atoms is around 4%.

All these effects added together reduce significantly the
efficiency of each of the 8 LMT beamsplitter used in the
interferometer and explain the reduction of contrast that
we have observed. However, using a laser beam with a
larger waist, a higher intensity (and a larger detuning)
should allow us to reduce significantly these effects.

5.2 Sequence of a 10 recoil beamsplitter

As mention previously, it is not possible to realize a larger
momentum separation while keeping a good efficiency with
the scheme of the LMT, in which constant acceleration is
used (c.f. Fig 3).

To overcome this limitation, a process with different
acceleration steps can be foreseen. The first step is iden-
tical to the one described earlier, with two Bloch oscilla-
tions. For the second one, the depth of the lattice is raised
to enable a larger acceleration.

As explained previously, a long time and a relatively
weak lattice are necessary to realize the first splitting with
a good efficiency. For a given time, the optimal value of
the amplitude of the lattice is a compromise between good
adiabaticity of Bloch oscillations in the first band and a
high Landau-Zener tunneling for the third band (n = 3).
However, this condition is less restricting when atoms are
in a higher band (n > 3). For those atoms, the Landau-
Zener tunneling is higher so one can expect a better effi-
ciency with the same duration or the same efficiency with
a shorter duration. That is, a larger acceleration can be
use to increase separation with a good efficiency.

The realization of a beam splitter with ten oscillations
is presented on Fig. 14. The initial separation with two
BOs is achieved in 130 µs while the second separation
with eight BO is done in only 160 µs. The maximal ef-
ficiency is calculated to be about 98%. This is very close
to the efficiency with two BOs beamsplitter. The main
losses arise from the initial splitting of two recoils. The
additional losses come from the lack of adiabaticity dur-
ing the change of the lattice intensity. As Bloch oscillations
is a very efficient process, no significant losses arises from
the additional recoils transferred after the first two oscilla-
tions. The main limitations will come from the reduction
of contrast due to intensity fluctuations.

To estimate this limitation, the sensitivity function gI ,
with ten BOs, is plotted on Fig. 15. It is significantly larger

Fig. 14. Scheme of a beamsplitter with 10 oscillations.

Fig. 15. Sensitivity function gI of the interferometer using a
10 Bloch oscillations LMT pulse, as described in Fig. 14.

than the one with two BOs because of the increase of the
depth of the lattice. The sensitivity to a linear variation of
intensity

∫

gIdt is about 95×10−3 rad · s. That is twice as
much as the one for the interferometer with two BO (see
section 3.1). This is the reason why the improved LMT
was not implemented yet on our current apparatus (the
visibility of fringes for the ”two BOs scheme” is already
quite weak).

6 Conclusion

In this paper, we have theoretically and experimentally
studied the implementation of a large momentum beam-
splitter in a Ramsey-Bordé interferometer. We have real-
ized a separation of 10 recoils between the two arms of the
interferometer. By reducing the contrast of the fringes,
light shift is the main limitation of this interferometer.
Nevertheless, we have developed a method to reduce this
effect by a factor of ten and so realize an interferome-
ter with a separation of ten recoils between the two arms.
Our model is in very good agreement with the experiment,
in which a gain of four in the resolution, compared to a
usual interferometer, was observed. This method seems to
be very promising for the realization of an interferometer
with a separation of several tens of recoil velocities.

The limitation due to light shift has been strongly re-
duced by accelerating successively both arms of the in-
terferometer. Moreover a way to systematically cancel it
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would be to accelerate both arms of the interferometer si-
multaneously (instead of doing it successively). This can
be done by applying two counter-propagating accelerated
lattices. This scheme is already used by the Stanford/Berkeley
group [9]. In their experiment, a high order Bragg beam-
splitter is initially used, before the double BO accelera-
tion. We are also currently investigating this possibility of
using the double BO acceleration but with an initial ve-
locity separation given by a two photon Raman pulse. It
seems that only two recoils is two small to perform a good
separation and a higher initial separation may be required.
A relevant method could be to use the double-diffraction
technique described in Ref. [10] which allow an initial sep-
aration of 4 recoils. In this scheme, light shift would be
completely suppressed. One of the remaining source of
noise will be then the phase/vibration noise. This noise
can be calculated with a numerical model identical to the
one used in this paper.
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