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On the Sensitivity of the Rate of Global Energy Dissipation due to

Configurational Changes

F. Larsson∗,a, K. Runessona, & J. Tillberga

aDepartment of Applied Mechanics, Chalmers University of Technology, SE-41296 Göteborg, Sweden

Abstract

The thermodynamic framework for combined configurational and deformational changes
was recently discussed by Runesson et al. (2008). One key ingredient in this setting is
the (fixed) absolute configuration, relative to which both physical and virtual (variational)
changes of the material and spatial configurations can be described. In the present pa-
per we consider dissipative material response and emphasize the fact that it is possible
to identify explicit energetic changes due to configurational changes for ”frozen” spatial
configuration (a classical view) and the configuration-induced material dissipation. The
classical assumption (previously adopted in the literature) is to ignore this dissipation, i.e.
the internal variables are considered as fixed fields in the material configuration. In this
paper, however, we define configurational forces by considering the total variation of the
total dissipation with respect to configurational changes. The key task is then to compute
the sensitivity of the internal variable rates to such configurational changes, which results
in a global tangent problem based on the balance equations (momentum and energy) for a
given body. In this paper we restrict to quasistatic loading under isothermal conditions and
for elastic-plastic response, and we apply the modeling to the case of a moving interface of
dissimilar materials.

1. Introduction

The notion of configurational changes refers basically to the motion of ”property sur-
faces”, that are either internal to a given finite body or identical to (some part of) the
external boundary. An important class is defined by the motion/evolution of ”singular
surfaces” representing discontinuities (or defects) in the material properties and, conse-
quently, in the state variables when the body is loaded. Typical examples of internal
processes are the evolution of defects, phase transformation (microstructural changes that
are mostly accompanied by change of volume and mechanical properties), and internal
cracks. Typical boundary processes are the evolution of surface (biological) growth and
surface cracks. Crack propagation may in this context be seen as a degenerated boundary
motion.
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Since the literature on configurational mechanics is very rich, we do not intend to give
a comprehensive account. We only mention the pioneering work by Eshelby (1951) and
the contributions by Abeyaratne and Knowles (1990), Maugin (1993, 1995, 1997, 1998a,b,
1999), Maugin and Trimarco (1992, 1995), Gurtin (1995, 2000), and Kienzler and Her-
rmann (2000). Some of these works also contain comprehensive overviews with a discus-
sion of various aspects of configurational mechanics (”material” mechanics in Maugin’s
terminology). As to the physical motivation, a major application is the ”driving force” on
singular surfaces. In the seminal contributions by Gurtin (1995, 2000), balance equations
for interfaces are derived from a non-standard (material) observer invariance argument
with strong relations to the celebrated Noether’s theorem, Noether (1918). The effects
of configurational changes of surfaces in terms of physical properties intrinsically attached
to the surfaces (e.g. energy) have been addressed by, among others, Gurtin and Murdoch
(1975); Gurtin and Struthers (1990), Simha and Bhattacharya (1998). A recent compre-
hensive treatment of ”surface energies” is given by Steinmann (2008). Indeed, it appears
that there is a strong link to the analysis in this paper on ”sensitivity”.

The concept of ”configurational forces” has been exploited extensively in recent years
in computational fracture mechanics, cf. Steinmann (2000); Steinmann et al. (2001); Stein-
mann (2002b,a); Menzel et al. (2004); Steinmann (2008), Fagerström and Larsson (2008).
The suggestion in Steinmann et al. (2001) to compute the crack-driving force based on
the concept of ”nodal material forces” generalized, in fact, the domain integral format
suggested previously by Li et al. (1985). A posteriori error control and adaptivity of the
J-integral in its different equivalent formats were investigated by Heintz et al. (2004). A
recent paper by Guerses and Miehe (2008), which is closely related to the present paper
concerning the thermodynamic setting, addresses r-adaptive remeshing for a propagating
crack.

Most studies so far are explicitly confined to elastic material response. While the
state of affairs seems to be quite clear in this case, it is not so in the case (local) material
dissipation occurs as a result of the configurational change in addition to the energy release
from a propagating crack. The formulation of the crack-driving force in such a case and the
computational aspects have been discussed by Maugin and Trimarco (1992), Simha et al.
(2003), Simha et al. (2008), Liebe et al. (2003), Menzel et al. (1995), Nguyen et al. (2005).
However, there seems to be a lack of consensus as to the appropriate basic formulation.

In this contribution we aim at shedding some further light on the energetic conse-
quences of configurational changes for rate-independent dissipative material response. We
focus on the dissipation of mechanical energy of a given finite body that is undergoing
configurational changes in conjunction with (or as a result of) mechanical loading. More
specifically, we put forward the idea that it is the total variation of the appropriately de-
fined dissipation functional for the whole body that represents the ”driving force” for the
physical process that is described by configurational changes1. However, which definition

1This choice has distinct advantages; one being that it is possible to check analytical results by com-
parison with numerical perturbations of the functional.
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of the driving force to use is basically a matter of modeling, although the choice is strongly
guided by thermodynamics considerations.

In order to increase clarity in the variational framework, we adopt a description that
allows for the combined configurational (material) and deformational (spatial) motions. To
this end we first introduce an auxiliary (fictitious) reference configuration that is fixed in
space; in particular, its boundary is fixed and thus defines a time-invariant domain under
(possible) configurational and deformational changes. It is important to note that the
introduction of such an absolute reference configuration does not simply mean a change
of computational domain (associated with a change of coordinates). As a special case, we
may choose this referential domain to be the current configuration (the Eulerian view),
which corresponds to the study of the ”inverse motion”, and this approach is common in
the literature on configurational forces (crack-driving force) within the context of singular
cracks, e.g. Steinmann (2000). With such a choice, however, the combined action of
configurational and material changes is never revealed.

The paper is organized as follows: Section 2 introduces definitions and preliminaries re-
lated to the unified representation of configurational (material) and deformational (spatial)
motions in terms of an absolute reference configuration. A generic balance law is estab-
lished in Section 3, whereby ”configurational flux” across the boundary is allowed, and it
is applied to the mechanical dissipation inequality. In Section 4, we establish the perti-
nent dissipation functional due to imposed configurational changes while assuming rather
general constitutive response based on the presence of internal variables in the free energy.
In Section 5, we define generalized configurational forces from the ”total variation of the
global dissipation”, which is the main novel result of the paper. This result is applied,
and further specified, in Section 6 to a material singular surface. Explicit computational
results are given in Section 7 for a non-homogeneous plate with dissimilar elastic-plastic
material properties. Finally, conclusions and an outlook to future developments are given
in Section 8.

2. Representation of configurational and deformational motions

2.1. Preliminaries

We first note that the spatial (deformational or direct) motion problem (SMP) is ex-
pressed in terms of a spatial motion map x = ϕ(X, t), BX 7→ Bx(t), such that the reference
position of the material particles, X, in the fixed (time-invariant) material configuration
BX, are mapped onto the deformed position, x, in the spatial configuration Bx(t). It is
emphasized that BX = Bx(0) is the actual configuration of the body at t = 0 in the classical
setting.

In this paper, we generalize the classical view of motion slightly, cf. Figure 1, since the
material configuration is allowed to change with time in the sense that the boundary ∂BX

of the body BX may change with time. It is important to note that this case also embodies
the case of an evolving internal singular surface, since it is possible to view the two parts
separated by the singular surface as changing configurations. It is then convenient to take
the view that both the ”undeformed” (material) and ”deformed” (spatial) configurations

3
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X

BX(t)

ϕ(X , t)

F
x

Bx(t)

f̌ F̂

ξ

Bξ fixed

Φ̌(ξ, t) ϕ̂(ξ, t)

F̂ = F · f̌

Figure 1: Spatial (current) configuration, Bx(t), material configuration, BX(t), and absolute (fixed) config-
uration, Bξ.

will undergo time-dependent changes with respect to an absolute (fixed, time-invariant)
configuration Bξ. We may then introduce the map X = Φ̌(ξ, t) for the time-dependent
”motion” of BX(t) w.r.t. Bξ, and we introduce the absolute spatial motion map x = ϕ̂(ξ, t)
for the time-dependent motion (including deformation) of Bx(t) w.r.t. Bξ. It is clear

that ϕ̂(ξ, t),Bξ 7→ Bx(t), represents the composite map ϕ̂(ξ, t)
def
= (ϕ ◦ Φ̌)(ξ, t). We may

introduce the convenient assumption that Bξ = BX(0) = Bx(0).
The gradients corresponding to the introduced mappings (see also Figure 1) are the

spatial motion gradient F
def
= ϕ⊗∇X, the absolute spatial motion gradient F̂

def
= ϕ̂⊗∇ξ,

and the absolute material motion gradient f̌
def
= Φ̌ ⊗ ∇ξ

2. Upon using the chain rule, we

obtain the relation F̂ = F · f̌ . We shall also frequently use the determinant ǰ = detf̌ ,
which is relevant both for the volume mapping3 dVX = ǰdVξ and for the area mapping

dSX = ǰ

√

N ξ · f̌
−1

· f̌
−T

· N ξ dSξ when the computational domain is changed from BX to
Bξ.

2.2. Absolute and material time differentiation

We shall introduce absolute and material time derivatives of a field f , parametrized in
BX or Bξ, as follows:

∆tf
def
= ∂tf |ξ, Dtf

def
= ∂tf |X (1)

2The gradient vectors ∇ξ and ∇X refer to coordinates in Bξ and BX, respectively.
3N ξ is the unit normal vector on ∂Bξ resulting from a pullback of the unit normal N(= NX) from

∂BX.
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where ∂t[•]
def
= ∂[•]/∂t denotes the ordinary partial time derivative. In particular, the

material velocity, v, the absolute velocity, ẋ, and the (absolute) configurational rate, Ẋ,
are defined as

v
def
= Dtx = ∂tϕ(X, t), ẋ

def
= ∆tx = ∂tϕ̂(ξ, t), Ẋ

def
= ∆tX = ∂tΦ̌(ξ, t) (2)

However, using the chain rule to differentiate the composite function ϕ̂(ξ, t)
def
= (ϕ◦Φ̌)(ξ, t),

we obtain the relation
v = ẋ − F · Ẋ (3)

where the definitions in (1) were used.
We shall later make use of the absolute and material time derivatives of a (tensor-

valued) operator field y(X(ξ, t),x(ξ, t), α1(ξ, t), α2(ξ, t), . . . , t) or, for the sake of brevity,
y(X,x, α, t)45. Let us first consider a volume-specific field, y(•, t) for X ∈ BX(t), for which
the relation between the absolute and material time derivatives can be computed as

Dty(•, t) = ∆ty(•, t) − [y(•, t) ⊗ ∇X] · Ẋ (4)

The total and material time derivatives of a few selected fields, f̌ (X) and ǰ(X), are given
as follows:

∆tf̌ = [Ẋ ⊗ ∇X] · f̌ , ∆tǰ = ǰẊ · ∇X (5)

In particular, we obtain

∆t(dVX) = ǰẊ · ∇X dVξ = Ẋ · ∇X dVX (6)

We may also compute the absolute and material time derivatives of F (X,x) as

∆tF = −F · [Ẋ ⊗ ∇X] + ẋ ⊗ ∇X (7)

DtF = v ⊗ ∇X = −[F · Ẋ ] ⊗ ∇X + ẋ ⊗ ∇X. (8)

Next, we consider a surface-specific field, ŷ(•, t) for X ∈ ∂BX(t), for which the absolute
time-derivative is given as for the volume-specific field. The reason is that ∂Bξ is fixed
(stationary). However, the relation between the absolute and surface-specific material
time-derivatives is given as

D̂tŷ(•, t)
def
= ∆tŷ(•, t) − [ŷ(•, t) ⊗ ∇̂X] · Ẋ (9)

where we introduced the surface gradient operator ∇̂X
def
= ∇X · Î with the surface-specific

identity tensor Î
def
= I − N ⊗N . We may combine the relations (4) and (9) to obtain the

useful result
D̂tŷ(•, t) = Dtŷ(•, t) + [ŷ(•, t) ⊗ ∇X] · N ⊗ Ẋ · N (10)

4An example is the deformation gradient F (X, x) = x ⊗ ∇X.
5The column vector α contains the set of fields αi, which may have different tensorial character.
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for Ẋ ∈ ∂BX. This relation is used in the Appendix to establish the socalled ”tangent
problem”.

Corresponding to (6), we obtain

∆t(dSX) = ǰ

√

N ξ · f̌
−1

· f̌
−T

· N ξ Ẋ · ∇̂X dSξ = Ẋ · ∇̂X dSX (11)

2.3. Conservation laws

2.3.1. Time-derivative of volume integral

Subsequently we shall establish the time derivative of suitably defined conservation
quantities. To this end, suppose that fX(X,x, α, t), for X ∈ BX(t), is a volume-specific
quantity. Now, consider a typical conservation quantity F

F
def
=

∫

BX

fX dVX (12)

The time-derivative of F , for time-dependent BX, is then given as

d

dt
F =

∫

BX

[

∆tfX + fXẊ · ∇X

]

dVX

=

∫

BX

[

DtfX +
[

fXẊ
]

· ∇X

]

dVX =

∫

BX

DtfX dVX +

∫

∂BX

fXẊ · N dSX (13)

In order to derive (13), we first performed a pull-back of the integration domain from
the time-dependent BX(t)6 to Bξ, while using the relation dVX = ǰdVξ with the Jacobian
(volume ratio) ǰ = det(f̌), then used the expression for ∆t(dVX) from (6) and, finally,
pushed forward to BX. The expression in (13) is clearly analogous to the classical Reynolds’
transport theorem, that is commonly established to express the material time derivative
of an integral on the spatial domain Bx.

2.3.2. Time-derivative of surface integral

It is of interest to consider a surface-specific quantity f̂X(X,x, α, t), for X ∈ ∂BX(t),
and the corresponding extensive quantity

F̂
def
=

∫

∂BX

f̂X dSX (14)

The time-derivative of F̂ , for time-dependent ∂BX, is given as

d

dt
F̂ =

∫

∂BX

[

∆tf̂X + f̂XẊ · ∇̂X

]

dSX

=

∫

∂BX

[

D̂tf̂X +
[

f̂XẊ
]

· ∇̂X

]

dSX (15)

6Henceforth, the explicit dependence on time of BX is dropped for brevity of notation.
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∂B
(1)
X

∂B
(2)
X

CX

M̂
(2)

M̂
(1)

M̂
(2)

M̂
(1)

∂B
(1)
X ∂B

(2)
X

Figure 2: Finite body whose material (reference) configuration occupies the volume, BX = B
(1)
X ∪ B

(2)
X with

boundary surface ∂BX = ∂B
(1)
X ∪ ∂B

(2)
X . The (open) surface parts ∂B

(1)
X and ∂B

(2)
X are joined along the

curve CX.

where we used the definition of D̂t in (9), and where we, once again, used the surface-
specific gradient operator ∇̂X (as defined above in terms of the surface-specific identity

tensor Î
def
= I −N ⊗N). In order to derive (15), we first performed a pull-back of ∂BX to

∂Bξ, while using the relation in (11).
The divergence theorem for surfaces may be used in order to transform the last term

of the integrand in (15): We then consider the situation that ∂BX = ∂B
(1)
X ∪ ∂B

(2)
X is non-

smooth and can be decomposed into the two smooth parts ∂B
(1)
X and ∂B

(2)
X , joined along

the common curve CX, as shown in Figure 2. For each open surface ∂B
(i)
X , i = 1, 2, we may

apply the divergence theorem for surfaces to obtain
∫

∂B
(i)
X

[

f̂XẊ
]

· ∇̂X dSX =

∫

CX

f̂XẊ · M̂
(i)

dLX −

∫

∂B
(i)
X

kf̂XẊ · N dSX, i = 1, 2 (16)

where the unit vector M̂
(i)

is normal to N on ∂B
(i)
X and the tangent of CX. Moreover, k =

−N ·∇̂X is the total curvature of ∂BX at any regular point. Several useful results pertaining
to configurational changes on surfaces, including (16), can be found in Steinmann (2008).

We shall now assume that Ẋ is continuous across CX, whereas f̂X may be discontinuous
across CX. Upon adding the two results in (16) pertinent to ∂B

(1)
X and ∂B

(2)
X , we obtain

∫

∂BX

[

f̂XẊ
]

· ∇̂X dSX =

∫

CX

[

f̂
(1)
X M̂

(1)
+ f̂

(2)
X M̂

(2)
]

· Ẋ dLX −

∫

∂BX

kf̂XẊ · N dSX (17)

Remark: If the closed surface ∂BX is smooth across CX, i.e. if M̂
(1)

+ M̂
(2)

= 0, and
f̂X is continuous, i.e. f̂

(1)
X = f̂

(2)
X , we obtain the identity

∫

∂BX

[

f̂XẊ
]

· ∇̂X dSX = −

∫

∂BX

kf̂XẊ · N dSX (18)

�
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As a generalization, we may compose the closed surface into several multiple smooth
parts to obtain
∫

∂BX

[

f̂XẊ
]

·∇̂X dSX =

∫

∂2BX

[

f̂
(1)
X M̂

(1)
+ f̂

(2)
X M̂

(2)
]

· Ẋ dLX −

∫

∂B̂X

kf̂XẊ ·N dSX (19)

where ∂2BX is the union of all curves defining ”edges” on ∂BX. Finally, using the relation
in (19) we may reformulate (15) as

d

dt
F̂ =

∫

∂BX

[

∆tf̂X + f̂XẊ · ∇̂X

]

dSX

=

∫

∂BX

[

D̂tf̂X − kf̂XẊ · N
]

dSX +

∫

∂2BX

[

f̂
(1)
X M̂

(1)
+ f̂

(2)
X M̂

(2)
]

· Ẋ dLX (20)

3. Thermodynamic relations in the material format

3.1. The generic balance law

It is convenient to establish a generic balance law for a given body occupying the current
material domain BX with boundary ∂BX (and unit normal N), as shown schematically in
Figure 2.

d

dt
F = GGEN + GTRAN + FCONF (21)

where GGEN is the (prescribed) internally generated source, GTRAN is the standard (pre-
scribed) ”material flux”, or transfer, through the boundary if the domain BX is held fixed,
whereas FCONF is the non-conventional ”configurational flux” across the boundary due to
the configurational motion of BX

7. These source terms are defined in terms of volume- and
surface-specific quantities as follows:

GGEN =

∫

BX

gGEN
X dVX, GTRAN =

∫

∂BX

gTRAN
X dSX, FCONF =

∫

∂BX

fCONF
X Ẋ · N dSX

(22)
Within a smooth part of BX, the ”configurational flux” fCONF

X coincides with the convection
of fX due to the configurational motion, thus providing the basis for recovering the classical
balance law for fX. At a free boundary of a finite body ΩX, it is necessary that fCONF

X

is assigned a constitutively prescribed quantity f̄CONF
X (that may be related to surface

growth).
Subsequently, we apply (21) to the simplest situation of (in)balance of mechanical

dissipation, whereby we restrict to quasistatic motion (i.e. dynamic forces are ignored)
and isothermal conditions. Moreover, we make the classical assumption that mass is con-
served. For a more comprehensive discussion of the different balance laws pertinent to
mass, momentum, energy and entropy, for the general situation of dynamic motion and
non-isothermal conditions, the reader is referred to Runesson et al. (2008).

7This represents an alternative (but in principle equivalent) formulation of the ”observer-objective”
paradigm by Gurtin (2000).

8
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3.2. Global and localized dissipation inequality

The global free energy is given as

Ψ
def
=

∫

BX

ψX dVX (23)

where ψX is the volume-specific free energy. The configurational flux of free energy is thus
given as

ΨCONF =

∫

∂BX

ψCONF
X Ẋ · N dSX (24)

Moreover, the total mechanical power supply, W, is given as

W =

∫

BX

bX · v dVX +

∫

∂BX

tX · v dSX =

∫

BX

P : DtF dVX (25)

In order to obtain the last expression in (25), the momentum balance P · ∇X + bX = 0,
was used, where P is the 1st Piola-Kirchoff stress, and bX is the volume-specific load.

It is proposed that the total mechanical dissipation is expressed as

D = W −
d

dt
Ψ + ΨCONF ≥ 0 (26)

In the special case of isothermal elastic material response (volume-specific free energy
ψX(F ,X)), and no configurational flux (ψCONF

X = 0), the expression in (26) was proposed
by Guerses and Miehe (2008) in the context of crack propagation.

In order to obtain the localized form of (26), we consider an arbitrary domain BX that
is embedded totally within a finite body. In such a case ψCONF

X = ψX and we obtain the
standard expression

dX = P : DtF − DtψX ≥ 0 (27)

where dX is the volume-specific mechanical dissipation.
Next, we introduce the parametrization of the free energy density, ψX(F , θ, k; X), per-

tinent to a dissipative material response, where k represents a set of internal variables. It
is noted that a possible explicit dependence of X is included as argument in ψ (represent-
ing inhomogeneous variation of material parameters in BX). Upon evaluating the material
time derivative DtψX, and using standard arguments of the Colemann-Noll type, we
obtain the constitutive state equation

P =
∂ψX

∂F
(28)

such that (24) reduces to

dX = K ⋆Dtk ≥ 0 with K
def
= −

∂ψX

∂k
(29)

9
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where we introduced dissipative stresses K that are energy-conjugated to the internal
variables k8.

4. Dissipation functional for changing material configuration

4.1. Preliminaries

We shall consider the global (mechanical) dissipation inequality for a given finite body
occupying the current material domain ΩX with external boundary ∂ΩX. It is assumed
that the body undergoes configurational changes, expressed as Ẋ 6= 0, while it is subjected
to prescribed loading. For simplicity, we restrict to isothermal conditions henceforth.
The resulting thermodynamic process is then characterized by time-changes of all the
independent thermodynamic fields, F and k, since they are solutions of the pertinent
balance and state equations (equilibrium and constitutive equations) and thus depend on
the configurational motion X = Φ(ξ, t) in an implicit manner. As a result, the global
dissipation functional D depends, apart from Ẋ, potentially on the fields ẋ and k̇ in
the most general case of combined configurational and deformational motion for general
loading; hence we denote D(Ẋ, ẋ, k̇) the global dissipation functional.

Remark: For the SMP, involving the momentum equation, the boundary is subdi-
vided into parts with essential and natural boundary conditions for the spatial field x.
The generic notion of these (Dirichlet and Neumann) boundary parts are ∂ΩX,D (with pre-
scribed placements) and ∂ΩX,N (with prescribed tractions). It is important to note that the
boundary in the expressions for W in (25) is the total one, i.e. ∂ΩX = ∂ΩX,D ∪ ∂ΩX,N. For
example, both a prescribed and a ”support” traction will contribute to W in the general
situation when the support is defined by prescribed non-zero configurational rate. �

Below, we present explicit forms of D(Ẋ, ẋ, k̇). As a preliminary for these develop-
ments, we recall the equilibrium equation rephrased as

−P · ∇X = bX in ΩX, P · N
def
= tX on ∂ΩX (30)

We shall also use the standard weak format9 of the equilibrium equation (30)

∫

ΩX

[P : [δx ⊗ ∇X] − bX · δx] dVX −

∫

∂ΩX

tX · δx dSX = 0, ∀δx ∈ V (31)

where the virtual (placements) δx ∈ V must be sufficiently smooth to allow for the gradient
δx ⊗ ∇X to be meaningful. We remark that no specific assumption has been made as to
the value of δx on the Dirichlet boundary ∂ΩX,D.

8The ”scalar star product” has the appropriate interpretation depending on the tensorial order of
variables in the column vector k.

9To simplify matters, it is assumed in this Section that sufficient regularity for using the divergence
theorem is present in the whole ΩX. In the subsequent application to material interfaces, this requirement
does not necessarily hold; however, it can be circumvented as shown.
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4.2. Basic formats of the dissipation functional – Split in configurational and material
parts

It was shown in Runesson et al. (2008) that (i) the dissipation functional D does not
depend explicitly on ẋ, i.e. the parametrization D(Ẋ, k̇) suffices, (ii) it is natural to split
D(Ẋ, k̇) as

D(Ẋ, k̇) = DCONF(Ẋ) + DMAT(k̇) (32)

where DCONF and DMAT are the configurational and material dissipation function, respec-
tively.

More specifically, it was shown in Runesson et al. (2008) that two possible formats of
DCONF, labelled (I) and (II), are those defined as

DCONF(Ẋ) = DCONF
I (Ẋ)

def
=

∫

ΩX

[

−Σ :
[

Ẋ ⊗ ∇X

]

+ BI · Ẋ
]

dVX +

∫

∂ΩX

T I · Ẋ dSX (33)

= DCONF
II (Ẋ)

def
=

∫

ΩX

[

−BII · Ẋ
]

dVX +

∫

∂ΩX

[

−T II · Ẋ
]

dSX (34)

where we introduced the following notation: Σ is the ”quasi-static” Eshelby (energy-
momentum) tensor, associated with ψX, which is defined as

Σ
def
= ψXI − F T ·

∂ψX

∂F
= ψXI − F T · P , (35)

BI,BII are configurational volume forces, whereas T I,T II are configurational boundary
tractions, that are defined as

BI = −
∂ψX

∂X
|F,k − F T · bX, T I = −F T · tX + ψCONF

X N (36)

BII = K ⋆ [k ⊗ ∇X] , T II =
[

ψX − ψCONF
X

]

N (37)

Moreover, DMAT is given as

DMAT(k̇)
def
=

∫

ΩX

K ⋆ k̇ dVX (38)

Once again, it must be noted that the expressions DCONF
I and DCONF

II in (33) and
(34) are but two possible expressions for the purely configurational part of the dissipa-
tion. Moreover, they are completely equivalent provided certain regularity requirements
are satisfied, e.g. Ẋ is sufficiently regular.

Remark: It turns out that it is often more useful to introduce the alternative split of
D(Ẋ, k̇) as compared to (32):

D(Ẋ, k̇) = D̄CONF(Ẋ) + D̄MAT(Ẋ, k̇) (39)
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where we introduced

D̄CONF(Ẋ) =

∫

∂ΩX

[

−T II · Ẋ
]

dSX = −

∫

∂ΩX

[

ψX − ψCONF
X

]

N · Ẋ dSX (40)

and

D̄MAT(Ẋ, k̇) =

∫

ΩX

K ⋆Dtk dVX =

∫

ΩX

K ⋆
[

k̇ − [k ⊗ ∇X] · Ẋ
]

dVX (41)

It appears readily that D̄MAT(Ẋ, k̇) represents precisely the ordinary material dissipation.
Moreover, if we introduce the condition of vanishing net dissipation across the external
boundary, i.e. N · Ẋ = 0 on ∂ΩX, then it follows that D̄CONF(Ẋ) = 0 independent of
the nature of loading, boundary conditions and possible material inhomogeneity in ΩX.
In such a case the mapping X(ξ, t) represents merely a coordinate transformation under
which the result D̄CONF(Ẋ) = 0 is invariant, cf. Noether’s theorem, Noether (1918). �

4.3. Material equilibrium - Other formats of dissipation

It is useful to establish ”configurational volume loads”, B, and ”configurational sur-
face tractions”, T , that equilibrate the pertinent Eshelby stress via the ”configurational
equilibrium equations”

−Σ · ∇X = B in ΩX, Σ · N = T on ∂ΩX (42)

Upon direct differentiation of Σ, as defined in (35), we obtain

B = −
∂ψX

∂X
|F,k − F T · bX +K ⋆ [k ⊗ ∇X] (43)

where we used the strong format of (spatial) equilibrium for P in (30). We also obtain the
material traction as

T = Σ · N = ψXN − F T · tX (44)

Remark: B = BI + BII and T = T I + T II.
Remark: Since the ”equilibrium equation” (42)1 is a derived identity, it does not add

any new physical information.
It is useful to establish the weak format of the configurational equilibrium equations

in (42)1. To this end we consider ”virtual velocities” δẊ ∈ X and recast (42)1 in the
variational format

∫

Ω′

X

[

Σ : [δẊ ⊗ ∇X] − B · δẊ
]

dVX −

∫

∂Ω′

X

T · δẊ dSX = 0, ∀δẊ ∈ X (45)

where the virtual velocities δẊ ∈ X must be sufficiently smooth to allow for the gradient
δẊ ⊗ ∇X to be meaningful. We remark that no specific assumption has been made as to
the value of δẊ on the Dirichlet boundary ∂ΩX,D.

12
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5. Configurational-induced global dissipation – Generalized configurational forces

5.1. Total variation of the rate of global dissipation due to configurational changes

Henceforth, we shall restrict our attention to the situation that a physical process is
manifested by fields Dtx and Dtk that are brought about solely by configurational changes.
In other words, for a given field Ẋ(ξ, t), it is possible to solve for all other fields, ẋ{Ẋ}
and k̇{Ẋ}, as (implicit) functions of Ẋ from the momentum equation and the pertinent
constitutive relations. It is noted that the actual physical problem involves Ẋ(ξ, t) as part
of the total solution, which requires a constitutive relation for Ẋ in terms of a suitably
defined field of ”driving forces”. However, these driving forces will be of such nature that
they can only be determined when the solutions ẋ{Ẋ} and k̇{Ẋ} are known; hence, the
problem of computing the driving forces is indeed nonlinear and must be solved by some
sort of iterative procedure in practice.

Next, we shall be concerned with the issue of defining the field of thermodynamically
consistent generalized configurational forces that are energy-conjugated to a given differen-
tial change (variation) of the field Ẋ, henceforth denoted dẊ, in the sense that they repre-

sent the total variation of D with respect to Ẋ. The total differential of D
def
= D(Ẋ, k̇{Ẋ})

can be expressed as

dẊD = D′(Ẋ, k̇{Ẋ}; dẊ)

=
(

D̄CONF
)′

Ẋ
(Ẋ; dẊ) +

(

D̄MAT
)′

Ẋ
(Ẋ, k̇; dẊ) +

(

D̄MAT
)′

k̇
(Ẋ, k̇; k̇

′

{Ẋ; dẊ})

= D̄CONF( dẊ) + D̄MAT( dẊ, k̇
′

{Ẋ; dẊ}) (46)

where it was used that both D̄CONF and D̄MAT are linear in their arguments (Ẋ and Ẋ,
k̇, respectively). In order to carry out the total variation, it is necessary to compute the
sensitivity fields:

dẋ = ẋ′{Ẋ; dẊ}, dk̇ = k̇
′

{Ẋ; dẊ} (47)

which are directional (or Gateaux) derivatives in the classical sense10. The sensitivity fields

ẋ′ and k̇
′

must satisfy global tangent (or sensitivity) relations, which are derivable from
linearization of the equilibrium equation together with the constitutive rate equations for

k̇. It is emphasized that the sensitivity fields, say k̇
′

{Ẋ; dẊ}, are linear in dẊ; however,
they represent ”spatially global” relations in ΩX. This means, in particular, that the
configurational dissipation is not necessarily confined to the (possibly small) part of ΩX

where dẊ 6= 0 has been assumed.

Remark: Although it is only k̇
′

{Ẋ; dẊ} that appears in D′, it is still necessary in the

general case to solve for both ẋ′{Ẋ; dẊ} and k̇
′

{Ẋ; dẊ} in a truly coupled fashion via
the sensitivity problem for a given field dẊ. �

10A more explicit definition of sensitivities is possible if we define the ”unit sensitivity” fields ẋ′(i),
i = 1, 2, ..NDIM, via the identity dẋ =

∑NDIM
i=1 ẋ′(i) d(Ẋi).
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Remark: In practice, it is sometimes more convenient to compute the sensitivities in
the material time derivatives. In order to link the relevant quantities, we consider a generic
field z and obtain

ż = Dtz + [z ⊗ ∇X] · Ẋ ⇒ ż′{•; dẊ} = (Dtz)
′{•; dẊ} + [z ⊗ ∇X] · dẊ (48)

For example, we note that ẋ′{•; dẊ} = v′{•; dẊ} + F · dẊ. �

Next, we shall assume that dẊ can be parametrized as follows:

dẊ =

NW
∑

i=1

W i dȧi (49)

where W i(X), i = 1, 2, . . . , NW, are ”weight functions” (or shape functions), the choice of
which represents a model assumption in general. Upon inserting (49) into (46), we obtain
the representation

dẊD = GT dȧ (50)

where G is the generalized configurational force that is energy-conjugated to ȧ. Using (46),
we may split G as

G = GCONF + GMAT (51)

where the components of GCONF and GMAT are given as

GCONF
i = D̄CONF(W i), GMAT

i = D̄MAT(W i, k̇
′

{Ẋ; W i}) (52)

5.2. Constitutive relation for rate-independent plasticity

We shall consider rate-independent material response, typical for classical plasticity. In
such a case k represents the plastic strain, ”hardening strain”, etc. The standard material
format of the rate equations for such material response then reads 11

Dtk = λg, λ =
1

h
〈µ : DtF 〉, k(X, 0) = 0 (53)

where 〈[•]〉
def
= 1

2
(|[•]| + [•]) is the McCauley bracket; hence, it is noted that λ is a first

order homogeneous (but nonlinear) function 12 in DtF . This specific structure reflects
the loading/unloading conditions expressed in terms of the sign of the ”loading indicator”
function µ : DtF in a ”strain-controlled” format” such that plastic loading, (L), is signalled
by µ : DtF > 0, whereas elastic unloading, (U), is signalled by µ : DtF ≤ 0. These cases
are thus defined by

λ =
1

h
µ : DtF (L), λ = 0 (U) (54)

11To simplify notation, it is assumed that the ”flow rule” is regular (corresponding to a smooth flow
potential).

12A function f(x) is first order homogeneous if, for α > 0, f(αx) = αf(x).
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As to the explicit definition of the state functions 13 g, h and µ, they are model dependent.
(A prototype model of plasticity based on linearized elastic relations will be employed in
conjunction with the motion of a singular material surface, see below.)

The appropriate continuum tangent relation for P in terms of F and k can now be
written as

DtP = L
e : DtF + M ⋆Dtk (55)

where we introduced the tangent operators

L
e def

=
∂P

∂F
|k,X, M

def
=
∂P

∂k
|F,X (56)

In particular, L
e is the elastic continuum tangent stiffness (CTS) tensor. Upon inserting

(53)1 into (55), we obtain

DtP = L
ep : DtF (L), DtP = L

e : DtF (U) (57)

where L
ep is the elastic-plastic continuum tangent stiffness (CTS) tensor, defined as

L
ep def

= L
e +

1

h
M ⋆ gµ (58)

We note that the CTS-tensor takes two distinct expressions depending on whether plastic
loading (L) or elastic unloading (U) is at hand at a given position X ∈ ΩX. Hence, Dtk
and DtP are nonlinear functions in DtF .

Now, we shall take the total variation of DtP with respect to variation of Ẋ to obtain
the sensitivity relation

(DtP )′ = L
e : (DtF )′ + M ⋆ (Dtk)

′ (59)

From (53)1 we obtain

(Dtk)
′ = RT : (DtF )′ with RT

def
=

1

h

〈µ : DtF 〉

|µ : DtF |
g ⊗ µ (60)

which (i) depends on the current value of v (or ẋ and Ẋ) via the relation in (9), (ii)
is linear in the sensitivity (DtF )′. The expression in (60) is well-defined for all solutions
except at neutral loading defined by µ : DtF = 0. In particular, it can be evaluated for
the situation Ẋ = 0, corresponding to vanishing configurational motion.

Upon combining (59,60), we obtain the desired relation

(DtP )′ = LT : (DtF )′ with LT
def
= L

e +
1

h

〈µ : DtF 〉

|µ : DtF |
M ⋆ g ⊗ µ (61)

where LT is the tangent stiffness tensor that depends on DtF and which holds for both (L)
and (U).

13E.g. g(F [X, x], k)
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Remark: For a more general rate-independent relation than (53) of the generic form

Dtk = f(DtF ) (62)

where f is 1st order homogeneous in its argument, we may generalize (60) to

(Dtk)
′ = f ′(DtF ; (DtF )′) (63)

where f ′(•; (•)′) represents the directional derivative. �

5.3. Basic format of the tangent problem for quasistatic equilibrium

5.3.1. Preliminaries

Consider the basic problem of a finite body with Dirichlet and Neumann boundary

conditions x = x̄ on ∂ΩX,D and tX
def
= P · N = t̄X on ∂ΩX,N = ∂ΩX \ ∂ΩX,D. Moreover,

we assume the constitutive state relation P (F , k; X). The weak format of the equilibrium
equation can then be written in standard fashion:

a(x, k; δx) = l(δx), ∀δx ∈ V
0 (64)

where

a(x, k; δx)
def
=

∫

ΩX

[δx ⊗ ∇X] : P (F , k; X) dVX (65)

l(δx)
def
=

∫

ΩX

δx · bX dVX +

∫

∂ΩX,N

δx · tX dSX (66)

The SMP is then to find x ∈ V and k ∈ K that solve (64) together with the pertinent
evolution equation for k, as defined in (53).

Since ΩX is not time-invariant at configurational changes, the test functions δx ∈ V
0

are time-dependent in the parametrization δx(X , t); however, this relation is constrained
by the condition that δx(X, t) is stationary in the absolute configuration, i.e.

δx(X(ξ, t), t)
def
= δx(ξ, t) = δx(ξ) (67)

In particular, this means that

∆tδx = 0, Dtδx = − [δx ⊗ ∇X] · Ẋ (68)

∆t [δx ⊗ ∇X] = − [δx ⊗ ∇X] ·
[

Ẋ ⊗ ∇X

]

, Dt [δx ⊗ ∇X] = [Dtδx] ⊗ ∇X (69)

Our purpose is to first solve for the sensitivity field ẋ′{•, dẊ} ∈ V
0 from the tangent

problem

dẊ

[

d

dt
a(•; δx) −

d

dt
l(δx)

]

= 0, ∀δx ∈ V
0 (70)
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for given variations14 dẊ ∈ X
0, and then to compute k̇

′

{•, dẊ}.
Remark: The format for the tangent problem based on ẋ′{•, dẊ} as the primary un-

known field is considered henceforth as the ”operational” format, since each field ẋ′{•, dẊ} ∈
V

0 is continuous across any singular surface where the state variables (such as F ) may be
discontinuous. In such a case, v′{•, dẊ} = ẋ′{•, dẊ} − F · dẊ is discontinuous across
the singular surface, and it follows that v′{•, dẊ} /∈ V

0, as shown in Figure 3. Neverthe-
less, the special situation that the solution is smooth, i.e. v′{•, dẊ} ∈ V

0, is of particular
relevance. Hence, both situations will be discussed subsequently. �

L−

X L+
X

Xsing

X

ẋ′(X)

v′(X)
ẋ′, v′

Figure 3: Illustration of the general situation that ẋ′ is continuous while v′ is discontinuous across Γsing
X .

5.3.2. Operational format (based on ẋ)

We shall first consider the general case that v′ is only p.w. smooth in ΩX. In such a
case ẋ′ ∈ V

0 is solved from the tangent relation

aT(•; δx, ẋ′) = l
(ẋ)
T (•; δx, dẊ), ∀δx ∈ V

0 (71)

where the pertinent tangent forms are defined as15

aT(•; δx, ẋ′)
def
=

∫

ΩX

[δx ⊗ ∇X] : LT : [ẋ′ ⊗ ∇X] dVX (72)

l
(ẋ)
T (•; δx, dẊ)

def
=

∫

ΩX

[δx ⊗ ∇X] :
[

P :
[

dẊ ⊗ ∇X

]

+ LT :
[

F ·
[

dẊ ⊗ ∇X

]]

+ rX · dẊ − bX ⊗ dẊ
]

dVX

+

∫

∂ΩX

[

−
[

δx ⊗ ∇̂X

]

:
[

tX ⊗ dẊ
]

+ [δx · bX − k δx · tX] dẊ · N
]

dSX

+

∫

CX

δx ·
[

t
(1)
X ⊗ M̂

(1)
+ t

(2)
X ⊗ M̂

(2)
]

· dẊ dLX (73)

14The required regularity of X
0 depends on the chosen format; here, we assume that dẊ is continuous

and that dẊ = 0 on ∂ΩX,D for any dẊ ∈ X
0.

15Henceforth, in order to retain maximal generality we do not distinguish explicitly between the Dirichlet
and Neumann boundary parts in the various surface integrals.
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The continuum tangent stiffness tensor LT, defined by the relation (DtP )′ = LT : (DtF )′,

was defined in (61). In order to define the ”loading” l
(ẋ)
T of the tangent problem, we

introduced the 4th order tensor P (which has generally minor non-symmetry), and the 3rd
order tensor rX, defined as follows:

P
def
= P⊗I − P ⊗ I (74)

rX = ∆LT : [F ⊗ ∇X] − M ⋆ [k ⊗ ∇X] −
∂P

∂X
|F,k (75)

where ∆LT
def
= LT − L

e. Details of the derivation are given in the Appendix.

5.3.3. Non-operational format (based on v)

Next, we consider the special case that v′ is smooth in ΩX. In such a case v′ ∈ V
0 can

be solved from the tangent relation

aT(•; δx,v′) = l
(v)
T (•; δx, dẊ), ∀δx ∈ V

0 (76)

where the tangent form aT was defined in (72), whereas l
(v)
T is given as

l
(v)
T (•; δx, dẊ)

def
=

∫

∂ΩX

[− [δx ⊗ ∇X] : P + δx · bX − k δx · tX + [δx ⊗ ∇X] : [tX ⊗ N ]] dẊ · N dSX

+

∫

CX

δx ·
[

t
(1)
X ⊗ M̂

(1)
+ t

(2)
X ⊗ M̂

(2)
]

· dẊ dLX (77)

Details of the derivation are given in the Appendix.

6. Application to moving material (singular) interface

6.1. Problem definition

Consider the situation when an embedded (open) singular surface Γsing
X , across which

the material properties may be discontinuous. The surface Γsing
X , with boundary curve

CX, can move through the material domain ΩX with (closed) external boundary ∂ΩX,
which is assumed to be sufficiently smooth. In fact, it suffices that ∂ΩX is smooth where
dẊ 6= 0. The domain ΩX is split into two parts, Ω−

X and Ω+
X (ΩX = Ω−

X ∪ Ω+
X and

∂ΩX = ∂Ω−

X ∪ ∂Ω+
X), as shown in Figure 4, whereby the boundary of the two parts are

given as ∂(Ω−

X) = ∂Ω−

X ∪ Γsing
X and ∂(Ω+

X) = ∂Ω+
X ∪ Γsing

X , respectively. Since the state
variables, such as F and k, are generally discontinuous across Γsing

X , the volume-specific
free energy ψX is also discontinuous across Γsing

X .
The normal on Γsing

X pointing into Ω+
X is denoted N−(= N), as shown in Figure 4;

hence, we use the notation N+(= −N ) for the normal in the opposite direction. The

cotangents M̂
−

and M̂
+
, located on the curve CX, are normal to CX and lie in the tangent

plane of ∂Ω−

X and ∂Ω+
X , respectively. Hence, M̂

+
+ M̂

−

6= 0 in general. The cotangent

M̂
tang

, which is also located on and directed normal to CX, lies in the tangent plane of
Γsing

X . It is thus unique on both sides of the interface.

18



M
ANUSCRIP

T

 

ACCEPTE
D

ARTICLE IN PRESS

Ω−

X

CX

∂Ω−

X

M̂
sing

M̂
−

t−X

N−

Γsing
X

Γsing
XCX

t+
X

N+

M̂
+

M̂
sing

Ω+
X

Figure 4: Moving material (singular) interface Γsing
X splitting the domain ΩX in the parts Ω−

X and Ω+
X.

Other notation is explained in the main text.

6.2. Explicit (classical) configurational forces along material interface

The explicit expression for DCONF was discussed in some detail in Runesson et al.
(2008). Upon introducing the assumption of vanishing net dissipation across the exterior
boundary, i.e. N · Ẋ = 0 on ∂ΩX, we obtain the classical representation

D̄CONF( dẊ) =

∫

Γsing
X

G
CONF · dẊ dSX, G

CONF def
= [|Σ|] · N (78)

where G
CONF is the explicitly localized (distributed) configurational ”traction” that ”lives”

on Γsing
X and, moreover, that represents the dissipation along Γsing

X .
Remark: Since the deformation gradient F can be discontinuous only in the normal

direction, N , across Γsing
X , it is possible to express G

CONF as

G
CONF = [|Σ|] · N = αN (79)

where α = [|ΨX|]−N · [|F T|] · 〈P 〉 ·N 16. Hence, the configurational dissipation along Γsing
X

is invariant (vanishes) for any choice of Ẋ s.t. Ẋ · N = 0 on ∂ΩX ∪ Γsing
X . �

6.3. Implicit (configurational-induced) configurational forces along interface – Tangent prob-
lem

6.3.1. Operational format of tangent problem

We shall use the fact that all fields are sufficiently smooth in the parts Ω−

X and Ω+
X,

whereby the tangent problem introduced in (71) applies to Ω−

X and Ω+
X separately. However,

although v′ is expected to be discontinuous across the singular surface Γsing
X (since F is

discontinuous in general), ẋ′ is still continuous across this surface. This means that the

16〈P 〉 denotes mean value, i.e. 〈P 〉 = 1
2 [P− + P +].
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operational format of the tangent problem for a discontinuity surface is conveniently based
on ẋ′ ∈ V

0 as the primary unknown field.
At the outset we shall choose dẊ continuous across Γsing

X . In order to simplify the
resulting expression as far as possible without loss of essential features, we shall also assume
that the external boundary ∂ΩX is smooth along CX. Referring to the notation introduced
in Figure 4, we then note the following identities relating to the singular surface Γsing

X :

M̂
+

+ M̂
−

= 0, t+
X + t−X = 0, k+ + k− = 0 (80)

Clearly, (80)1 represents the smoothness condition on ∂ΩX, (80)2 expresses the condition
that the physical tractions on each side of the interface Γsing

X equilibrate each other, whereas

the relation (80)3 follows from the identities ∇̂
−

X = ∇̂
+

X
def
= ∇̂X and −N+ = N− def

= N .
In addition, we shall introduce the assumption that the applied volume load bX and

surface load (traction) t̄X are continuous across CX, i.e. b−

X = b+
X and t̄

−

X = t̄
+
X on CX.

It is now possible to ”tie together” the tangent problems for Ω−

X and Ω+
X, as defined in

(71), upon simply adding the pertinent relations and using the ”continuity” conditions in
(80). We then obtain the tangent problem for the body with interface: Solve for ẋ′ ∈ V

0

from
aT(•; δx, ẋ′) = l

(ẋ)
T (•; δx, dẊ), ∀δx ∈ V

0 (81)

where aT(•; δx, ẋ′) is still given by (72), whereas l
(ẋ)
T (•; δx, dẊ) in (73) is now condensed

to

l
(ẋ)
T (•; δx, dẊ)

def
=

∫

ΩX

[δx ⊗ ∇X] :
[

P :
[

dẊ ⊗ ∇X

]

+ LT :
[

F ·
[

dẊ ⊗ ∇X

]]

+ rX · dẊ − bX ⊗ dẊ
]

dVX

+

∫

∂ΩX

[

−
[

δx ⊗ ∇̂X

]

:
[

tX ⊗ dẊ
]

+ [δx · bX − k δx · tX] dẊ · N
]

dSX(82)

An important special case is defined by the choice dẊ ·N = 0 and t̄X = 0 on the exterior
Neumann boundary part ∂ΩX,N. In such a case the boundary integral in (82) vanishes,
and we are left with the simpler expression

l
(ẋ)
T (•; δx, dẊ) =

∫

ΩX

[δx ⊗ ∇X] :
[

P :
[

dẊ ⊗ ∇X

]

+ LT :
[

F ·
[

dẊ ⊗ ∇X

]]

+ rX · dẊ − bX ⊗ dẊ
]

dVX (83)

In practice, the operational format is based on the parametrization in (49), whereby we
obtain

ẋ′{Ẋ; dẊ} =

Nw
∑

i=1

ẋ′{Ẋ; W i} dȧi =

Nw
∑

i=1

ẋ′

i dȧi (84)

Consequently, (81) is replaced by the set of problems: Solve for ẋ′

i ∈ V
0, i = 1, 2, . . . , Nw:

aT(•; δx, ẋ′

i) = l
(ẋ)
T (•; δx,W i), ∀δx ∈ V

0 (85)
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For known fields ẋ′

i, it is possible to compute the generalized configurational force compo-

nents (GMAT)i in a post-processing step: ẋ′

i → v′
i → (DtF )′i → (Dtk)

′
i → GMAT

i

def
= (GMAT)i

with

GMAT
i

def
=

∫

ΩX

K ⋆ (Dtk)
′

i dVX. (86)

Finally, we may define the ”localizable” (distributed) configurational force vector G
MAT

via the identity (least squares projection)

GMAT
i =

∫

Γsing
X

G
MAT · W i dSX (87)

This equation is solved approximately in practice using FE-discretization, whereby W i

are taken as the nodal basis functions along Γsing
X , and G

MAT is expanded in this basis (as
discussed below).

6.3.2. Issue of unique sensitivity field (tangent solution)

It is of considerable interest to note that the sensitivity field ẋ′ (or v′) are unique with
respect to the choice of the field dẊ in ΩX as long as the following conditions are satisfied:
(i) The normal component of dẊ is uniquely chosen on the external boundary ∂ΩX as
well as on the interface Γsing

X , (ii) dẊ is unique along CX.

In order to show this result, we consider two given fields dẊ
(1)

and dẊ
(2)

defined

on Ω−

X. Their difference is denoted dẊ
(1,2) def

= dẊ
(1)

− dẊ
(2)

, corresponding to the
sensitivity (v(1,2))′. Now, in view of (76), we conclude that (v(1,2))′ is the solution of the
tangent problem

aT(•; δx, (v(1,2))′) = l
(v)
T (•; δx, dẊ

(1,2)
), ∀δx ∈ V

0 (88)

where

l
(v)
T (•; δx, dẊ

(1,2)
)

def
=

∫

∂(Ω−

X)

[− [δx ⊗ ∇X] : P + δx · bX − k δx · tX

+ [δx ⊗ ∇X] : [tX ⊗ N ]] dẊ
(1,2)

· N dSX

+

∫

CX

δx ·
[

tX ⊗ M̂ + t−X ⊗ M̂
−
]

· dẊ
(1,2)

dLX (89)

However, if we impose the conditions (i) dẊ
(1,2)

· N = 0 on ∂(Ω−

X) and (ii) dẊ
(1,2)

= 0

along CX, which situation is illustrated in Figure 5, then it is obvious that l
(v)
T (•; δx, dẊ

(1,2)
) =

0. Hence, it is concluded that (v(1,2))′ = 0 in Ω−

X. Similarly, we may consider the part Ω+
X

and conclude that (v(1,2))′ = 0 in Ω+
X under the same assumptions. We have thus shown

that (v(1))′ = (v(2))′ = v′ is unique in the entire domain ΩX, from which it is concluded
that (DtF )′ is unique and, finally, (Dtk)

′ is unique (which will also be verified numerically
below).

In summary, we have shown that G
MAT will not be affected by the particular choice

of the variation dẊ in the entire domain ΩX as long as the conditions (i) and (ii) are
satisfied. That G

CONF is not affected by the choice of dẊ whatsoever is clear from (78).
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L−

X L+
X

Xsing dẊ(1,2)

X

dẊ(2)dẊ(1)

Ẋ

Figure 5: Two choices of dẊ which give the same field (Dtk)′ and, hence, identical values of G
MAT.

7. Numerical example: Plate with interface separating parts with dissimilar
material properties

7.1. Elastic-plastic model – Linearized format

We adopt a simple elastic-plastic model based on the von Mises yield criterion with
isotropic hardening. A linearization of the spatially objective large deformation formulation
is obtained by introducing the volume-specific free energy as

ψX (F , ǫp, k) = ψe
X (F , ǫp) + ψp

X(k) (90)

where the part ψe
X (F , ǫp) represents linear elasticity and is given as

ψe
X (F , ǫp) =

1

2
[F − F p (ǫp)] : E

e : [F − F p (ǫp)] (91)

with F p (ǫp)
def
= I + ǫp, and where ψp

X(k) is the ”plastic” (or rather hardening) free energy
corresponding to isotropic hardening and given as

ψp
X(k) =

1

2
Hk2 (92)

In (91), we introduced the constant ”small strain” stiffness tensor in standard fashion
representing isotropic linear elastic properties

E
e = 2GI

sym
dev +KI ⊗ I, I

sym
dev = I

sym −
1

3
I ⊗ I (93)

where G and K are the shear and bulk moduli, respectively. In (92), H is the constant
isotropic hardening modulus. Obviously, this model gives the thermodynamically consis-
tent stresses

P =
∂ψX

∂F
= E

e : [F − F p (ǫp)] (94)

σp = −
∂ψX

∂ǫp
= E

e : [F − F p (ǫp)] = P (95)

K = −
∂ψX

∂k
= −Hk (96)
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We may thus express the (local) volume-specific material rate of dissipation dX = K ⋆Dtk
according to (29) with the matrices k and K defined as

k
def
=

[

ǫp

k

]

, K
def
=

[

P

K

]

(97)

The von Mises yield criterion with isotropic hardening is expressed as

Φ (P , K) = Pe − [Y +K] = 0, Pe
def
=

√

3

2
|P dev| (98)

where Y is the uniaxial yield stress and Pe is the effective (1st Piola-Kirchhoff) stress.
To complete the model, we adopt the evolution rules of the associated type, i.e.

Dtǫ
p = λ

∂Φ

∂P
= λ

3P dev

2Pe

(99)

Dtk = λ
∂Φ

∂K
= −λ (100)

where λ is the plastic multiplier. Due to the linearized structure and since E
e has both

major and minor symmetry, P becomes symmetrical; hence, the conventional small strain
model is retrieved in the case that deformations are indeed small such that |ǫp| ≪ 1.

Next, we obtain from (56) the basic tangent operators

L
e def

=
∂P

∂F
|k,X = E

e, M
def
=
∂P

∂k
|F,X =

[

∂P
∂ǫp

∂P
∂k

]

=

[

−E
e

0

]

(101)

In order to obtain explicit expressions of the tangent operators RT and LT, defined in
(60) and (61), respectively, we may evaluate the condition DtΦ = 0 at plastic loading for
”deformation control” to compute the state functions

h = 3G+H, µ =
3G

Pe
P dev, g =

[

3
2Pe

P dev

−1

]

(102)

and we obtain

LT
def
= E

e −
1

h

〈µ : DtF 〉

|µ : DtF |
µ ⊗ µ, ∆LT

def
= LT − L

e = −
1

h

〈µ : DtF 〉

|µ : DtF |
µ ⊗ µ (103)

where it was used that M ⋆ g = −µ. Finally, we may use (101) and (102) to obtain

GMAT
i =

∫

Ωp
X

K ⋆RT : (DtF )′ dVX =

∫

Ωp
X

1

h

〈µ : DtF 〉

|µ : DtF |
K ⋆ gµ : (DtF )′ dVX

=

∫

Ωp
X

1

h

〈µ : DtF 〉

|µ : DtF |
Y µ : (DtF )′ dVX (104)
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In order to obtain the last expression in (104), we used that K ⋆ g = Pe −K = Y in the
plastic domain Ωp

X, defined by the current state satisfying the yield criterion, Φ = 0.
When the quantities GMAT

i , which correspond to nodal values dai, are known, it is
possible to ”localize” the ”configurational traction” G

MAT via the ansatz, cf. Figure 6,

G
MAT =

NW
∑

j=1

W jḠ
MAT
j (105)

where ḠMAT
i and W i, i = 1, 2, . . . , NW, are the nodal values (intensities) and the basis

functions, respectively. A least squares projection on the set of basis functions in the sense
that

GMAT
i =

∫

Γsing
X

G
MAT · W i dSX (106)

then gives the intensities ḠMAT
i , collected in the column matrix Ḡ

MAT
=

[

ḠMAT
1 , ḠMAT

2 , . . . ḠMAT
NW

]T
,

from the matrix equation

W Ḡ
MAT

= GMAT, Wij
def
=

∫

Γsing
X

W i · W j dSX (107)

i− 1 i i+ 1

X

ḠMAT
i G

MAT(exact)

G
MAT(approx.)

Figure 6: Representation of G
MAT in terms of the nodal values on Γsing

X for a given FE-mesh.

7.2. Problem formulation

Consider a plate in plane strain, with length L and width H = 0.5L, which is subjected
to prescribed end displacements at the right end, as shown in Figure 7(a). The maximal
displacement is ūmax/L = 0.5 ·10−3. This is the sole loading, i. e. bX = 0 in ΩX and t̄X = 0
on ∂ΩX,N. Since we shall also assume that dẊ ·N = 0 on the external boundary ∂ΩX, we
obtain the following simplified version of (83) as the data for the tangent problem:

l
(ẋ)
T (•; δx, dẊ) =

∫

ΩX

[δx ⊗ ∇X] :
[

P :
[

dẊ ⊗ ∇X

]

+ LT :
[

F ·
[

dẊ ⊗ ∇X

]]

+ rX · dẊ
]

dVX (108)

24



M
ANUSCRIP

T

 

ACCEPTE
D

ARTICLE IN PRESS

Using the fact that the material properties are homogeneous in each of the two subdomains

separated by the singular surface, i.e. ∂P
∂X

|F,k = 0, it is possible to reformulate rX, the

general expression of which was given in (75), more explicitly as

rX = ∆LT : [F ⊗ ∇X] + E
e : [ǫp ⊗ ∇X] (109)

where ∆LT was given in (103).
The material parameters for the elastic-plastic model are: E, ν = 0.3, Y,H with Eref , Yref =

0.001Eref , Href = 0.2Eref . They assume different values on each side of the interface, as
shown schematically in Figure 7(b).

(1) (2)
ū

Γsing

ǫ

σ

E1

E2

H1

H2

Y1

Y2

X1

X2
ǫp11

Figure 7: Plate in plane strain with discontinuity in material properties along central interface. (a) De-
formed configuration and plastic deformations for ū/ūmax = 1, (b) Linear elastic-hardening stress-strain
response curves.

7.3. Numerical results

The first set of computations were carried out to verify the theoretical result in Sub-
subsection 6.3.2 that the values of both G

CONF and G
MAT are independent of the choice

of the variation of Ẋ under certain conditions. To this end, we considered three different
fields dẊ i, i = I, II, III, which all satisfied the condition that dẊ i · N = 1 on Γsing,
and that dẊ i · N = c(X) for X ∈ ∂ΩX, where c(X) is a given function. Otherwise, the
fields differed from each other only in the interior of ΩX, as shown in Figure 8. As a conse-
quence, all the requirements discussed in Subsubsection 6.3.2 for satisfying the condition
l
(v)
T (•; δx, dẊI − dẊII) = l

(v)
T (•; δx, dẊII − dẊIII) = l

(v)
T (•; δx, dẊIII − dẊI) = 0 in

both the left and right part of the singular surface in Figure 7 were satisfied. Indeed, the
numerical results verified that the values of G

CONF and G
MAT were the same for all three

fields dẊ i in Figure 8.
Next, the mesh (in)sensitivity and convergence properties for mesh refinement were

studied for two types of element approximations: linear (CTS) and quadratic (LST) dis-
placement approximation. The results are depicted in Figure 9, and they show that the
quadratic elemnt approximation gives superior convergence properties (as expected).
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Figure 8: Choice of variations of the field dẊi, i = I, II, III. All choices give identical results of the
sensitivity v′.
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Figure 9: Mesh-sensitivity/convergence of components (fields) GCONF
⊥

and GMAT
⊥

along Γsing
X for mismatch

of the material data: E2 = 0.5Eref. All results obtained for ū/ūmax = 1.

The next series of computations concerned the development of GCONF
⊥

and GMAT
⊥

with
increasing (prescribed) displacement, while it was assumed that there is a mismatch across
the interface of the elastic and the plastic (hardening) properties. These results are shown
in Figure 10.

In order to further provoke the triaxiality in the stress and strain states, we next
considered the case when a circular hole is introduced in the right part of the plate, as
shown in Figure 11(a). The base set of material parameter values are still the same as
those given in Figure 7(b).

The distribution of components GCONF
⊥

, GMAT
⊥

and G⊥ = GCONF
⊥

+ GMAT
⊥

along Γsing
X for

mismatch of elasticity, E2 = 0.5Eref , are shown in Figure 12 for the LST approximation
and a mesh that represents a converged state.

The final series of computations concerned the development of GCONF
⊥

and GMAT
⊥

with
increasing (prescribed) displacement, while it was assumed that there is a mismatch across
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Figure 10: Development of components GCONF
⊥

, GMAT
⊥

and G⊥ = GCONF
⊥

+ GMAT
⊥

with increasing loading
(prescribed displacement) for (a) mismatch of elasticity: E2 = 0.5Eref , and (b) mismatch of hardening:
H2 = 0.5Href .
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Figure 11: Plate in plane strain with discontinuity in material properties along central interface and with
excentric hole. Deformed configuration and plastic deformations for ū/ūmax = 1.

the interface of the elastic and the plastic (hardening) properties. These results are shown
in Figure 13.

8. Discussion, conclusions and outlook

In this paper we have presented a novel investigation in the context of configurational
changes for a rate-independent dissipative material; namely, we considered the total vari-
ation of the rate of global dissipation with respect to the rate of configurational motion.
Such a variation may, alternatively, be considered as the evaluation of the total sensitivity
due to configurational changes, which may be brought about (in their turn) by physical
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Figure 12: Distribution of components GCONF
⊥

, GMAT
⊥

and G⊥ = GCONF
⊥

+ GMAT
⊥

along Γsing
X for mismatch

of elasticity: E2 = 0.5Eref. All results obtained for ū/ūmax = 1.

changes. It is then clear that the material part of the dissipation is indeed coupled (and
sensitive) to configurational changes. However, it is not at all clear how to use this infor-
mation. The classical approach in defining the ”driving force” for configurational changes,
advocated in the current literature, is to account only for the explicit part of the total
configurational force, denoted G

CONF in this paper. An alternative, perhaps moore natu-
ral, approach is to assume that the ”driving force” for configurational changes is identified
precisely by the total sensitivity, which means that the total configurational force G is
the proper choice in constitutive models for configurational changes. Whatever the choice
made, it is clearly a model assumption.

The paper discussed essentially two aspects: (1) How to formulate (or construct) the
total dissipation in the presence of configurational changes, and (2) how to compute the
total sensitivity of the global dissipation via the appropriate formulation of a tangent
problem. In the present paper only isothermal (thermomechanically uncoupled) quasistatic
problems are considered, which means that the only balance equation for establishing the
pertinent tangent problem is the standard equilibrium equation. We remark that we chose
to linearize the weak form of equilibrium by observing that the virtual (test) functions are
time-invariant in the absolute configuration Bξ; however, it would have been possible to
linearize the strong format of equilibrium in Bξ, establish the weak format and, finally,
push forward to obtain the tangent problem in BX.

A few issues deserve further comments: The tangent stiffness LT appearing in the
”sensitivity version” of the constitutive continuum tangent relation (61) in the case of
plastic loading (L) is not necessarily identical to the actual L

ep for two reasons: (1) the
relation (57) represents essentially a nonlinear (bilinear) relation in DtF , (2) LT can be
linearized at the actual value of Ẋ or at Ẋ = 0 corresponding to a stationary singular
surface. If we choose the actual value of Ẋ it is obvious that G

MAT depends on the solution
to the physical motion problem at each point in time. Hence, if indeed G

MAT is part of the
”driving force”, then the computation of the sensitivity problem is nonlinear and can only
be carried out for a given field Ẋ as part of an iteration process to compute the actual
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Figure 13: Development of components GCONF
⊥

, GMAT
⊥

and G⊥ = GCONF
⊥

+ GMAT
⊥

with increasing load-
ing (prescribed displacement) for mismatch of hardening: H2 = 0.5Href. Results are given for different
positions across the interface: (a) X2 = 0.2, (a) X2 = 0.4, (a) X2 = 0.6, (a) X2 = 0.8.

field Ẋ.
It was shown theoretically that the variation dẊ can be chosen arbitrarily in the

interior of the material domain ΩX without affecting the value of G
MAT, as long as certain

conditions on the external boundary and the singular interface are satisfied. This was
confirmed by numerical results for selected choices of dẊ. For uniform cross-section of
the investigated plate, a separate parameter study (not discussed explicitly in the paper)
showed, in the case ν → 0, that GMAT

⊥
converges to the value that is obtained for uniaxial

stress (which confirms the soundness of the numerical evaluation). The numerical results
obtained for dissimilar material properties across the singular surface showed that a misfit
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in the elasticity modulus resulted in larger value of GMAT
⊥

than did a misfit in the hardening
modulus.

Although it follows from the local (strong) version of dissipation inequality that D̄(k̇) ≥
0 must always hold, it is possible that the corresponding sensitivity to configurational

changes becomes non-positive, i.e. D̄MAT(dẊ, k̇
′

{Ẋ; dẊ}) ≤ 0 is certainly possible. An
example of this situation is given in Figure 13 for the two last cross-sections (for the plate
with a hole), where it appears that GMAT

⊥
≤ 0.

Whenever in doubt, we checked the results by numerical differentiation. This is doable
since we are interested in the total variation of the global dissipation (and not only a partial
variation corresponding to G

CONF). As to the practical calculation of the configurational
force, it appears that the classical configurational rate, G

CONF, is spatially localized a priori
to a singular surface by the analytical expression. On the other hand, the material rate of
dissipation, G

MAT, is spatially localizable a posteriori via a suitable parametrization and
least squares projection (in practice) on the FE-shape functions.

Finally, we mention some possible future developments. The total configurational force
G will be exploited as the ”driving force” in a crack-propagation model for fatigue cracks in
railway steel under complex loading. As to the efficient computation of global dissipation
for the mesh-parametrized material motion, it is possible to use a socallled ”dual” method,
whereby only one single dual solution is needed even if there are a multitude of nodal
values Gi to compute, cf. the sensitivity problem in the context of parameter identification
discussed by Johansson et al. (2007).
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A. Appendix

A.1. Tangent problem – Format based on ẋ

The derivations leading to (70) with (71) and (72) are outlined as follows: From the
definition of a(x, k; δx) in (64), together with the identity in (13), we derive

d

dt
a(x, k; δx) =

∫

ΩX

[∆t[δx ⊗ ∇X] : P + [δx ⊗ ∇X] : ∆tP +

[δx ⊗ ∇X] : P ⊗ Ẋ · ∇X] dVX (1)

Upon using the relations

∆tP = DtP + [P ⊗ ∇X] · Ẋ

= DtP + [Le : [F ⊗ ∇X] + M ⋆ [k ⊗ ∇X] +
∂P

∂X
|
F,k · Ẋ (2)
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together with (68), we may reformulate this expression in (1) as

d

dt
a(x, k; δx) =

∫

ΩX

[

[δx ⊗ ∇X] : DtP − [δx ⊗ ∇X] : P : [Ẋ ⊗ ∇X]

+ [δx ⊗ ∇X] : [Le : [F ⊗ ∇X] + M ⋆ [k ⊗ ∇X] +
∂P

∂X
|
F,k] · Ẋ

]

dVX(3)

Now, taking the total variation of (3) w.r.t. Ẋ, while using the tangent relation (60)
expressed explicitly as

(DtP )′ = LT : [ẋ′ ⊗ ∇X − [F · dẊ] ⊗ ∇X] (4)

we obtain

dẊ

[

d

dt
a(x, k; δx)

]

=

∫

ΩX

[δx ⊗ ∇X] : LT : [ẋ′ ⊗ ∇X] dVX

−

∫

ΩX

[δx ⊗ ∇X] :
[

P : [dẊ ⊗ ∇X] + LT : [F · [dẊ ⊗ ∇X]]

+ rX · dẊ
]

dVX (5)

Next, from the definition of l(δx) in (65) together with (13) and (15), we derive

d

dt
l(δx) =

∫

ΩX

Dt[δx · bX] dVX +

∫

∂ΩX

[δx · bX]Ẋ · N dSX

+

∫

∂ΩX,N

[D̂t[δx · tX] − k[δx · tX]Ẋ · N dSX

∫

CX

δx · [t
(1)
X ⊗ M̂

(1)
+ t

(2)
X ⊗ M̂

(2)
] · Ẋ dLX (6)

where we used that δx and Ẋ are continuous on ∂ΩX, in particular across CX.
In order to obtain operational expressions, we note the relations

Dt[δx · bX] = Dt[δx] · bX + δx · DtbX = −[δx ⊗ ∇X] : [bX ⊗ Ẋ] + δx · DtbX in ΩX (7)

D̂t[δx · tX] = D̂t[δx] · tX + δx · D̂ttX = −[δx ⊗ ∇̂X] : [tX ⊗ Ẋ] + δx · D̂ttX on ∂ΩX (8)

where we used the relations (4), (9) and (68), which may be inserted into (6) to give

d

dt
l(δx) =

∫

ΩX

[

δx · DtbX − [δx ⊗ ∇X] : [bX ⊗ Ẋ]
]

dVX

+

∫

∂ΩX

[

δx · D̂ttX − [δx ⊗ ∇̂X] : [tX ⊗ Ẋ]
]

dSX

+

∫

∂ΩX

[[δx · bX] − k[δx · tX]] Ẋ · N dSX

+

∫

CX

δx · [t
(1)
X ⊗ M̂

(1)
+ t

(2)
X ⊗ M̂

(2)
] · Ẋ dLX (9)

31



M
ANUSCRIP

T

 

ACCEPTE
D

ARTICLE IN PRESS

Upon taking the total variation of (9) w.r.t. Ẋ, while assuming that bX, tX, DtbX and
D̂ttX are independent on Ẋ, i.e.

b′

X = t′X = (DtbX)′ = (D̂ttX)′ = 0 (10)

we obtain

dẊ

[

d

dt
l(δx)

]

= −

∫

ΩX

[δx ⊗ ∇X] : [bX ⊗ dẊ] dVX

−

∫

∂ΩX

[δx ⊗ ∇̂X] : [tX ⊗ dẊ] dSX

+

∫

∂ΩX

[[δx · bX] − k[δx · tX]] dẊ · N dSX

+

∫

CX

δx · [t
(1)
X ⊗ M̂

(1)
+ t

(2)
X ⊗ M̂

(2)
] · dẊ dLX (11)

Remark: Assuming that D̂ttX does not depend on Ẋ pertains to the assumption that tX

is defined only on ∂ΩX. �

Finally, upon using (5) and (11), we may rephrase (70) as

aT(•; δx, ẋ′) = l
(ẋ)
T (•; δx, dẊ), ∀δx ∈ V

0 (12)

where the tangent forms aT and l
(ẋ)
T are given in (72) and (73), respectively.

A.2. Tangent problem – Format based on v

The derivations leading to (76) with (77) are outlined as follows: From the definition
of a(x, k; δx) in (64), together with the identity in (13), we derive

d

dt
a(x, k; δx) =

∫

ΩX

[[Dt[δx] ⊗ ∇X] : P + [δx ⊗ ∇X] : DtP ] dVX

+

∫

∂ΩX

[δx ⊗ ∇X] : P ⊗ Ẋ · N dSX (13)

where we used the relation Dt[δx ⊗ ∇X] = Dt[δx] ⊗ ∇X.
Taking the total variation of (13) w.r.t. Ẋ, while using the tangent relation (60), we

obtain

dẊ

[

d

dt
a(x, k; δx)

]

=

∫

ΩX

[[(Dt[δx])′ ⊗ ∇X] : P + [δx ⊗ ∇X] : LT : [v′ ⊗ ∇X]] dVX

+

∫

∂ΩX

[δx ⊗ ∇X] : P ⊗ dẊ · N dSX (14)

As to the time-derivative of l(δx), the expression (6) is taken as the point of departure.
While the decomposition of Dt[δx ·bX] in (7) is retained, we shall use the following decom-
position of D̂t[δx · tX], instead of (8):

D̂t[δx · tX] = Dt[δx] · tX + [δx ⊗ ∇X] : [tX ⊗ N ]Ẋ · N + δx · D̂ttX (15)
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where we used the relation (10) to replace D̂t[δx] by Dt[δx]+ [δx⊗∇X] ·N [Ẋ ·N ]. Upon
introducing the relations (13) and (15) in (6), we obtain

d

dt
l(δx) =

∫

ΩX

[δx · DtbX + Dt[δx] · bX] dVX

+

∫

∂ΩX

[

δx · D̂ttX + Dt[δx] · tX + [δx ⊗ ∇X] : [tX ⊗ N ]Ẋ · N
]

dSX

+

∫

∂ΩX

[δx · bX − k[δx · tX]] Ẋ · N dSX

+

∫

CX

δx · [t
(1)
X ⊗ M̂

(1)
+ t

(2)
X ⊗ M̂

(2)
] · Ẋ dLX (16)

Again, upon taking the total variation of (16) w.r.t. Ẋ, while assuming that bX, tX, DtbX

and D̂ttX are independent on Ẋ, i.e. (10) holds, then we obtain

dẊ

[

d

dt
l(δx)

]

=

∫

ΩX

(Dt[δx])′ · bX dVX

+

∫

∂ΩX

[

(Dt[δx])′ · tX + [δx · bX − k[δx · tX] + [δx ⊗ ∇X] : [tX ⊗ N ]] dẊ · N
]

dVX

+

∫

CX

δx · [t
(1)
X ⊗ M̂

(1)
+ t

(2)
X ⊗ M̂

(2)
] · dẊ dLX (17)

Finally, upon using the divergence theorem to note that

∫

ΩX

[(Dt[δx])′ ⊗ ∇X] : P dVX =

∫

ΩX

(Dt[δx])′ ·bX dVX +

∫

∂ΩX

(Dt[δx])′ · tX dSX, ∀δx ∈ V
0

(18)
we may use (14) and (17) together with (69) to arrive at

aT(•; δx, ẋ′) = l
(v)
T (•; δx, dẊ), ∀δx ∈ V

0 (19)

where the tangent forms aT and l
(v)
T are given in (71) and (76).
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Abstract

The thermodynamic framework for combined configurational and deformational changes
was recently discussed by Runesson et al. (2008). One key ingredient in this setting is
the (fixed) absolute configuration, relative to which both physical and virtual (variational)
changes of the material and spatial configurations can be described. In the present pa-
per we consider dissipative material response and emphasize the fact that it is possible
to identify explicit energetic changes due to configurational changes for ”frozen” spatial
configuration (a classical view) and the configuration-induced material dissipation. The
classical assumption (previously adopted in the literature) is to ignore this dissipation, i.e.
the internal variables are considered as fixed fields in the material configuration. In this
paper, however, we define configurational forces by considering the total variation of the
total dissipation with respect to configurational changes. The key task is then to compute
the sensitivity of the internal variable rates to such configurational changes, which results
in a global tangent problem based on the balance equations (momentum and energy) for a
given body. In this paper we restrict to quasistatic loading under isothermal conditions and
for elastic-plastic response, and we apply the modeling to the case of a moving interface of
dissimilar materials.

1. Introduction

The notion of configurational changes refers basically to the motion of ”property sur-
faces”, that are either internal to a given finite body or identical to (some part of) the
external boundary. An important class is defined by the motion/evolution of ”singular
surfaces” representing discontinuities (or defects) in the material properties and, conse-
quently, in the state variables when the body is loaded. Typical examples of internal
processes are the evolution of defects, phase transformation (microstructural changes that
are mostly accompanied by change of volume and mechanical properties), and internal
cracks. Typical boundary processes are the evolution of surface (biological) growth and
surface cracks. Crack propagation may in this context be seen as a degenerated boundary
motion.
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Since the literature on configurational mechanics is very rich, we do not intend to give
a comprehensive account. We only mention the pioneering work by Eshelby (1951) and
the contributions by Abeyaratne and Knowles (1990), Maugin (1993, 1995, 1997, 1998a,b,
1999), Maugin and Trimarco (1992, 1995), Gurtin (1995, 2000), and Kienzler and Her-
rmann (2000). Some of these works also contain comprehensive overviews with a discus-
sion of various aspects of configurational mechanics (”material” mechanics in Maugin’s
terminology). As to the physical motivation, a major application is the ”driving force” on
singular surfaces. In the seminal contributions by Gurtin (1995, 2000), balance equations
for interfaces are derived from a non-standard (material) observer invariance argument
with strong relations to the celebrated Noether’s theorem, Noether (1918). The effects
of configurational changes of surfaces in terms of physical properties intrinsically attached
to the surfaces (e.g. energy) have been addressed by, among others, Gurtin and Murdoch
(1975); Gurtin and Struthers (1990), Simha and Bhattacharya (1998). A recent compre-
hensive treatment of ”surface energies” is given by Steinmann (2008). Indeed, it appears
that there is a strong link to the analysis in this paper on ”sensitivity”.

The concept of ”configurational forces” has been exploited extensively in recent years
in computational fracture mechanics, cf. Steinmann (2000); Steinmann et al. (2001); Stein-
mann (2002b,a); Menzel et al. (2004); Steinmann (2008), Fagerström and Larsson (2008).
The suggestion in Steinmann et al. (2001) to compute the crack-driving force based on
the concept of ”nodal material forces” generalized, in fact, the domain integral format
suggested previously by Li et al. (1985). A posteriori error control and adaptivity of the
J-integral in its different equivalent formats were investigated by Heintz et al. (2004). A
recent paper by Guerses and Miehe (2008), which is closely related to the present paper
concerning the thermodynamic setting, addresses r-adaptive remeshing for a propagating
crack.

Most studies so far are explicitly confined to elastic material response. While the
state of affairs seems to be quite clear in this case, it is not so in the case (local) material
dissipation occurs as a result of the configurational change in addition to the energy release
from a propagating crack. The formulation of the crack-driving force in such a case and the
computational aspects have been discussed by Maugin and Trimarco (1992), Simha et al.
(2003), Simha et al. (2008), Liebe et al. (2003), Menzel et al. (1995), Nguyen et al. (2005).
However, there seems to be a lack of consensus as to the appropriate basic formulation.

In this contribution we aim at shedding some further light on the energetic conse-
quences of configurational changes for rate-independent dissipative material response. We
focus on the dissipation of mechanical energy of a given finite body that is undergoing
configurational changes in conjunction with (or as a result of) mechanical loading. More
specifically, we put forward the idea that it is the total variation of the appropriately de-
fined dissipation functional for the whole body that represents the ”driving force” for the
physical process that is described by configurational changes1. However, which definition

1This choice has distinct advantages; one being that it is possible to check analytical results by com-
parison with numerical perturbations of the functional.
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of the driving force to use is basically a matter of modeling, although the choice is strongly
guided by thermodynamics considerations.

In order to increase clarity in the variational framework, we adopt a description that
allows for the combined configurational (material) and deformational (spatial) motions. To
this end we first introduce an auxiliary (fictitious) reference configuration that is fixed in
space; in particular, its boundary is fixed and thus defines a time-invariant domain under
(possible) configurational and deformational changes. It is important to note that the
introduction of such an absolute reference configuration does not simply mean a change
of computational domain (associated with a change of coordinates). As a special case, we
may choose this referential domain to be the current configuration (the Eulerian view),
which corresponds to the study of the ”inverse motion”, and this approach is common in
the literature on configurational forces (crack-driving force) within the context of singular
cracks, e.g. Steinmann (2000). With such a choice, however, the combined action of
configurational and material changes is never revealed.

The paper is organized as follows: Section 2 introduces definitions and preliminaries re-
lated to the unified representation of configurational (material) and deformational (spatial)
motions in terms of an absolute reference configuration. A generic balance law is estab-
lished in Section 3, whereby ”configurational flux” across the boundary is allowed, and it
is applied to the mechanical dissipation inequality. In Section 4, we establish the perti-
nent dissipation functional due to imposed configurational changes while assuming rather
general constitutive response based on the presence of internal variables in the free energy.
In Section 5, we define generalized configurational forces from the ”total variation of the
global dissipation”, which is the main novel result of the paper. This result is applied,
and further specified, in Section 6 to a material singular surface. Explicit computational
results are given in Section 7 for a non-homogeneous plate with dissimilar elastic-plastic
material properties. Finally, conclusions and an outlook to future developments are given
in Section 8.

2. Representation of configurational and deformational motions

2.1. Preliminaries

We first note that the spatial (deformational or direct) motion problem (SMP) is ex-
pressed in terms of a spatial motion map x = ϕ(X, t), BX 7→ Bx(t), such that the reference
position of the material particles, X, in the fixed (time-invariant) material configuration
BX, are mapped onto the deformed position, x, in the spatial configuration Bx(t). It is
emphasized that BX = Bx(0) is the actual configuration of the body at t = 0 in the classical
setting.

In this paper, we generalize the classical view of motion slightly, cf. Figure 1, since the
material configuration is allowed to change with time in the sense that the boundary ∂BX

of the body BX may change with time. It is important to note that this case also embodies
the case of an evolving internal singular surface, since it is possible to view the two parts
separated by the singular surface as changing configurations. It is then convenient to take
the view that both the ”undeformed” (material) and ”deformed” (spatial) configurations

3
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X

BX(t)

ϕ(X , t)

F
x

Bx(t)

f̌ F̂

ξ

Bξ fixed

Φ̌(ξ, t) ϕ̂(ξ, t)

F̂ = F · f̌

Figure 1: Spatial (current) configuration, Bx(t), material configuration, BX(t), and absolute (fixed) config-
uration, Bξ.

will undergo time-dependent changes with respect to an absolute (fixed, time-invariant)
configuration Bξ. We may then introduce the map X = Φ̌(ξ, t) for the time-dependent
”motion” of BX(t) w.r.t. Bξ, and we introduce the absolute spatial motion map x = ϕ̂(ξ, t)
for the time-dependent motion (including deformation) of Bx(t) w.r.t. Bξ. It is clear

that ϕ̂(ξ, t),Bξ 7→ Bx(t), represents the composite map ϕ̂(ξ, t)
def
= (ϕ ◦ Φ̌)(ξ, t). We may

introduce the convenient assumption that Bξ = BX(0) = Bx(0).
The gradients corresponding to the introduced mappings (see also Figure 1) are the

spatial motion gradient F
def
= ϕ⊗∇X, the absolute spatial motion gradient F̂

def
= ϕ̂⊗∇ξ,

and the absolute material motion gradient f̌
def
= Φ̌ ⊗ ∇ξ

2. Upon using the chain rule, we

obtain the relation F̂ = F · f̌ . We shall also frequently use the determinant ǰ = detf̌ ,
which is relevant both for the volume mapping3 dVX = ǰdVξ and for the area mapping

dSX = ǰ

√

N ξ · f̌
−1

· f̌
−T

· N ξ dSξ when the computational domain is changed from BX to
Bξ.

2.2. Absolute and material time differentiation

We shall introduce absolute and material time derivatives of a field f , parametrized in
BX or Bξ, as follows:

∆tf
def
= ∂tf |ξ, Dtf

def
= ∂tf |X (1)

2The gradient vectors ∇ξ and ∇X refer to coordinates in Bξ and BX, respectively.
3N ξ is the unit normal vector on ∂Bξ resulting from a pullback of the unit normal N(= NX) from

∂BX.
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where ∂t[•]
def
= ∂[•]/∂t denotes the ordinary partial time derivative. In particular, the

material velocity, v, the absolute velocity, ẋ, and the (absolute) configurational rate, Ẋ,
are defined as

v
def
= Dtx = ∂tϕ(X, t), ẋ

def
= ∆tx = ∂tϕ̂(ξ, t), Ẋ

def
= ∆tX = ∂tΦ̌(ξ, t) (2)

However, using the chain rule to differentiate the composite function ϕ̂(ξ, t)
def
= (ϕ◦Φ̌)(ξ, t),

we obtain the relation
v = ẋ − F · Ẋ (3)

where the definitions in (1) were used.
We shall later make use of the absolute and material time derivatives of a (tensor-

valued) operator field y(X(ξ, t),x(ξ, t), α1(ξ, t), α2(ξ, t), . . . , t) or, for the sake of brevity,
y(X,x, α, t)45. Let us first consider a volume-specific field, y(•, t) for X ∈ BX(t), for which
the relation between the absolute and material time derivatives can be computed as

Dty(•, t) = ∆ty(•, t) − [y(•, t) ⊗ ∇X] · Ẋ (4)

The total and material time derivatives of a few selected fields, f̌ (X) and ǰ(X), are given
as follows:

∆tf̌ = [Ẋ ⊗ ∇X] · f̌ , ∆tǰ = ǰẊ · ∇X (5)

In particular, we obtain

∆t(dVX) = ǰẊ · ∇X dVξ = Ẋ · ∇X dVX (6)

We may also compute the absolute and material time derivatives of F (X,x) as

∆tF = −F · [Ẋ ⊗ ∇X] + ẋ ⊗ ∇X (7)

DtF = v ⊗ ∇X = −[F · Ẋ ] ⊗ ∇X + ẋ ⊗ ∇X. (8)

Next, we consider a surface-specific field, ŷ(•, t) for X ∈ ∂BX(t), for which the absolute
time-derivative is given as for the volume-specific field. The reason is that ∂Bξ is fixed
(stationary). However, the relation between the absolute and surface-specific material
time-derivatives is given as

D̂tŷ(•, t)
def
= ∆tŷ(•, t) − [ŷ(•, t) ⊗ ∇̂X] · Ẋ (9)

where we introduced the surface gradient operator ∇̂X
def
= ∇X · Î with the surface-specific

identity tensor Î
def
= I − N ⊗N . We may combine the relations (4) and (9) to obtain the

useful result
D̂tŷ(•, t) = Dtŷ(•, t) + [ŷ(•, t) ⊗ ∇X] · N ⊗ Ẋ · N (10)

4An example is the deformation gradient F (X, x) = x ⊗ ∇X.
5The column vector α contains the set of fields αi, which may have different tensorial character.
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for Ẋ ∈ ∂BX. This relation is used in the Appendix to establish the socalled ”tangent
problem”.

Corresponding to (6), we obtain

∆t(dSX) = ǰ

√

N ξ · f̌
−1

· f̌
−T

· N ξ Ẋ · ∇̂X dSξ = Ẋ · ∇̂X dSX (11)

2.3. Conservation laws

2.3.1. Time-derivative of volume integral

Subsequently we shall establish the time derivative of suitably defined conservation
quantities. To this end, suppose that fX(X,x, α, t), for X ∈ BX(t), is a volume-specific
quantity. Now, consider a typical conservation quantity F

F
def
=

∫

BX

fX dVX (12)

The time-derivative of F , for time-dependent BX, is then given as

d

dt
F =

∫

BX

[

∆tfX + fXẊ · ∇X

]

dVX

=

∫

BX

[

DtfX +
[

fXẊ
]

· ∇X

]

dVX =

∫

BX

DtfX dVX +

∫

∂BX

fXẊ · N dSX (13)

In order to derive (13), we first performed a pull-back of the integration domain from
the time-dependent BX(t)6 to Bξ, while using the relation dVX = ǰdVξ with the Jacobian
(volume ratio) ǰ = det(f̌), then used the expression for ∆t(dVX) from (6) and, finally,
pushed forward to BX. The expression in (13) is clearly analogous to the classical Reynolds’
transport theorem, that is commonly established to express the material time derivative
of an integral on the spatial domain Bx.

2.3.2. Time-derivative of surface integral

It is of interest to consider a surface-specific quantity f̂X(X,x, α, t), for X ∈ ∂BX(t),
and the corresponding extensive quantity

F̂
def
=

∫

∂BX

f̂X dSX (14)

The time-derivative of F̂ , for time-dependent ∂BX, is given as

d

dt
F̂ =

∫

∂BX

[

∆tf̂X + f̂XẊ · ∇̂X

]

dSX

=

∫

∂BX

[

D̂tf̂X +
[

f̂XẊ
]

· ∇̂X

]

dSX (15)

6Henceforth, the explicit dependence on time of BX is dropped for brevity of notation.
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∂B
(1)
X

∂B
(2)
X

CX

M̂
(2)

M̂
(1)

M̂
(2)

M̂
(1)

∂B
(1)
X ∂B

(2)
X

Figure 2: Finite body whose material (reference) configuration occupies the volume, BX = B
(1)
X ∪ B

(2)
X with

boundary surface ∂BX = ∂B
(1)
X ∪ ∂B

(2)
X . The (open) surface parts ∂B

(1)
X and ∂B

(2)
X are joined along the

curve CX.

where we used the definition of D̂t in (9), and where we, once again, used the surface-
specific gradient operator ∇̂X (as defined above in terms of the surface-specific identity

tensor Î
def
= I −N ⊗N). In order to derive (15), we first performed a pull-back of ∂BX to

∂Bξ, while using the relation in (11).
The divergence theorem for surfaces may be used in order to transform the last term

of the integrand in (15): We then consider the situation that ∂BX = ∂B
(1)
X ∪ ∂B

(2)
X is non-

smooth and can be decomposed into the two smooth parts ∂B
(1)
X and ∂B

(2)
X , joined along

the common curve CX, as shown in Figure 2. For each open surface ∂B
(i)
X , i = 1, 2, we may

apply the divergence theorem for surfaces to obtain
∫

∂B
(i)
X

[

f̂XẊ
]

· ∇̂X dSX =

∫

CX

f̂XẊ · M̂
(i)

dLX −

∫

∂B
(i)
X

kf̂XẊ · N dSX, i = 1, 2 (16)

where the unit vector M̂
(i)

is normal to N on ∂B
(i)
X and the tangent of CX. Moreover, k =

−N ·∇̂X is the total curvature of ∂BX at any regular point. Several useful results pertaining
to configurational changes on surfaces, including (16), can be found in Steinmann (2008).

We shall now assume that Ẋ is continuous across CX, whereas f̂X may be discontinuous
across CX. Upon adding the two results in (16) pertinent to ∂B

(1)
X and ∂B

(2)
X , we obtain

∫

∂BX

[

f̂XẊ
]

· ∇̂X dSX =

∫

CX

[

f̂
(1)
X M̂

(1)
+ f̂

(2)
X M̂

(2)
]

· Ẋ dLX −

∫

∂BX

kf̂XẊ · N dSX (17)

Remark: If the closed surface ∂BX is smooth across CX, i.e. if M̂
(1)

+ M̂
(2)

= 0, and
f̂X is continuous, i.e. f̂

(1)
X = f̂

(2)
X , we obtain the identity

∫

∂BX

[

f̂XẊ
]

· ∇̂X dSX = −

∫

∂BX

kf̂XẊ · N dSX (18)

�
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As a generalization, we may compose the closed surface into several multiple smooth
parts to obtain
∫

∂BX

[

f̂XẊ
]

·∇̂X dSX =

∫

∂2BX

[

f̂
(1)
X M̂

(1)
+ f̂

(2)
X M̂

(2)
]

· Ẋ dLX −

∫

∂B̂X

kf̂XẊ ·N dSX (19)

where ∂2BX is the union of all curves defining ”edges” on ∂BX. Finally, using the relation
in (19) we may reformulate (15) as

d

dt
F̂ =

∫

∂BX

[

∆tf̂X + f̂XẊ · ∇̂X

]

dSX

=

∫

∂BX

[

D̂tf̂X − kf̂XẊ · N
]

dSX +

∫

∂2BX

[

f̂
(1)
X M̂

(1)
+ f̂

(2)
X M̂

(2)
]

· Ẋ dLX (20)

3. Thermodynamic relations in the material format

3.1. The generic balance law

It is convenient to establish a generic balance law for a given body occupying the current
material domain BX with boundary ∂BX (and unit normal N), as shown schematically in
Figure 2.

d

dt
F = GGEN + GTRAN + FCONF (21)

where GGEN is the (prescribed) internally generated source, GTRAN is the standard (pre-
scribed) ”material flux”, or transfer, through the boundary if the domain BX is held fixed,
whereas FCONF is the non-conventional ”configurational flux” across the boundary due to
the configurational motion of BX

7. These source terms are defined in terms of volume- and
surface-specific quantities as follows:

GGEN =

∫

BX

gGEN
X dVX, GTRAN =

∫

∂BX

gTRAN
X dSX, FCONF =

∫

∂BX

fCONF
X Ẋ · N dSX

(22)
Within a smooth part of BX, the ”configurational flux” fCONF

X coincides with the convection
of fX due to the configurational motion, thus providing the basis for recovering the classical
balance law for fX. At a free boundary of a finite body ΩX, it is necessary that fCONF

X

is assigned a constitutively prescribed quantity f̄CONF
X (that may be related to surface

growth).
Subsequently, we apply (21) to the simplest situation of (in)balance of mechanical

dissipation, whereby we restrict to quasistatic motion (i.e. dynamic forces are ignored)
and isothermal conditions. Moreover, we make the classical assumption that mass is con-
served. For a more comprehensive discussion of the different balance laws pertinent to
mass, momentum, energy and entropy, for the general situation of dynamic motion and
non-isothermal conditions, the reader is referred to Runesson et al. (2008).

7This represents an alternative (but in principle equivalent) formulation of the ”observer-objective”
paradigm by Gurtin (2000).
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3.2. Global and localized dissipation inequality

The global free energy is given as

Ψ
def
=

∫

BX

ψX dVX (23)

where ψX is the volume-specific free energy. The configurational flux of free energy is thus
given as

ΨCONF =

∫

∂BX

ψCONF
X Ẋ · N dSX (24)

Moreover, the total mechanical power supply, W, is given as

W =

∫

BX

bX · v dVX +

∫

∂BX

tX · v dSX =

∫

BX

P : DtF dVX (25)

In order to obtain the last expression in (25), the momentum balance P · ∇X + bX = 0,
was used, where P is the 1st Piola-Kirchoff stress, and bX is the volume-specific load.

It is proposed that the total mechanical dissipation is expressed as

D = W −
d

dt
Ψ + ΨCONF ≥ 0 (26)

In the special case of isothermal elastic material response (volume-specific free energy
ψX(F ,X)), and no configurational flux (ψCONF

X = 0), the expression in (26) was proposed
by Guerses and Miehe (2008) in the context of crack propagation.

In order to obtain the localized form of (26), we consider an arbitrary domain
BX that is embedded totally within a finite body. In such a case ψCONF

X = ψX

and we obtain the standard expression

dX = P : DtF − DtψX ≥ 0 (27)

where dX is the volume-specific mechanical dissipation.
Next, we introduce the parametrization of the free energy density, ψX(F , θ, k; X), per-

tinent to a dissipative material response, where k represents a set of internal variables. It
is noted that a possible explicit dependence of X is included as argument in ψ (represent-
ing inhomogeneous variation of material parameters in BX). Upon evaluating the material
time derivative DtψX, and using standard arguments of the Colemann-Noll type, we
obtain the constitutive state equation

P =
∂ψX

∂F
(28)

such that (24) reduces to

dX = K ⋆Dtk ≥ 0 with K
def
= −

∂ψX

∂k
(29)
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where we introduced dissipative stresses K that are energy-conjugated to the internal
variables k8.

4. Dissipation functional for changing material configuration

4.1. Preliminaries

We shall consider the global (mechanical) dissipation inequality for a given finite body
occupying the current material domain ΩX with external boundary ∂ΩX. It is assumed
that the body undergoes configurational changes, expressed as Ẋ 6= 0, while it is subjected
to prescribed loading. For simplicity, we restrict to isothermal conditions henceforth.
The resulting thermodynamic process is then characterized by time-changes of all the
independent thermodynamic fields, F and k, since they are solutions of the pertinent
balance and state equations (equilibrium and constitutive equations) and thus depend on
the configurational motion X = Φ(ξ, t) in an implicit manner. As a result, the global
dissipation functional D depends, apart from Ẋ, potentially on the fields ẋ and k̇ in
the most general case of combined configurational and deformational motion for general
loading; hence we denote D(Ẋ, ẋ, k̇) the global dissipation functional.

Remark: For the SMP, involving the momentum equation, the boundary is subdi-
vided into parts with essential and natural boundary conditions for the spatial field x.
The generic notion of these (Dirichlet and Neumann) boundary parts are ∂ΩX,D (with pre-
scribed placements) and ∂ΩX,N (with prescribed tractions). It is important to note that the
boundary in the expressions for W in (25) is the total one, i.e. ∂ΩX = ∂ΩX,D ∪ ∂ΩX,N. For
example, both a prescribed and a ”support” traction will contribute to W in the general
situation when the support is defined by prescribed non-zero configurational rate. �

Below, we present explicit forms of D(Ẋ, ẋ, k̇). As a preliminary for these develop-
ments, we recall the equilibrium equation rephrased as

−P · ∇X = bX in ΩX, P · N
def
= tX on ∂ΩX (30)

We shall also use the standard weak format9 of the equilibrium equation (30)

∫

ΩX

[P : [δx ⊗ ∇X] − bX · δx] dVX −

∫

∂ΩX

tX · δx dSX = 0, ∀δx ∈ V (31)

where the virtual (placements) δx ∈ V must be sufficiently smooth to allow for the gradient
δx ⊗ ∇X to be meaningful. We remark that no specific assumption has been made as to
the value of δx on the Dirichlet boundary ∂ΩX,D.

8The ”scalar star product” has the appropriate interpretation depending on the tensorial order of
variables in the column vector k.

9To simplify matters, it is assumed in this Section that sufficient regularity for using the divergence
theorem is present in the whole ΩX. In the subsequent application to material interfaces, this requirement
does not necessarily hold; however, it can be circumvented as shown.

10



M
ANUSCRIP

T

 

ACCEPTE
D

ARTICLE IN PRESS

4.2. Basic formats of the dissipation functional – Split in configurational and material
parts

It was shown in Runesson et al. (2008) that (i) the dissipation functional D does not
depend explicitly on ẋ, i.e. the parametrization D(Ẋ, k̇) suffices, (ii) it is natural to split
D(Ẋ, k̇) as

D(Ẋ, k̇) = DCONF(Ẋ) + DMAT(k̇) (32)

where DCONF and DMAT are the configurational and material dissipation function, respec-
tively.

More specifically, it was shown in Runesson et al. (2008) that two possible formats of
DCONF, labelled (I) and (II), are those defined as

DCONF(Ẋ) = DCONF
I (Ẋ)

def
=

∫

ΩX

[

−Σ :
[

Ẋ ⊗ ∇X

]

+ BI · Ẋ
]

dVX +

∫

∂ΩX

T I · Ẋ dSX (33)

= DCONF
II (Ẋ)

def
=

∫

ΩX

[

−BII · Ẋ
]

dVX +

∫

∂ΩX

[

−T II · Ẋ
]

dSX (34)

where we introduced the following notation: Σ is the ”quasi-static” Eshelby (energy-
momentum) tensor, associated with ψX, which is defined as

Σ
def
= ψXI − F T ·

∂ψX

∂F
= ψXI − F T · P , (35)

BI,BII are configurational volume forces, whereas T I,T II are configurational boundary
tractions, that are defined as

BI = −
∂ψX

∂X
|F,k − F T · bX, T I = −F T · tX + ψCONF

X N (36)

BII = K ⋆ [k ⊗ ∇X] , T II =
[

ψX − ψCONF
X

]

N (37)

Moreover, DMAT is given as

DMAT(k̇)
def
=

∫

ΩX

K ⋆ k̇ dVX (38)

Once again, it must be noted that the expressions DCONF
I and DCONF

II in (33) and
(34) are but two possible expressions for the purely configurational part of the dissipa-
tion. Moreover, they are completely equivalent provided certain regularity requirements
are satisfied, e.g. Ẋ is sufficiently regular.

Remark: It turns out that it is often more useful to introduce the alternative split of
D(Ẋ, k̇) as compared to (32):

D(Ẋ, k̇) = D̄CONF(Ẋ) + D̄MAT(Ẋ, k̇) (39)
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where we introduced

D̄CONF(Ẋ) =

∫

∂ΩX

[

−T II · Ẋ
]

dSX = −

∫

∂ΩX

[

ψX − ψCONF
X

]

N · Ẋ dSX (40)

and

D̄MAT(Ẋ, k̇) =

∫

ΩX

K ⋆Dtk dVX =

∫

ΩX

K ⋆
[

k̇ − [k ⊗ ∇X] · Ẋ
]

dVX (41)

It appears readily that D̄MAT(Ẋ, k̇) represents precisely the ordinary material dissipation.
Moreover, if we introduce the condition of vanishing net dissipation across the external
boundary, i.e. N · Ẋ = 0 on ∂ΩX, then it follows that D̄CONF(Ẋ) = 0 independent of
the nature of loading, boundary conditions and possible material inhomogeneity in ΩX.
In such a case the mapping X(ξ, t) represents merely a coordinate transformation under
which the result D̄CONF(Ẋ) = 0 is invariant, cf. Noether’s theorem, Noether (1918). �

4.3. Material equilibrium - Other formats of dissipation

It is useful to establish ”configurational volume loads”, B, and ”configurational sur-
face tractions”, T , that equilibrate the pertinent Eshelby stress via the ”configurational
equilibrium equations”

−Σ · ∇X = B in ΩX, Σ · N = T on ∂ΩX (42)

Upon direct differentiation of Σ, as defined in (35), we obtain

B = −
∂ψX

∂X
|F,k − F T · bX +K ⋆ [k ⊗ ∇X] (43)

where we used the strong format of (spatial) equilibrium for P in (30). We also obtain the
material traction as

T = Σ · N = ψXN − F T · tX (44)

Remark: B = BI + BII and T = T I + T II.
Remark: Since the ”equilibrium equation” (42)1 is a derived identity, it does not add

any new physical information.
It is useful to establish the weak format of the configurational equilibrium equations

in (42)1. To this end we consider ”virtual velocities” δẊ ∈ X and recast (42)1 in the
variational format

∫

Ω′

X

[

Σ : [δẊ ⊗ ∇X] − B · δẊ
]

dVX −

∫

∂Ω′

X

T · δẊ dSX = 0, ∀δẊ ∈ X (45)

where the virtual velocities δẊ ∈ X must be sufficiently smooth to allow for the gradient
δẊ ⊗ ∇X to be meaningful. We remark that no specific assumption has been made as to
the value of δẊ on the Dirichlet boundary ∂ΩX,D.
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5. Configurational-induced global dissipation – Generalized configurational forces

5.1. Total variation of the rate of global dissipation due to configurational changes

Henceforth, we shall restrict our attention to the situation that a physical process is
manifested by fields Dtx and Dtk that are brought about solely by configurational changes.
In other words, for a given field Ẋ(ξ, t), it is possible to solve for all other fields, ẋ{Ẋ}
and k̇{Ẋ}, as (implicit) functions of Ẋ from the momentum equation and the pertinent
constitutive relations. It is noted that the actual physical problem involves Ẋ(ξ, t) as part
of the total solution, which requires a constitutive relation for Ẋ in terms of a suitably
defined field of ”driving forces”. However, these driving forces will be of such nature that
they can only be determined when the solutions ẋ{Ẋ} and k̇{Ẋ} are known; hence, the
problem of computing the driving forces is indeed nonlinear and must be solved by some
sort of iterative procedure in practice.

Next, we shall be concerned with the issue of defining the field of thermodynamically
consistent generalized configurational forces that are energy-conjugated to a given differen-
tial change (variation) of the field Ẋ, henceforth denoted dẊ, in the sense that they repre-

sent the total variation of D with respect to Ẋ. The total differential of D
def
= D(Ẋ, k̇{Ẋ})

can be expressed as

dẊD = D′(Ẋ, k̇{Ẋ}; dẊ)

=
(

D̄CONF
)′

Ẋ
(Ẋ; dẊ) +

(

D̄MAT
)′

Ẋ
(Ẋ, k̇; dẊ) +

(

D̄MAT
)′

k̇
(Ẋ, k̇; k̇

′

{Ẋ; dẊ})

= D̄CONF( dẊ) + D̄MAT( dẊ, k̇
′

{Ẋ; dẊ}) (46)

where it was used that both D̄CONF and D̄MAT are linear in their arguments (Ẋ and Ẋ,
k̇, respectively). In order to carry out the total variation, it is necessary to compute the
sensitivity fields:

dẋ = ẋ′{Ẋ; dẊ}, dk̇ = k̇
′

{Ẋ; dẊ} (47)

which are directional (or Gateaux) derivatives in the classical sense10. The sensitivity fields

ẋ′ and k̇
′

must satisfy global tangent (or sensitivity) relations, which are derivable from
linearization of the equilibrium equation together with the constitutive rate equations for

k̇. It is emphasized that the sensitivity fields, say k̇
′

{Ẋ; dẊ}, are linear in dẊ; however,
they represent ”spatially global” relations in ΩX. This means, in particular, that the
configurational dissipation is not necessarily confined to the (possibly small) part of ΩX

where dẊ 6= 0 has been assumed.

Remark: Although it is only k̇
′

{Ẋ; dẊ} that appears in D′, it is still necessary in the

general case to solve for both ẋ′{Ẋ; dẊ} and k̇
′

{Ẋ; dẊ} in a truly coupled fashion via
the sensitivity problem for a given field dẊ. �

10A more explicit definition of sensitivities is possible if we define the ”unit sensitivity” fields ẋ′(i),
i = 1, 2, ..NDIM, via the identity dẋ =

∑NDIM
i=1 ẋ′(i) d(Ẋi).
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Remark: In practice, it is sometimes more convenient to compute the sensitivities in
the material time derivatives. In order to link the relevant quantities, we consider a generic
field z and obtain

ż = Dtz + [z ⊗ ∇X] · Ẋ ⇒ ż′{•; dẊ} = (Dtz)
′{•; dẊ} + [z ⊗ ∇X] · dẊ (48)

For example, we note that ẋ′{•; dẊ} = v′{•; dẊ} + F · dẊ. �

Next, we shall assume that dẊ can be parametrized as follows:

dẊ =

NW
∑

i=1

W i dȧi (49)

where W i(X), i = 1, 2, . . . , NW, are ”weight functions” (or shape functions), the choice of
which represents a model assumption in general. Upon inserting (49) into (46), we obtain
the representation

dẊD = GT dȧ (50)

where G is the generalized configurational force that is energy-conjugated to ȧ. Using (46),
we may split G as

G = GCONF + GMAT (51)

where the components of GCONF and GMAT are given as

GCONF
i = D̄CONF(W i), GMAT

i = D̄MAT(W i, k̇
′

{Ẋ; W i}) (52)

5.2. Constitutive relation for rate-independent plasticity

We shall consider rate-independent material response, typical for classical plasticity. In
such a case k represents the plastic strain, ”hardening strain”, etc. The standard material
format of the rate equations for such material response then reads 11

Dtk = λg, λ =
1

h
〈µ : DtF 〉, k(X, 0) = 0 (53)

where 〈[•]〉
def
= 1

2
(|[•]| + [•]) is the McCauley bracket; hence, it is noted that λ is a first

order homogeneous (but nonlinear) function 12 in DtF . This specific structure reflects
the loading/unloading conditions expressed in terms of the sign of the ”loading indicator”
function µ : DtF in a ”strain-controlled” format” such that plastic loading, (L), is signalled
by µ : DtF > 0, whereas elastic unloading, (U), is signalled by µ : DtF ≤ 0. These cases
are thus defined by

λ =
1

h
µ : DtF (L), λ = 0 (U) (54)

11To simplify notation, it is assumed that the ”flow rule” is regular (corresponding to a smooth flow
potential).

12A function f(x) is first order homogeneous if, for α > 0, f(αx) = αf(x).

14



M
ANUSCRIP

T

 

ACCEPTE
D

ARTICLE IN PRESS

As to the explicit definition of the state functions 13 g, h and µ, they are model dependent.
(A prototype model of plasticity based on linearized elastic relations will be employed in
conjunction with the motion of a singular material surface, see below.)

The appropriate continuum tangent relation for P in terms of F and k can now be
written as

DtP = L
e : DtF + M ⋆Dtk (55)

where we introduced the tangent operators

L
e def

=
∂P

∂F
|k,X, M

def
=
∂P

∂k
|F,X (56)

In particular, L
e is the elastic continuum tangent stiffness (CTS) tensor. Upon inserting

(53)1 into (55), we obtain

DtP = L
ep : DtF (L), DtP = L

e : DtF (U) (57)

where L
ep is the elastic-plastic continuum tangent stiffness (CTS) tensor, defined as

L
ep def

= L
e +

1

h
M ⋆ gµ (58)

We note that the CTS-tensor takes two distinct expressions depending on whether plastic
loading (L) or elastic unloading (U) is at hand at a given position X ∈ ΩX. Hence, Dtk
and DtP are nonlinear functions in DtF .

Now, we shall take the total variation of DtP with respect to variation of Ẋ to obtain
the sensitivity relation

(DtP )′ = L
e : (DtF )′ + M ⋆ (Dtk)

′ (59)

From (53)1 we obtain

(Dtk)
′ = RT : (DtF )′ with RT

def
=

1

h

〈µ : DtF 〉

|µ : DtF |
g ⊗ µ (60)

which (i) depends on the current value of v (or ẋ and Ẋ) via the relation in (9), (ii)
is linear in the sensitivity (DtF )′. The expression in (60) is well-defined for all solutions
except at neutral loading defined by µ : DtF = 0. In particular, it can be evaluated for
the situation Ẋ = 0, corresponding to vanishing configurational motion.

Upon combining (59,60), we obtain the desired relation

(DtP )′ = LT : (DtF )′ with LT
def
= L

e +
1

h

〈µ : DtF 〉

|µ : DtF |
M ⋆ g ⊗ µ (61)

where LT is the tangent stiffness tensor that depends on DtF and which holds for both (L)
and (U).

13E.g. g(F [X, x], k)
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Remark: For a more general rate-independent relation than (53) of the generic form

Dtk = f(DtF ) (62)

where f is 1st order homogeneous in its argument, we may generalize (60) to

(Dtk)
′ = f ′(DtF ; (DtF )′) (63)

where f ′(•; (•)′) represents the directional derivative. �

5.3. Basic format of the tangent problem for quasistatic equilibrium

5.3.1. Preliminaries

Consider the basic problem of a finite body with Dirichlet and Neumann boundary

conditions x = x̄ on ∂ΩX,D and tX
def
= P · N = t̄X on ∂ΩX,N = ∂ΩX \ ∂ΩX,D. Moreover,

we assume the constitutive state relation P (F , k; X). The weak format of the equilibrium
equation can then be written in standard fashion:

a(x, k; δx) = l(δx), ∀δx ∈ V
0 (64)

where

a(x, k; δx)
def
=

∫

ΩX

[δx ⊗ ∇X] : P (F , k; X) dVX (65)

l(δx)
def
=

∫

ΩX

δx · bX dVX +

∫

∂ΩX,N

δx · tX dSX (66)

The SMP is then to find x ∈ V and k ∈ K that solve (64) together with the pertinent
evolution equation for k, as defined in (53).

Since ΩX is not time-invariant at configurational changes, the test functions δx ∈ V
0

are time-dependent in the parametrization δx(X , t); however, this relation is constrained
by the condition that δx(X, t) is stationary in the absolute configuration, i.e.

δx(X(ξ, t), t)
def
= δx(ξ, t) = δx(ξ) (67)

In particular, this means that

∆tδx = 0, Dtδx = − [δx ⊗ ∇X] · Ẋ (68)

∆t [δx ⊗ ∇X] = − [δx ⊗ ∇X] ·
[

Ẋ ⊗ ∇X

]

, Dt [δx ⊗ ∇X] = [Dtδx] ⊗ ∇X (69)

Our purpose is to first solve for the sensitivity field ẋ′{•, dẊ} ∈ V
0 from the tangent

problem

dẊ

[

d

dt
a(•; δx) −

d

dt
l(δx)

]

= 0, ∀δx ∈ V
0 (70)
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for given variations14 dẊ ∈ X
0, and then to compute k̇

′

{•, dẊ}.
Remark: The format for the tangent problem based on ẋ′{•, dẊ} as the primary un-

known field is considered henceforth as the ”operational” format, since each field ẋ′{•, dẊ} ∈
V

0 is continuous across any singular surface where the state variables (such as F ) may be
discontinuous. In such a case, v′{•, dẊ} = ẋ′{•, dẊ} − F · dẊ is discontinuous across
the singular surface, and it follows that v′{•, dẊ} /∈ V

0, as shown in Figure 3. Neverthe-
less, the special situation that the solution is smooth, i.e. v′{•, dẊ} ∈ V

0, is of particular
relevance. Hence, both situations will be discussed subsequently. �

L−

X L+
X

Xsing

X

ẋ′(X)

v′(X)
ẋ′, v′

Figure 3: Illustration of the general situation that ẋ′ is continuous while v′ is discontinuous across Γsing
X .

5.3.2. Operational format (based on ẋ)

We shall first consider the general case that v′ is only p.w. smooth in ΩX. In such a
case ẋ′ ∈ V

0 is solved from the tangent relation

aT(•; δx, ẋ′) = l
(ẋ)
T (•; δx, dẊ), ∀δx ∈ V

0 (71)

where the pertinent tangent forms are defined as15

aT(•; δx, ẋ′)
def
=

∫

ΩX

[δx ⊗ ∇X] : LT : [ẋ′ ⊗ ∇X] dVX (72)

l
(ẋ)
T (•; δx, dẊ)

def
=

∫

ΩX

[δx ⊗ ∇X] :
[

P :
[

dẊ ⊗ ∇X

]

+ LT :
[

F ·
[

dẊ ⊗ ∇X

]]

+ rX · dẊ − bX ⊗ dẊ
]

dVX

+

∫

∂ΩX

[

−
[

δx ⊗ ∇̂X

]

:
[

tX ⊗ dẊ
]

+ [δx · bX − k δx · tX] dẊ · N
]

dSX

+

∫

CX

δx ·
[

t
(1)
X ⊗ M̂

(1)
+ t

(2)
X ⊗ M̂

(2)
]

· dẊ dLX (73)

14The required regularity of X
0 depends on the chosen format; here, we assume that dẊ is continuous

and that dẊ = 0 on ∂ΩX,D for any dẊ ∈ X
0.

15Henceforth, in order to retain maximal generality we do not distinguish explicitly between the Dirichlet
and Neumann boundary parts in the various surface integrals.
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The continuum tangent stiffness tensor LT, defined by the relation (DtP )′ = LT : (DtF )′,

was defined in (61). In order to define the ”loading” l
(ẋ)
T of the tangent problem, we

introduced the 4th order tensor P (which has generally minor non-symmetry), and the 3rd
order tensor rX, defined as follows:

P
def
= P⊗I − P ⊗ I (74)

rX = ∆LT : [F ⊗ ∇X] − M ⋆ [k ⊗ ∇X] −
∂P

∂X
|F,k (75)

where ∆LT
def
= LT − L

e. Details of the derivation are given in the Appendix.

5.3.3. Non-operational format (based on v)

Next, we consider the special case that v′ is smooth in ΩX. In such a case v′ ∈ V
0 can

be solved from the tangent relation

aT(•; δx,v′) = l
(v)
T (•; δx, dẊ), ∀δx ∈ V

0 (76)

where the tangent form aT was defined in (72), whereas l
(v)
T is given as

l
(v)
T (•; δx, dẊ)

def
=

∫

∂ΩX

[− [δx ⊗ ∇X] : P + δx · bX − k δx · tX + [δx ⊗ ∇X] : [tX ⊗ N ]] dẊ · N dSX

+

∫

CX

δx ·
[

t
(1)
X ⊗ M̂

(1)
+ t

(2)
X ⊗ M̂

(2)
]

· dẊ dLX (77)

Details of the derivation are given in the Appendix.

6. Application to moving material (singular) interface

6.1. Problem definition

Consider the situation when an embedded (open) singular surface Γsing
X , across which

the material properties may be discontinuous. The surface Γsing
X , with boundary curve

CX, can move through the material domain ΩX with (closed) external boundary ∂ΩX,
which is assumed to be sufficiently smooth. In fact, it suffices that ∂ΩX is smooth where
dẊ 6= 0. The domain ΩX is split into two parts, Ω−

X and Ω+
X (ΩX = Ω−

X ∪ Ω+
X and

∂ΩX = ∂Ω−

X ∪ ∂Ω+
X), as shown in Figure 4, whereby the boundary of the two parts are

given as ∂(Ω−

X) = ∂Ω−

X ∪ Γsing
X and ∂(Ω+

X) = ∂Ω+
X ∪ Γsing

X , respectively. Since the state
variables, such as F and k, are generally discontinuous across Γsing

X , the volume-specific
free energy ψX is also discontinuous across Γsing

X .
The normal on Γsing

X pointing into Ω+
X is denoted N−(= N), as shown in Figure 4;

hence, we use the notation N+(= −N ) for the normal in the opposite direction. The

cotangents M̂
−

and M̂
+
, located on the curve CX, are normal to CX and lie in the tangent

plane of ∂Ω−

X and ∂Ω+
X , respectively. Hence, M̂

+
+ M̂

−

6= 0 in general. The cotangent

M̂
tang

, which is also located on and directed normal to CX, lies in the tangent plane of
Γsing

X . It is thus unique on both sides of the interface.
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Ω−

X

CX

∂Ω−

X

M̂
sing

M̂
−

t−X

N−

Γsing
X

Γsing
XCX

t+
X

N+

M̂
+

M̂
sing

Ω+
X

Figure 4: Moving material (singular) interface Γsing
X splitting the domain ΩX in the parts Ω−

X and Ω+
X.

Other notation is explained in the main text.

6.2. Explicit (classical) configurational forces along material interface

The explicit expression for DCONF was discussed in some detail in Runesson et al.
(2008). Upon introducing the assumption of vanishing net dissipation across the exterior
boundary, i.e. N · Ẋ = 0 on ∂ΩX, we obtain the classical representation

D̄CONF( dẊ) =

∫

Γsing
X

G
CONF · dẊ dSX, G

CONF def
= [|Σ|] · N (78)

where G
CONF is the explicitly localized (distributed) configurational ”traction” that ”lives”

on Γsing
X and, moreover, that represents the dissipation along Γsing

X .
Remark: Since the deformation gradient F can be discontinuous only in the normal

direction, N , across Γsing
X , it is possible to express G

CONF as

G
CONF = [|Σ|] · N = αN (79)

where α = [|ΨX|]−N · [|F T|] · 〈P 〉 ·N 16. Hence, the configurational dissipation along Γsing
X

is invariant (vanishes) for any choice of Ẋ s.t. Ẋ · N = 0 on ∂ΩX ∪ Γsing
X . �

6.3. Implicit (configurational-induced) configurational forces along interface – Tangent prob-
lem

6.3.1. Operational format of tangent problem

We shall use the fact that all fields are sufficiently smooth in the parts Ω−

X and Ω+
X,

whereby the tangent problem introduced in (71) applies to Ω−

X and Ω+
X separately. However,

although v′ is expected to be discontinuous across the singular surface Γsing
X (since F is

discontinuous in general), ẋ′ is still continuous across this surface. This means that the

16〈P 〉 denotes mean value, i.e. 〈P 〉 = 1
2 [P− + P +].
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operational format of the tangent problem for a discontinuity surface is conveniently based
on ẋ′ ∈ V

0 as the primary unknown field.
At the outset we shall choose dẊ continuous across Γsing

X . In order to simplify the
resulting expression as far as possible without loss of essential features, we shall also assume
that the external boundary ∂ΩX is smooth along CX. Referring to the notation introduced
in Figure 4, we then note the following identities relating to the singular surface Γsing

X :

M̂
+

+ M̂
−

= 0, t+
X + t−X = 0, k+ + k− = 0 (80)

Clearly, (80)1 represents the smoothness condition on ∂ΩX, (80)2 expresses the condition
that the physical tractions on each side of the interface Γsing

X equilibrate each other, whereas

the relation (80)3 follows from the identities ∇̂
−

X = ∇̂
+

X
def
= ∇̂X and −N+ = N− def

= N .
In addition, we shall introduce the assumption that the applied volume load bX and

surface load (traction) t̄X are continuous across CX, i.e. b−

X = b+
X and t̄

−

X = t̄
+
X on CX.

It is now possible to ”tie together” the tangent problems for Ω−

X and Ω+
X, as defined in

(71), upon simply adding the pertinent relations and using the ”continuity” conditions in
(80). We then obtain the tangent problem for the body with interface: Solve for ẋ′ ∈ V

0

from
aT(•; δx, ẋ′) = l

(ẋ)
T (•; δx, dẊ), ∀δx ∈ V

0 (81)

where aT(•; δx, ẋ′) is still given by (72), whereas l
(ẋ)
T (•; δx, dẊ) in (73) is now condensed

to

l
(ẋ)
T (•; δx, dẊ)

def
=

∫

ΩX

[δx ⊗ ∇X] :
[

P :
[

dẊ ⊗ ∇X

]

+ LT :
[

F ·
[

dẊ ⊗ ∇X

]]

+ rX · dẊ − bX ⊗ dẊ
]

dVX

+

∫

∂ΩX

[

−
[

δx ⊗ ∇̂X

]

:
[

tX ⊗ dẊ
]

+ [δx · bX − k δx · tX] dẊ · N
]

dSX(82)

An important special case is defined by the choice dẊ ·N = 0 and t̄X = 0 on the exterior
Neumann boundary part ∂ΩX,N. In such a case the boundary integral in (82) vanishes,
and we are left with the simpler expression

l
(ẋ)
T (•; δx, dẊ) =

∫

ΩX

[δx ⊗ ∇X] :
[

P :
[

dẊ ⊗ ∇X

]

+ LT :
[

F ·
[

dẊ ⊗ ∇X

]]

+ rX · dẊ − bX ⊗ dẊ
]

dVX (83)

In practice, the operational format is based on the parametrization in (49), whereby we
obtain

ẋ′{Ẋ; dẊ} =

Nw
∑

i=1

ẋ′{Ẋ; W i} dȧi =

Nw
∑

i=1

ẋ′

i dȧi (84)

Consequently, (81) is replaced by the set of problems: Solve for ẋ′

i ∈ V
0, i = 1, 2, . . . , Nw:

aT(•; δx, ẋ′

i) = l
(ẋ)
T (•; δx,W i), ∀δx ∈ V

0 (85)
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For known fields ẋ′

i, it is possible to compute the generalized configurational force compo-

nents (GMAT)i in a post-processing step: ẋ′

i → v′
i → (DtF )′i → (Dtk)

′
i → GMAT

i

def
= (GMAT)i

with

GMAT
i

def
=

∫

ΩX

K ⋆ (Dtk)
′

i dVX. (86)

Finally, we may define the ”localizable” (distributed) configurational force vector G
MAT

via the identity (least squares projection)

GMAT
i =

∫

Γsing
X

G
MAT · W i dSX (87)

This equation is solved approximately in practice using FE-discretization, whereby W i

are taken as the nodal basis functions along Γsing
X , and G

MAT is expanded in this basis (as
discussed below).

6.3.2. Issue of unique sensitivity field (tangent solution)

It is of considerable interest to note that the sensitivity field ẋ′ (or v′) are unique with
respect to the choice of the field dẊ in ΩX as long as the following conditions are satisfied:
(i) The normal component of dẊ is uniquely chosen on the external boundary ∂ΩX as
well as on the interface Γsing

X , (ii) dẊ is unique along CX.

In order to show this result, we consider two given fields dẊ
(1)

and dẊ
(2)

defined

on Ω−

X. Their difference is denoted dẊ
(1,2) def

= dẊ
(1)

− dẊ
(2)

, corresponding to the
sensitivity (v(1,2))′. Now, in view of (76), we conclude that (v(1,2))′ is the solution of the
tangent problem

aT(•; δx, (v(1,2))′) = l
(v)
T (•; δx, dẊ

(1,2)
), ∀δx ∈ V

0 (88)

where

l
(v)
T (•; δx, dẊ

(1,2)
)

def
=

∫

∂(Ω−

X)

[− [δx ⊗ ∇X] : P + δx · bX − k δx · tX

+ [δx ⊗ ∇X] : [tX ⊗ N ]] dẊ
(1,2)

· N dSX

+

∫

CX

δx ·
[

tX ⊗ M̂ + t−X ⊗ M̂
−
]

· dẊ
(1,2)

dLX (89)

However, if we impose the conditions (i) dẊ
(1,2)

· N = 0 on ∂(Ω−

X) and (ii) dẊ
(1,2)

= 0

along CX, which situation is illustrated in Figure 5, then it is obvious that l
(v)
T (•; δx, dẊ

(1,2)
) =

0. Hence, it is concluded that (v(1,2))′ = 0 in Ω−

X. Similarly, we may consider the part Ω+
X

and conclude that (v(1,2))′ = 0 in Ω+
X under the same assumptions. We have thus shown

that (v(1))′ = (v(2))′ = v′ is unique in the entire domain ΩX, from which it is concluded
that (DtF )′ is unique and, finally, (Dtk)

′ is unique (which will also be verified numerically
below).

In summary, we have shown that G
MAT will not be affected by the particular choice

of the variation dẊ in the entire domain ΩX as long as the conditions (i) and (ii) are
satisfied. That G

CONF is not affected by the choice of dẊ whatsoever is clear from (78).
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L−

X L+
X

Xsing dẊ(1,2)

X

dẊ(2)dẊ(1)

Ẋ

Figure 5: Two choices of dẊ which give the same field (Dtk)′ and, hence, identical values of G
MAT.

7. Numerical example: Plate with interface separating parts with dissimilar
material properties

7.1. Elastic-plastic model – Linearized format

We adopt a simple elastic-plastic model based on the von Mises yield criterion with
isotropic hardening. A linearization of the spatially objective large deformation formulation
is obtained by introducing the volume-specific free energy as

ψX (F , ǫp, k) = ψe
X (F , ǫp) + ψp

X(k) (90)

where the part ψe
X (F , ǫp) represents linear elasticity and is given as

ψe
X (F , ǫp) =

1

2
[F − F p (ǫp)] : E

e : [F − F p (ǫp)] (91)

with F p (ǫp)
def
= I + ǫp, and where ψp

X(k) is the ”plastic” (or rather hardening) free energy
corresponding to isotropic hardening and given as

ψp
X(k) =

1

2
Hk2 (92)

In (91), we introduced the constant ”small strain” stiffness tensor in standard fashion
representing isotropic linear elastic properties

E
e = 2GI

sym
dev +KI ⊗ I, I

sym
dev = I

sym −
1

3
I ⊗ I (93)

where G and K are the shear and bulk moduli, respectively. In (92), H is the constant
isotropic hardening modulus. Obviously, this model gives the thermodynamically consis-
tent stresses

P =
∂ψX

∂F
= E

e : [F − F p (ǫp)] (94)

σp = −
∂ψX

∂ǫp
= E

e : [F − F p (ǫp)] = P (95)

K = −
∂ψX

∂k
= −Hk (96)
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We may thus express the (local) volume-specific material rate of dissipation dX = K ⋆Dtk
according to (29) with the matrices k and K defined as

k
def
=

[

ǫp

k

]

, K
def
=

[

P

K

]

(97)

The von Mises yield criterion with isotropic hardening is expressed as

Φ (P , K) = Pe − [Y +K] = 0, Pe
def
=

√

3

2
|P dev| (98)

where Y is the uniaxial yield stress and Pe is the effective (1st Piola-Kirchhoff) stress.
To complete the model, we adopt the evolution rules of the associated type, i.e.

Dtǫ
p = λ

∂Φ

∂P
= λ

3P dev

2Pe

(99)

Dtk = λ
∂Φ

∂K
= −λ (100)

where λ is the plastic multiplier. Due to the linearized structure and since E
e has both

major and minor symmetry, P becomes symmetrical; hence, the conventional small strain
model is retrieved in the case that deformations are indeed small such that |ǫp| ≪ 1.

Next, we obtain from (56) the basic tangent operators

L
e def

=
∂P

∂F
|k,X = E

e, M
def
=
∂P

∂k
|F,X =

[

∂P
∂ǫp

∂P
∂k

]

=

[

−E
e

0

]

(101)

In order to obtain explicit expressions of the tangent operators RT and LT, defined in
(60) and (61), respectively, we may evaluate the condition DtΦ = 0 at plastic loading for
”deformation control” to compute the state functions

h = 3G+H, µ =
3G

Pe
P dev, g =

[

3
2Pe

P dev

−1

]

(102)

and we obtain

LT
def
= E

e −
1

h

〈µ : DtF 〉

|µ : DtF |
µ ⊗ µ, ∆LT

def
= LT − L

e = −
1

h

〈µ : DtF 〉

|µ : DtF |
µ ⊗ µ (103)

where it was used that M ⋆ g = −µ. Finally, we may use (101) and (102) to obtain

GMAT
i =

∫

Ωp
X

K ⋆RT : (DtF )′ dVX =

∫

Ωp
X

1

h

〈µ : DtF 〉

|µ : DtF |
K ⋆ gµ : (DtF )′ dVX

=

∫

Ωp
X

1

h

〈µ : DtF 〉

|µ : DtF |
Y µ : (DtF )′ dVX (104)
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In order to obtain the last expression in (104), we used that K ⋆ g = Pe −K = Y in the
plastic domain Ωp

X, defined by the current state satisfying the yield criterion, Φ = 0.
When the quantities GMAT

i , which correspond to nodal values dai, are known, it is
possible to ”localize” the ”configurational traction” G

MAT via the ansatz, cf. Figure 6,

G
MAT =

NW
∑

j=1

W jḠ
MAT
j (105)

where ḠMAT
i and W i, i = 1, 2, . . . , NW, are the nodal values (intensities) and the basis

functions, respectively. A least squares projection on the set of basis functions in the sense
that

GMAT
i =

∫

Γsing
X

G
MAT · W i dSX (106)

then gives the intensities ḠMAT
i , collected in the column matrix Ḡ

MAT
=

[

ḠMAT
1 , ḠMAT

2 , . . . ḠMAT
NW

]T
,

from the matrix equation

W Ḡ
MAT

= GMAT, Wij
def
=

∫

Γsing
X

W i · W j dSX (107)

i− 1 i i+ 1

X

ḠMAT
i G

MAT(exact)

G
MAT(approx.)

Figure 6: Representation of G
MAT in terms of the nodal values on Γsing

X for a given FE-mesh.

7.2. Problem formulation

Consider a plate in plane strain, with length L and width H = 0.5L, which is subjected
to prescribed end displacements at the right end, as shown in Figure 7(a). The maximal
displacement is ūmax/L = 0.5 ·10−3. This is the sole loading, i. e. bX = 0 in ΩX and t̄X = 0
on ∂ΩX,N. Since we shall also assume that dẊ ·N = 0 on the external boundary ∂ΩX, we
obtain the following simplified version of (83) as the data for the tangent problem:

l
(ẋ)
T (•; δx, dẊ) =

∫

ΩX

[δx ⊗ ∇X] :
[

P :
[

dẊ ⊗ ∇X

]

+ LT :
[

F ·
[

dẊ ⊗ ∇X

]]

+ rX · dẊ
]

dVX (108)
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Using the fact that the material properties are homogeneous in each of the two subdomains

separated by the singular surface, i.e. ∂P
∂X

|F,k = 0, it is possible to reformulate rX, the

general expression of which was given in (75), more explicitly as

rX = ∆LT : [F ⊗ ∇X] + E
e : [ǫp ⊗ ∇X] (109)

where ∆LT was given in (103).
The material parameters for the elastic-plastic model are: E, ν = 0.3, Y,H with Eref , Yref =

0.001Eref , Href = 0.2Eref . They assume different values on each side of the interface, as
shown schematically in Figure 7(b).

(1) (2)
ū

Γsing

ǫ

σ

E1

E2

H1

H2

Y1

Y2

X1

X2
ǫp11

Figure 7: Plate in plane strain with discontinuity in material properties along central interface. (a) De-
formed configuration and plastic deformations for ū/ūmax = 1, (b) Linear elastic-hardening stress-strain
response curves.

7.3. Numerical results

The first set of computations were carried out to verify the theoretical result in Sub-
subsection 6.3.2 that the values of both G

CONF and G
MAT are independent of the choice

of the variation of Ẋ under certain conditions. To this end, we considered three different
fields dẊ i, i = I, II, III, which all satisfied the condition that dẊ i · N = 1 on Γsing,
and that dẊ i · N = c(X) for X ∈ ∂ΩX, where c(X) is a given function. Otherwise, the
fields differed from each other only in the interior of ΩX, as shown in Figure 8. As a conse-
quence, all the requirements discussed in Subsubsection 6.3.2 for satisfying the condition
l
(v)
T (•; δx, dẊI − dẊII) = l

(v)
T (•; δx, dẊII − dẊIII) = l

(v)
T (•; δx, dẊIII − dẊI) = 0 in

both the left and right part of the singular surface in Figure 7 were satisfied. Indeed, the
numerical results verified that the values of G

CONF and G
MAT were the same for all three

fields dẊ i in Figure 8.
Next, the mesh (in)sensitivity and convergence properties for mesh refinement were

studied for two types of element approximations: linear (CTS) and quadratic (LST) dis-
placement approximation. The results are depicted in Figure 9, and they show that the
quadratic elemnt approximation gives superior convergence properties (as expected).
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Figure 8: Choice of variations of the field dẊi, i = I, II, III. All choices give identical results of the
sensitivity v′.
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Figure 9: Mesh-sensitivity/convergence of components (fields) GCONF
⊥

and GMAT
⊥

along Γsing
X for mismatch

of the material data: E2 = 0.5Eref. All results obtained for ū/ūmax = 1.

The next series of computations concerned the development of GCONF
⊥

and GMAT
⊥

with
increasing (prescribed) displacement, while it was assumed that there is a mismatch across
the interface of the elastic and the plastic (hardening) properties. These results are shown
in Figure 10.

In order to further provoke the triaxiality in the stress and strain states, we next
considered the case when a circular hole is introduced in the right part of the plate, as
shown in Figure 11(a). The base set of material parameter values are still the same as
those given in Figure 7(b).

The distribution of components GCONF
⊥

, GMAT
⊥

and G⊥ = GCONF
⊥

+ GMAT
⊥

along Γsing
X for

mismatch of elasticity, E2 = 0.5Eref , are shown in Figure 12 for the LST approximation
and a mesh that represents a converged state.

The final series of computations concerned the development of GCONF
⊥

and GMAT
⊥

with
increasing (prescribed) displacement, while it was assumed that there is a mismatch across
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ū/ūmax

E1 = 2E2 = Eref

(a)

0 0.2 0.4 0.6 0.8 1
-3000

-2500

-2000

-1500

-1000

-500

0

500

G
⊥

GCONF
GMAT

G
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Figure 10: Development of components GCONF
⊥

, GMAT
⊥

and G⊥ = GCONF
⊥

+ GMAT
⊥

with increasing loading
(prescribed displacement) for (a) mismatch of elasticity: E2 = 0.5Eref , and (b) mismatch of hardening:
H2 = 0.5Href .
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Figure 11: Plate in plane strain with discontinuity in material properties along central interface and with
excentric hole. Deformed configuration and plastic deformations for ū/ūmax = 1.

the interface of the elastic and the plastic (hardening) properties. These results are shown
in Figure 13.

8. Discussion, conclusions and outlook

In this paper we have presented a novel investigation in the context of configurational
changes for a rate-independent dissipative material; namely, we considered the total vari-
ation of the rate of global dissipation with respect to the rate of configurational motion.
Such a variation may, alternatively, be considered as the evaluation of the total sensitivity
due to configurational changes, which may be brought about (in their turn) by physical
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Figure 12: Distribution of components GCONF
⊥

, GMAT
⊥

and G⊥ = GCONF
⊥

+ GMAT
⊥

along Γsing
X for mismatch

of elasticity: E2 = 0.5Eref. All results obtained for ū/ūmax = 1.

changes. It is then clear that the material part of the dissipation is indeed coupled (and
sensitive) to configurational changes. However, it is not at all clear how to use this infor-
mation. The classical approach in defining the ”driving force” for configurational changes,
advocated in the current literature, is to account only for the explicit part of the total
configurational force, denoted G

CONF in this paper. An alternative, perhaps moore natu-
ral, approach is to assume that the ”driving force” for configurational changes is identified
precisely by the total sensitivity, which means that the total configurational force G is
the proper choice in constitutive models for configurational changes. Whatever the choice
made, it is clearly a model assumption.

The paper discussed essentially two aspects: (1) How to formulate (or construct) the
total dissipation in the presence of configurational changes, and (2) how to compute the
total sensitivity of the global dissipation via the appropriate formulation of a tangent
problem. In the present paper only isothermal (thermomechanically uncoupled) quasistatic
problems are considered, which means that the only balance equation for establishing the
pertinent tangent problem is the standard equilibrium equation. We remark that we chose
to linearize the weak form of equilibrium by observing that the virtual (test) functions are
time-invariant in the absolute configuration Bξ; however, it would have been possible to
linearize the strong format of equilibrium in Bξ, establish the weak format and, finally,
push forward to obtain the tangent problem in BX.

A few issues deserve further comments: The tangent stiffness LT appearing in the
”sensitivity version” of the constitutive continuum tangent relation (61) in the case of
plastic loading (L) is not necessarily identical to the actual L

ep for two reasons: (1) the
relation (57) represents essentially a nonlinear (bilinear) relation in DtF , (2) LT can be
linearized at the actual value of Ẋ or at Ẋ = 0 corresponding to a stationary singular
surface. If we choose the actual value of Ẋ it is obvious that G

MAT depends on the solution
to the physical motion problem at each point in time. Hence, if indeed G

MAT is part of the
”driving force”, then the computation of the sensitivity problem is nonlinear and can only
be carried out for a given field Ẋ as part of an iteration process to compute the actual
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ū/ūmax

X2 = 0.8

(d)

Figure 13: Development of components GCONF
⊥

, GMAT
⊥

and G⊥ = GCONF
⊥

+ GMAT
⊥

with increasing load-
ing (prescribed displacement) for mismatch of hardening: H2 = 0.5Href. Results are given for different
positions across the interface: (a) X2 = 0.2, (a) X2 = 0.4, (a) X2 = 0.6, (a) X2 = 0.8.

field Ẋ.
It was shown theoretically that the variation dẊ can be chosen arbitrarily in the

interior of the material domain ΩX without affecting the value of G
MAT, as long as certain

conditions on the external boundary and the singular interface are satisfied. This was
confirmed by numerical results for selected choices of dẊ. For uniform cross-section of
the investigated plate, a separate parameter study (not discussed explicitly in the paper)
showed, in the case ν → 0, that GMAT

⊥
converges to the value that is obtained for uniaxial

stress (which confirms the soundness of the numerical evaluation). The numerical results
obtained for dissimilar material properties across the singular surface showed that a misfit
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in the elasticity modulus resulted in larger value of GMAT
⊥

than did a misfit in the hardening
modulus.

Although it follows from the local (strong) version of dissipation inequality that D̄(k̇) ≥
0 must always hold, it is possible that the corresponding sensitivity to configurational

changes becomes non-positive, i.e. D̄MAT(dẊ, k̇
′

{Ẋ; dẊ}) ≤ 0 is certainly possible. An
example of this situation is given in Figure 13 for the two last cross-sections (for the plate
with a hole), where it appears that GMAT

⊥
≤ 0.

Whenever in doubt, we checked the results by numerical differentiation. This is doable
since we are interested in the total variation of the global dissipation (and not only a partial
variation corresponding to G

CONF). As to the practical calculation of the configurational
force, it appears that the classical configurational rate, G

CONF, is spatially localized a priori
to a singular surface by the analytical expression. On the other hand, the material rate of
dissipation, G

MAT, is spatially localizable a posteriori via a suitable parametrization and
least squares projection (in practice) on the FE-shape functions.

Finally, we mention some possible future developments. The total configurational force
G will be exploited as the ”driving force” in a crack-propagation model for fatigue cracks in
railway steel under complex loading. As to the efficient computation of global dissipation
for the mesh-parametrized material motion, it is possible to use a socallled ”dual” method,
whereby only one single dual solution is needed even if there are a multitude of nodal
values Gi to compute, cf. the sensitivity problem in the context of parameter identification
discussed by Johansson et al. (2007).
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A. Appendix

A.1. Tangent problem – Format based on ẋ

The derivations leading to (70) with (71) and (72) are outlined as follows: From the
definition of a(x, k; δx) in (64), together with the identity in (13), we derive

d

dt
a(x, k; δx) =

∫

ΩX

[∆t[δx ⊗ ∇X] : P + [δx ⊗ ∇X] : ∆tP +

[δx ⊗ ∇X] : P ⊗ Ẋ · ∇X] dVX (1)

Upon using the relations

∆tP = DtP + [P ⊗ ∇X] · Ẋ

= DtP + [Le : [F ⊗ ∇X] + M ⋆ [k ⊗ ∇X] +
∂P

∂X
|
F,k · Ẋ (2)
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together with (68), we may reformulate this expression in (1) as

d

dt
a(x, k; δx) =

∫

ΩX

[

[δx ⊗ ∇X] : DtP − [δx ⊗ ∇X] : P : [Ẋ ⊗ ∇X]

+ [δx ⊗ ∇X] : [Le : [F ⊗ ∇X] + M ⋆ [k ⊗ ∇X] +
∂P

∂X
|
F,k] · Ẋ

]

dVX(3)

Now, taking the total variation of (3) w.r.t. Ẋ, while using the tangent relation (60)
expressed explicitly as

(DtP )′ = LT : [ẋ′ ⊗ ∇X − [F · dẊ] ⊗ ∇X] (4)

we obtain

dẊ

[

d

dt
a(x, k; δx)

]

=

∫

ΩX

[δx ⊗ ∇X] : LT : [ẋ′ ⊗ ∇X] dVX

−

∫

ΩX

[δx ⊗ ∇X] :
[

P : [dẊ ⊗ ∇X] + LT : [F · [dẊ ⊗ ∇X]]

+ rX · dẊ
]

dVX (5)

Next, from the definition of l(δx) in (65) together with (13) and (15), we derive

d

dt
l(δx) =

∫

ΩX

Dt[δx · bX] dVX +

∫

∂ΩX

[δx · bX]Ẋ · N dSX

+

∫

∂ΩX,N

[D̂t[δx · tX] − k[δx · tX]Ẋ · N dSX

∫

CX

δx · [t
(1)
X ⊗ M̂

(1)
+ t

(2)
X ⊗ M̂

(2)
] · Ẋ dLX (6)

where we used that δx and Ẋ are continuous on ∂ΩX, in particular across CX.
In order to obtain operational expressions, we note the relations

Dt[δx · bX] = Dt[δx] · bX + δx · DtbX = −[δx ⊗ ∇X] : [bX ⊗ Ẋ] + δx · DtbX in ΩX (7)

D̂t[δx · tX] = D̂t[δx] · tX + δx · D̂ttX = −[δx ⊗ ∇̂X] : [tX ⊗ Ẋ] + δx · D̂ttX on ∂ΩX (8)

where we used the relations (4), (9) and (68), which may be inserted into (6) to give

d

dt
l(δx) =

∫

ΩX

[

δx · DtbX − [δx ⊗ ∇X] : [bX ⊗ Ẋ]
]

dVX

+

∫

∂ΩX

[

δx · D̂ttX − [δx ⊗ ∇̂X] : [tX ⊗ Ẋ]
]

dSX

+

∫

∂ΩX

[[δx · bX] − k[δx · tX]] Ẋ · N dSX

+

∫

CX

δx · [t
(1)
X ⊗ M̂

(1)
+ t

(2)
X ⊗ M̂

(2)
] · Ẋ dLX (9)
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Upon taking the total variation of (9) w.r.t. Ẋ, while assuming that bX, tX, DtbX and
D̂ttX are independent on Ẋ, i.e.

b′

X = t′X = (DtbX)′ = (D̂ttX)′ = 0 (10)

we obtain

dẊ

[

d

dt
l(δx)

]

= −

∫

ΩX

[δx ⊗ ∇X] : [bX ⊗ dẊ] dVX

−

∫

∂ΩX

[δx ⊗ ∇̂X] : [tX ⊗ dẊ] dSX

+

∫

∂ΩX

[[δx · bX] − k[δx · tX]] dẊ · N dSX

+

∫

CX

δx · [t
(1)
X ⊗ M̂

(1)
+ t

(2)
X ⊗ M̂

(2)
] · dẊ dLX (11)

Remark: Assuming that D̂ttX does not depend on Ẋ pertains to the assumption that tX

is defined only on ∂ΩX. �

Finally, upon using (5) and (11), we may rephrase (70) as

aT(•; δx, ẋ′) = l
(ẋ)
T (•; δx, dẊ), ∀δx ∈ V

0 (12)

where the tangent forms aT and l
(ẋ)
T are given in (72) and (73), respectively.

A.2. Tangent problem – Format based on v

The derivations leading to (76) with (77) are outlined as follows: From the definition
of a(x, k; δx) in (64), together with the identity in (13), we derive

d

dt
a(x, k; δx) =

∫

ΩX

[[Dt[δx] ⊗ ∇X] : P + [δx ⊗ ∇X] : DtP ] dVX

+

∫

∂ΩX

[δx ⊗ ∇X] : P ⊗ Ẋ · N dSX (13)

where we used the relation Dt[δx ⊗ ∇X] = Dt[δx] ⊗ ∇X.
Taking the total variation of (13) w.r.t. Ẋ, while using the tangent relation (60), we

obtain

dẊ

[

d

dt
a(x, k; δx)

]

=

∫

ΩX

[[(Dt[δx])′ ⊗ ∇X] : P + [δx ⊗ ∇X] : LT : [v′ ⊗ ∇X]] dVX

+

∫

∂ΩX

[δx ⊗ ∇X] : P ⊗ dẊ · N dSX (14)

As to the time-derivative of l(δx), the expression (6) is taken as the point of departure.
While the decomposition of Dt[δx ·bX] in (7) is retained, we shall use the following decom-
position of D̂t[δx · tX], instead of (8):

D̂t[δx · tX] = Dt[δx] · tX + [δx ⊗ ∇X] : [tX ⊗ N ]Ẋ · N + δx · D̂ttX (15)
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where we used the relation (10) to replace D̂t[δx] by Dt[δx]+ [δx⊗∇X] ·N [Ẋ ·N ]. Upon
introducing the relations (13) and (15) in (6), we obtain

d

dt
l(δx) =

∫

ΩX

[δx · DtbX + Dt[δx] · bX] dVX

+

∫

∂ΩX

[

δx · D̂ttX + Dt[δx] · tX + [δx ⊗ ∇X] : [tX ⊗ N ]Ẋ · N
]

dSX

+

∫

∂ΩX

[δx · bX − k[δx · tX]] Ẋ · N dSX

+

∫

CX

δx · [t
(1)
X ⊗ M̂

(1)
+ t

(2)
X ⊗ M̂

(2)
] · Ẋ dLX (16)

Again, upon taking the total variation of (16) w.r.t. Ẋ, while assuming that bX, tX, DtbX

and D̂ttX are independent on Ẋ, i.e. (10) holds, then we obtain

dẊ

[

d

dt
l(δx)

]

=

∫

ΩX

(Dt[δx])′ · bX dVX

+

∫

∂ΩX

[

(Dt[δx])′ · tX + [δx · bX − k[δx · tX] + [δx ⊗ ∇X] : [tX ⊗ N ]] dẊ · N
]

dVX

+

∫

CX

δx · [t
(1)
X ⊗ M̂

(1)
+ t

(2)
X ⊗ M̂

(2)
] · dẊ dLX (17)

Finally, upon using the divergence theorem to note that
∫

ΩX

[(Dt[δx])′ ⊗ ∇X] : P dVX =

∫

ΩX

(Dt[δx])′ ·bX dVX +

∫

∂ΩX

(Dt[δx])′ · tX dSX, ∀δx ∈ V
0

(18)
we may use (14) and (17) together with (69) to arrive at

aT(•; δx, ẋ′) = l
(v)
T (•; δx, dẊ), ∀δx ∈ V

0 (19)

where the tangent forms aT and l
(v)
T are given in (71) and (76).

The reference list has been updated
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