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Abstract. Basing on the First-order Shear Deformation Theory (FSDT), this paper focuses on the dynamic behaviour 

of moderately thick functionally graded parabolic panels and shells of revolution. A generalization of the power-law 

distribution presented in literature is proposed. Two different four parameter power-law distributions are considered 

for the ceramic volume fraction. Some symmetric and asymmetric material profiles through the functionally graded 

shell thickness are illustrated by varying the four parameters of power-law distributions. The governing equations of 

motion are expressed as functions of five kinematic parameters. For the discretization of the system equations the 

Generalized Differential Quadrature (GDQ) method has been used. Numerical results concerning four types of 

parabolic shell structures illustrate the influence of the parameters of the power-law distribution on the mechanical 

behaviour of shell structures considered. 
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1. Introduction 

Functionally graded materials (FGM) are a class of composites that have a smooth and continuous variation of 

material properties from one surface to another and thus can alleviate the stress concentrations found in laminated 

composites. Typically, these materials consist of a mixture of ceramic and metal, or a combination of different 

materials. Extensive research work has been carried out on this new class of composites since the concept itself was 

first introduced and proposed in the late 1980s in Japan. One of the advantages of using functionally graded 

materials is that they can survive environments with high temperature gradients, while maintaining structural 

integrity. Furthermore, the continuous change in the compositions leads to a smooth change in the mechanical 

properties, which has many advantages over the laminated composites, where the delamination and cracks are most 

likely to initiate at the interfaces due to the abrupt variation in mechanical properties between laminae. 

In the last years, some researchers have analyzed various characteristics of functionally graded structures (Ng et al., 

2000; Yang et al., 2003; Della Croce and Venini, 2004; Liew et al., 2004; Wu and Tsai, 2004; Elishakoff et al., 

2005; Patel et al., 2005; Abrate, 2006; Pelletier and Vel, 2006; Zenkour, 2006; Arciniega and Reddy, 2007; Nie and 

Zhong, 2007; Roque et al., 2007; Yang and Shen, 2007). 

The aim of this paper is to study the dynamic behaviour of functionally graded parabolic shell structures derived 

from shells of revolution, which are very common structural elements. As a matter of fact, the approach for studying 

the vibration of isotropic shell (Tornabene and Viola, 2008) is now extended to shells made of four parametric 

functionally graded materials. 

The work is based on the First-order Shear Deformation Theory (FSDT) (Reddy, 2003). The geometric model refers 

to a moderately thick shell, and the effects of transverse shear deformation as well as rotary inertia are taken into 

account. Several studies have been presented earlier for the vibration analysis of such revolution shells and the most 

popular numerical tool in carrying out these analyses was the finite element method (Reddy, 2003). The generalized 

collocation method based on the ring element method has also been applied. With regard to the latter method, each 

static and kinematic variable is transformed into a theoretically infinite Fourier series of harmonic components, with 

respect to the circumferential co-ordinate (Viola and Artioli, 2004; Artioli et al., 2005; Artioli and Viola, 2005, 

2006). In other words, when dealing with a completely closed shell, the 2-D problem can be reduced using standard 

Fourier decomposition. In a panel, however, it is not possible to perform such a reduction operation, and the two-

dimensional field must be directly dealt with. In this paper, the governing equations of motion are a set of five two-

dimensional partial differential equations with variable coefficients. These fundamental equations are expressed in 

terms of kinematic parameters and can be obtained by combining the three basic sets of equations, namely 

equilibrium, kinematic and constitutive equations. 
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This paper is motivated by the lack of studies in the technical literature about the free vibration analysis of 

functionally graded parabolic panels and shells and the effect of the power-law distribution on their mechanical 

behaviour. 

Firstly, two different power-law variations of the volume fraction of the constituents in the thickness direction are 

proposed. The effect of the power-law exponent and of the power-law distribution choice on the mechanical 

behaviour of functionally graded parabolic panels and shells is investigated. 

Symmetric and asymmetric volume fraction profiles are presented in this paper. Classical volume fraction profiles 

can be obtained as special cases of  the general distribution laws presented in this work. For the first power-law 

distribution, the bottom surface of the structure is ceramic rich, whereas the top surface can be metal rich, ceramic 

rich or made of a mixture of the two constituents and, on the contrary, for the second power-law distribution. The 

homogeneous isotropic material can be regarded as a special case of functionally graded materials, too. From this 

point of view, the present work generalizes the paper by Tornabene and Viola (2008). 

Secondly, another aim of the present paper is to demonstrate an efficient application of the differential quadrature 

approach (Viola and Tornabene, 2005; Tornabene, 2007; Tornabene and Viola, 2007, 2008; Viola et al., 2007; 

Marzani et al. 2008), by solving the equations of motion governing the free vibration of functionally graded thick 

parabolic panels and shells of revolution. 

The system of second-order linear partial differential equations is solved without resorting to the one-dimensional 

formulation of the dynamic equilibrium of the shell. The discretization of the system by means of the Generalized 

Differential Quadrature method (GDQ) leads to a standard linear eigenvalue problem, where two independent 

variables are involved. In this way, it is possible to compute the complete assessment of the modal shapes 

corresponding to natural frequencies of panel structures. It should be noted that there is comparatively little 

literature available for these structures, compared to literature on the free vibration analysis of complete shells of 

revolution. In this study, complete revolution shells are obtained as special cases of shell panels by satisfying the 

kinematic and physical compatibility at the common meridian with 0, 2ϑ π= . 

 

2. Fundamental System for Functionally Graded Panels and Shells of Revolution 

The basic configuration of the problem considered here is a doubly curved shell as shown in Fig. 1. The co-ordinates 

along the meridian and circumferential directions of the reference surface are ϕ  and s , respectively. The distance of 

each point from the shell mid-surface along the normal is ζ . The shells considered are assumed to be single-layer 

shells of uniform thickness h . It is worth noting that, differently from the work by Tornabene and Viola (2008), the 
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co-ordinates of the shell reference surface are changed ( )( , ) ( , )sϕ ϑ ϕ→  in order to simplify the fundamental 

equations. Now, all the geometric relations and fundamental equations are re-written following the new co-ordinate 

system. 

The angle formed by the external normal n  to the reference surface and the axis of rotation 3x , or the geometric 

axis 3x′  of the meridian curve, is defined as the meridian angle ϕ  and the angle between the radius of the parallel 

circle ( )0R ϕ  and the 1x  axis is designated as the circumferential angle ϑ  as shown in Fig. 2. The parametric co-

ordinates ( , )sϕ  define the meridian curves and the parallel circles upon the middle surface of the shell, respectively. 

The curvilinear abscissa ( )s ϕ  of a generic parallel is related to the circumferential angle ϑ  by the relation 

0s Rϑ= . The position of an arbitrary point within the shell material is known by the co-ordinates ϕ  ( )0 1ϕ ϕ ϕ≤ ≤ , 

s  ( )00 s s≤ ≤  upon the middle surface, and ζ  directed along the outward normal n  and measured from the 

reference surface ( )2 2h hζ− ≤ ≤ . 

The geometry of shells considered is a surface of revolution with a parabolic curved meridian. The parabolic 

meridian can be described with the following equation: 

 ( )2

0 3 0bR R x′− − =k  (1) 

where ( )2 2
1s d S= −k  is a characteristic parameter of the parabolic curve. The horizontal radius ( )0R ϕ  of a 

generic parallel of the shell represents the distance of each point from the axis of revolution and for a shell with 

parabolic meridian assumes the form ( )0 tan 2 bR Rϕ ϕ= +k . bR  is the shift of the geometric axis of the meridian 

3x′  with reference to the axis of revolution 3x . 

The radii of curvature ( )Rϕ ϕ , ( )sR ϕ  in the meridian and circumferential directions and the first derivative of 

( )Rϕ ϕ  with respect to ϕ  can be expressed according to the well known differential geometry formulae. 

As regards shell theory, this work is based on the following assumptions: (1) the transverse normal is inextensible so 

that the normal strain is equal to zero: ( ), , , 0n n s tε ε ϕ ζ= = ; (2) the transverse shear deformation is supposed to 

influence the governing equations so that normal lines to the reference surface of the shell before deformation 

remain straight, but not necessarily normal after deformation (a relaxed Kirchhoff-Love hypothesis); (3) the shell 

deflections are small and the strains are infinitesimal; (4) the shell is moderately thick and therefore it is possible to 

assume that the thickness-direction normal stress is negligible so that the plane assumption can be invoked: 
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( ), , , 0n n s tσ σ ϕ ζ= = ; (5) the linear elastic behaviour of anisotropic materials is assumed; (6) the rotary inertia is 

also taken into account. 

Consistent with the assumptions of a moderately thick shell theory reported above, the displacement field considered 

in this study is that of the First-order Shear Deformation Theory and can be expressed in the following, well known, 

form: 

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( )

, , , , , , ,

, , , , , , ,

, , , , ,
s s s

U s t u s t s t

U s t u s t s t

W s t w s t

ϕ ϕ ϕϕ ζ ϕ ζβ ϕ

ϕ ζ ϕ ζβ ϕ

ϕ ζ ϕ

= +

= +

=

 (2) 

where , ,su u wϕ  are the displacement components of points lying on the middle surface ( )0ζ =  of the shell, along 

meridian, circumferential and normal directions, respectively, while t  is the time variable. ϕβ  and sβ  represent 

normal-to-mid-surface rotations. The kinematic hypothesis expressed by equations (2) should be supplemented by 

the statement that the shell deflections are small and strains are infinitesimal, that is ( ), ,w s t hϕ . It is worth 

noting that in-plane displacements Uϕ  and sU  vary linearly through the thickness, while W  remains independent 

of ζ . 

Relationships between strains and displacements along the shell reference (middle) surface ( )0ζ =  and the five 

equations of dynamic equilibrium in terms of internal actions can be written as in Tornabene and Viola (2008). 

As far as the constitutive relations for a functionally graded linear elastic material are concerned, they relate internal 

stress resultants and internal couples with generalized strain components on the middle surface: 
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⎢ ⎥
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⎢ ⎥
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⎢ ⎥⎣ ⎦

 (3) 

where κ  is the shear correction factor, which is usually taken as 5 6κ = , such as in the present work. In particular, 

it is worth noting that the determination of shear correction factors for composite laminated structures is still an 

unsolved issue, because these factors depend on various parameters (Alfano et al., 2001; Auricchio and Sacco, 1999, 

2003). 

In equations (3) the three components , ,s sN N Nϕ ϕ  are the in-plane meridian, circumferential and shearing force 
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resultants, , ,s sM M Mϕ ϕ  are the analogous couples, while , sT Tϕ  are the transverse shear force resultants. We notice 

that, in the above definitions (3) the symmetry of shearing force resultants ,s sN Nϕ ϕ  and torsional couples ,s sM Mϕ ϕ  

is assumed as a further hypothesis, even if it is satisfied only in the case of spherical shells and flat plates (Toorani 

and Lakis, 2000). This assumption is derived from the consideration that ratios , sR Rϕζ ζ  can be neglected with 

respect to unity ( , 1sR Rϕζ ζ ). Moreover, the first three strains 0 0 0, ,s sϕ ϕε ε γ  are in-plane meridian, 

circumferential and shearing components and , ,s sϕ ϕχ χ χ  are the corresponding analogous curvature changes. The 

last two components ,n snϕγ γ  are the transverse shearing strains. 

The extensional stiffnesses ijA , the bending stiffnesses ijD  and the bending-extensional coupling stiffnesses ijB  are 

defined as: 

 ( ) ( ) ( )
2 2 2

2

2 2 2

, ,

h h h

ij ij ij ij ij ij
h h h

A Q d B Q d D Q dζ ζ ζ ζ ζ ζ ζ ζ
− − −

= = =∫ ∫ ∫  (4) 

where the elastic constants ( )ij ijQ Q ζ=  are functions of thickness coordinate ζ  and are represented by the 

following: 

 
( )
( )( )

( ) ( )
( )( )

( )
( )( )11 12 662 2, ,

2 11 1

E E E
Q Q Q

ζ ν ζ ζ ζ

ν ζν ζ ν ζ
= = =

+− −
 (5) 

Typically, the functionally graded materials are made of a mixture of two constituents. In this work, it is assumed 

that the functionally graded material is made of a mixture of a ceramic and metal constituent. The material 

properties of the functionally graded shell vary continuously and smoothly along the thickness direction ζ  and are 

functions of the volume fractions and properties of the constituent materials. The Young’s modulus ( )E ζ , 

Poisson’s ratio ( )ν ζ  and mass density ( )ρ ζ  of the functionally graded shell can be expressed as a linear 

combination: 

 
( ) ( )
( ) ( )
( ) ( )

C M C M

C M C M

C M C M

V

E E E V E

V

ρ ζ ρ ρ ρ

ζ

ν ζ ν ν ν

= − +

= − +

= − +

 (6) 

where , , ,C C C CE Vρ ν  and , , ,M M M ME Vρ ν  represent mass density, Young’s modulus, Poisson’s ratio and volume 

fraction of the ceramic and metal constituent materials, respectively. 

In this paper, the ceramic volume fraction CV  follows two simple four parameter power-law distributions: 
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1 ( / / / )

2 ( / / / )

1 1: 1
2 2

1 1: 1
2 2

pc

a b c p C

pc

a b c p C

FGM V a b
h h

FGM V a b
h h

ζ ζ

ζ ζ

⎛ ⎞⎛ ⎞ ⎛ ⎞= − + + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞= − − + −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 (7) 

where the volume fraction index p  ( )0 p≤ ≤ ∞  and the parameters , ,a b c  dictate the material variation profile 

through the functionally graded shell thickness. It is worth noting that the volume fractions of all the constituent 

materials should add up to unity: 

 1C MV V+ =  (8) 

In order to choose the three parameters , ,a b c  in a suitable way, the relation (8) must be always satisfied for every 

volume fraction index p . By considering the relations (7), when the power-law exponent is set equal to zero ( 0p = ) 

or equal to infinity ( p = ∞ ), the homogeneous isotropic material is obtained (Tornabene and Viola, 2008) as a 

special case of the functionally graded material. In fact, from equations (8), (7) and (6) it is possible to obtain: 

 ( ) ( ) ( )
( ) ( ) ( )

0 1, 0 , ,

0, 1 , ,
C M C C C

C M M M M

p V V E E

p V V E E

ρ ζ ρ ζ ν ζ ν

ρ ζ ρ ζ ν ζ ν

= → = = → = = =

= ∞ → = = → = = =
 (9) 

Some material profiles through the functionally graded shell thickness are illustrated in Figs. 3, 4 and 5. In  Fig. 3 

the classical volume fraction profiles, such as reported in literature, are presented as special cases of  the general 

distribution laws (7) by setting 1a =  and 0b = . As can be seen from Fig. 3(a), for the first distribution 

1 ( 1/ 0 / / )a b c pFGM = =  (7) the material composition is continuously varied such that the bottom surface ( 0.5hζ = − ) of 

the shell is ceramic rich, whereas the top surface ( 0.5hζ = ) is metal rich. Fig. 3(b) shows that conversely, for the 

second distribution 2 ( 1/ 0 / / )a b c pFGM = =  (7) the top surface ( 0.5hζ = ) of the shell is ceramic rich, whereas the bottom 

surface ( 0.5hζ = − ) is metal rich. Choosing other values for the parameters , ,a b c , it is possible to obtain symmetric 

and asymmetric volume fraction profiles as shown in Figs. 4 and 5. In Figs. 4(a) and 4(b), by setting 1a = , 1b =  and 

2c =  the two distributions 1 ( 1/ 1/ 2 / )a b c pFGM = = = , 2 ( 1/ 1/ 2 / )a b c pFGM = = =  (7) present the same profiles by varying the 

volume fraction index p  and are symmetric respect to the reference surface ( 0hζ = ) of the shell. Furthermore, 

these distributions are characterized by the fact that both the top ( 0.5hζ = ) and bottom surface ( 0.5hζ = − ) are 

ceramic rich, while there is a mixture of two constituents through the thickness. Figs. 4(c) and 4(d) illustrate 

asymmetric profiles 1 ( 1/ 1/ 4 / )a b c pFGM = = = , 2 ( 1/ 1/ 4 / )a b c pFGM = = =  (7) obtained by setting 1a = , 1b =  and 4c = . As 
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shown by the figures being reviewed, we have the same constituent at the top and bottom surface but, unlike the 

previous cases (Figs. 4(a) and 4(b)), profiles are not symmetric with respect to the reference surface ( 0hζ = ) of the 

shell. Fig. 5 shows other cases obtained by varying the parameters , ,a b c . These profiles are characterized by the fact 

that one of the two shell surfaces (the top or bottom surface) presents a mixture of two constituents. For example, by 

considering the 1 ( 1/ 0.5 / 4 / 1)a b c pFGM = = = =  distribution (Fig. 5(a)), at the top surface we have a mixture of ceramic and 

metal made up by fifty per cent of ceramic and fifty per cent of metal, while the bottom surface ( 0.5hζ = − ) is 

ceramic rich. Figs. 5(b), (c), (d), (e) and (f) illustrate various power-law distribution cases obtained by modifying the 

parameters , , ,a b c p . From a design point of view it is important to know if the top surface of the shell ( 0.5hζ = ) is 

ceramic or metal rich, if the bottom surface ( 0.5hζ = − ) is metal or ceramic rich, or if one of these surfaces presents 

a mixture of two constituents. One of the aim of this work is to propose a generalization of the power-law 

distribution presented in literature and to illustrate the influence of the power-law exponent p  and of the choice of 

the parameters , ,a b c  on the mechanical behaviour of shell structures. 

The three basic sets of equations, namely the kinematic, constitutive and equilibrium equations may be combined to 

give the fundamental system of equations, also known as the governing system of equations. By substituting the 

kinematic equations into the constitutive equations and the result of this substitution into the equilibrium equations, 

the complete equations of motion in terms of displacements can be written as: 

 

11 12 13 14 15 0 1

21 22 23 24 25 0 1

31 32 33 34 35 0

41 42 43 44 45 1 2
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0 0 0
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ϕ ϕ
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⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤
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⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
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⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
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⎢ ⎥ ⎢ ⎥ ⎢⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦

&&

&&

&&
&&

&&
⎥
⎥

         (10) 

where the explicit forms of the equilibrium operators , , 1,...,5ijL i j =  are listed in Appendix and the mass inertias 

assumed the following form: 

 ( )
2

2

1 1 , 0,1,2

h

i
i

h s

I d i
R Rϕ

ζ ζρ ζ ζ ζ
−

⎛ ⎞⎛ ⎞
= + + =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∫  (11) 

Three kinds of boundary conditions are considered, namely the fully clamped edge boundary condition (C), the 

simply supported edge boundary condition (S) and the free edge boundary condition (F). The equations describing 

the boundary conditions can be written as follows: 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ARTICLE IN PRESS

 9 
 

Clamped edge boundary condition (C) 

0 1 00 at or , 0s su u w s sϕ ϕβ β ϕ ϕ ϕ ϕ= = = = = = = ≤ ≤                                                                          (12) 

0 0 10 at 0 or ,s su u w s s sϕ ϕβ β ϕ ϕ ϕ= = = = = = = ≤ ≤                                                                          (13) 

Simply supported edge boundary condition (S) 

0 1 00, 0 at or , 0s su u w M s sϕ ϕβ ϕ ϕ ϕ ϕ= = = = = = = ≤ ≤                                                             (14) 

0 0 10, 0 at 0 or ,s su u w M s s sϕ ϕβ ϕ ϕ ϕ= = = = = = = ≤ ≤                                                             (15) 

Free edge boundary condition (F) 

0 1 00 at or , 0s sN N T M M s sϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ= = = = = = = ≤ ≤                                                              (16) 

0 0 10 at 0 or ,s s s s sN N T M M s s sϕ ϕ ϕ ϕ ϕ= = = = = = = ≤ ≤                                                               (17) 

If we wish to consider a complete shell of revolution, the kinematic and physical compatibility should be satisfied at 

the common meridian with 00,2s Rπ=  in addition to the external boundary conditions. The kinematic compatibility 

conditions include the continuity of displacements. The physical compatibility conditions can only be the five 

continuous conditions for the generalized stress resultants. To consider complete revolute shells characterized by 

0 02s Rπ= , it is necessary to implement the kinematic and physical compatibility conditions between the two 

meridians with 0s =  and with 0 02s Rπ= : 

Kinematic compatibility conditions 

0 0 0
0 1

0 0

( ,0, ) ( , , ), ( ,0, ) ( , , ), ( ,0, ) ( , , ),

( ,0, ) ( , , ), ( ,0, ) ( , , )
s s

s s

u t u s t u t u s t w t w s t

t s t t s t
ϕ ϕ

ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ
ϕ ϕ ϕ

β ϕ β ϕ β ϕ β ϕ

= = =
≤ ≤

= =
                                  (18) 

Physical compatibility conditions 

0 0 0
0 1

0 0

( ,0, ) ( , , ), ( ,0, ) ( , , ), ( ,0, ) ( , , ),
( ,0, ) ( , , ), ( ,0, ) ( , , )

s s s s s s

s s s s

N t N s t N t N s t T t T s t
M t M s t M t M s t

ϕ ϕ

ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ
ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

= = =
≤ ≤

= =
                          (19) 

 
3. Generalized Differential Quadrature Method Review 

The Generalized Differential Quadrature method will be used to discretize the derivatives in the governing equations 

in terms of displacements and the boundary and compatibility conditions. 

The essence of GDQ method is that the n-th order derivative of a smooth one-dimensional function ( )f x  defined 

over an interval [ ]0, L  at the i-th point of abscissa ix , can be approximated as: 

 ( )

1

( ) ( ), 1, 2,...,
i

n N
n

ij jn
jx x

d f x f x i N
dx

ς
==

= =∑  (20) 
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where ( )n
ijς  are the weighting coefficients at the i-th point calculated for the j-th sampling point of the domain. In 

equation (20) N  is the total number of the sampling points of the grid distribution and ( )jf x  is the value of the 

function at the j-th point. 

Some simple recursive formulas are available for calculating n-th order derivative weighting coefficients ( )n
ijς  by 

means of Lagrange polynomial interpolation functions (Shu, 2000). The weighting coefficients for the first order 

derivative are: 

 
(1)

(1)
(1)

( )
, , 1, 2,..., ,

( ) ( )
i

ij
i j j

x
i j N i j

x x x
ς = = ≠

−
L

L
 (21) 

 (1) (1)

1,

, , 1, 2,..., ,
N

ii ij
j j i

i j N i jς ς
= ≠

= − = =∑  (22) 

In equation (21) the first derivative of Lagrange interpolating polynomials at each point , 1, 2,...,kx k N= , is: 

 (1)

1,

( ) ( ), 1, 2,...,
N

k k l
l l k

x x x k N
= ≠

= − =∏L  (23) 

For higher order derivatives ( 2,3,..., 1n N= − ), one gets iteratively: 

 
( 1)

( ) ( 1) (1) , , 1,2,..., ,
n

ijn n
ij ii ij

i j

n i j N i j
x x
ς

ς ς ς
−

−
⎛ ⎞

= − = ≠⎜ ⎟⎜ ⎟−⎝ ⎠
 (24) 

 ( ) ( )

1,

, , 1, 2,..., ,
N

n n
ii ij

j j i

i j N i jς ς
= ≠

= − = =∑  (25) 

From the above equations that the weighting coefficients of the second and higher order derivatives can be 

determined from those of the first order derivative. Furthermore, it is interesting to note that the preceding 

coefficients ( )n
ijς  are dependent on the derivative order n , on the grid point distribution jx , 1, 2,...,j N= , and on 

the specific point ix , where the derivative is computed. It is worth noting that, this set of expressions for the 

determination of the weighting coefficients is so compact and simple that it is very easy to implement them in 

formulating and programming because of the recurrence feature. 

Throughout the paper, the Chebyshev-Gauss-Lobatto (C-G-L) grid distribution is assumed, for which the co-

ordinates of grid points ( , )i jsϕ  along the reference surface are: 

 

( )1 0
0 0 1

0
0 0

11 cos , 1, 2,..., , for ,
1 2

11 cos , 1, 2,..., , for 0, (with )
1 2

i

j

i i N
N

sjs j M s s s R
M

ϕ ϕ
ϕ π ϕ ϕ ϕ ϕ

π ϑ

−⎛ − ⎞⎛ ⎞ ⎡ ⎤= − + = ∈⎜ ⎟⎜ ⎟ ⎣ ⎦−⎝ ⎠⎝ ⎠
⎛ − ⎞⎛ ⎞ ⎡ ⎤= − = ∈ ≤⎜ ⎟⎜ ⎟ ⎣ ⎦−⎝ ⎠⎝ ⎠

 (26) 
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where ,N M  are the total number of sampling points used to discretize the domain in ϕ  and s  directions, 

respectively, of the double curved shell (Fig. 6). It has been proven that for the Lagrange interpolating polynomials, 

the Chebyshev-Gauss-Lobatto sampling point rule guarantees convergence and efficiency to the GDQ technique 

(Tornabene, 2007; Tornabene and Viola, 2007, 2008). 

 

4. Discrete Gorverning Equations and Numerical Implementation 

This section analyses the free vibration of functionally graded shells. Using the method of separation of variables, it 

is possible to seek solutions that are harmonic in time and whose frequency is ω . The displacements and the 

rotations can be written as follows: 

 

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

, , ,

, , ,

, , ,

, , ,

, , ,

i t

s i t
s

i t

i t

s i t
s

u s t U s e

u s t U s e

w s t W s e

s t B s e

s t B s e

ϕ ω
ϕ

ω

ω

ϕ ω
ϕ

ω

ϕ ϕ

ϕ ϕ

ϕ ϕ

β ϕ ϕ

β ϕ ϕ

=

=

=

=

=

 (27) 

where the vibration spatial amplitude values , , , ,s sU U W B Bϕ ϕ  fulfil the fundamental differential system.  

The GDQ procedure allows writing of the equations of motion in discrete form, transforming each space derivative 

into a weighted sum of node values of dependent variables. Each approximate equation is valid in a single sampling 

point. The governing equations can be discretized and for the domain points, 2,3,..., 1i N= − , 2,3,..., 1j M= −  we 

have: 

1) Translational equilibrium along the meridian direction ϕ  

( ) ( ) ( )
2

2 1 211 12 11 66
11 662 3 2 2

1 1 10 0 0

sin coscos 1N N M
s i ii

ik kj ik kj jm im ij
k k mi i i i i i i ii

A A A AdR
U A U A U U

R R R R d R R R R
ϕ ϕϕϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ

ϕ ϕϕς ς ς κ
ϕ= = =

⎛ ⎞ ⎛ ⎞
+ − + − + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ ∑  

( ) ( ) ( ) ( )1 1 1 111 66 12 66 11 12 66
2 2

1 1 1 10 0 0

cos cos sinM N M N
s si i is s
jm im ik jm km ik kj

m k m ki i i i i i i i

A A A A A A A
U U W

R R R R R R R R
ϕ ϕ

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ
ς ς ς κ ς

= = = =

⎛ ⎞ ⎛ ⎞⎛ ⎞
− + + + + + + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
∑ ∑ ∑ ∑  

( ) ( )2 111 11
11 113 2 2 3

1 10 0 0

sin coscos 1 cos 1N N
i ii i

ij ik kj ik kj
k ki i i i i i i ii i

A BdR dR
A W B B B

R R R d R R R R R d
ϕ ϕϕ ϕϕ ϕ

ϕ ϕ ϕ ϕ ϕ

ϕ ϕϕ ϕς ς
ϕ ϕ= =

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟+ − − + + − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ ∑  

( ) ( )
2

2 112 11 66 11 66
66 2

1 10 0 0 0

sin cos cos cosM M
s si i i i s
jm im ij jm im

m mi i i i i i

B B A B B
B B B B

R R R R R R
ϕ ϕ

ϕ ϕ

ϕ ϕ ϕ ϕ
ς κ ς

= =

⎛ ⎞ ⎛ ⎞
+ − + − − + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑  

( ) ( ) ( )1 112 66 2
0 1

1 1

N M
s s

ik jm km ij ij
k mi i

B B
B I U I B

R R
ϕ ϕ ϕ

ϕ ϕ

ς ς ω
= =

⎛ ⎞
+ + = − +⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑                                                                                     (28) 
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2) Translational equilibrium along the circumferential direction s  

( ) ( ) ( ) ( ) ( )1 1 1 2 111 66 12 66 66
662 3

1 1 1 1 10 0 0

cos cos cos 1M N M N N
s si i s si
jm im ik jm km ik kj ik kj

m k m k ki i i i i i i i i

A A A A A dR
U U U A U

R R R R R R R R d
ϕ ϕ ϕϕϕ ϕ

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕς ς ς ς ς
ϕ= = = = =

⎛ ⎞ ⎛ ⎞⎛ ⎞
+ + + + + − +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
∑ ∑ ∑ ∑ ∑  

( ) ( )
22

2 166 12 11 66
11 66 2 2

1 10 0 0 0 0

sin sin sincos sinM M
s si i is si i
jm im ij jm im

m mi i i i i i i

A A A A
A U A U W

R R R R R R Rϕ ϕ

ϕ ϕ ϕϕ ϕς κ κ ς
= =

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟+ − − + + + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ ∑  

( ) ( ) ( ) ( ) ( )1 1 1 2 111 66 12 66 66
662 3

1 1 1 1 10 0 0

cos cos cos 1M N M N N
s si i s si
jm im ik jm km ik kj ik kj

m k m k ki i i i i i i i i

B B B B B dR
B B B B B

R R R R R R R R d
ϕ ϕ ϕϕϕ ϕ

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕς ς ς ς ς
ϕ= = = = =

⎛ ⎞ ⎛ ⎞⎛ ⎞
+ + + + + + − +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

∑ ∑ ∑ ∑ ∑  

( ) ( )
2

2 66 2
11 66 0 12

1 0 0 0

sincos sinM
s is s s si i
jm im ij ij ij

m i i i i

A
B B B B I U I B

R R R Rϕ

ϕϕ ϕς κ ω
=

⎛ ⎞⎛ ⎞
⎜ ⎟+ − − − = − +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑                                               (29) 

3) Translational equilibrium along the normal direction ζ  

( )111 12 66 12 66
662 2 2 3

10 0 0 0

sin cos sin cos cos 1N
i i i i i

ik kj ij
ki i i i i i i i i i i

A A A A A dR
U A U

R R R R R R R R R R d
ϕ ϕϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕκ ς κ
ϕ=

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟− + + − + + − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

∑  

( ) ( ) ( )1 2 112 11 66 66
662 3

1 1 10 0 0

sin sin cos 1M N N
si i s i
jm im ik kj ik kj

m k ki i i i i i i i

A A A A dR
U W A W

R R R R R R R d
ϕ ϕϕ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕκ ς κ ς κ ς
ϕ= = =

⎛ ⎞ ⎛ ⎞
− + + + + − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ ∑  

( ) ( )
2

2 111 12 11 11 12 66
66 2 2 2

1 10 0 0

2 sin sin sinM N
s i i i
jm im ij ik kj

m ki i i i i i i i

A A A B B A
A W W B

R R R R R R R R
ϕ ϕ

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ
κ ς κ ς

= =

⎛ ⎞ ⎛ ⎞
+ − + + − + − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑  

( )112 11 66 12 11 2
66 02

10 0 0 0

cos sin cos cos sin M
si i i i i s

ij jm im ij
mi i i i i i

B B A B B
B A B I W

R R R R R R
ϕ

ϕ ϕ

ϕ ϕ ϕ ϕ ϕ
κ κ ς ω

=

⎛ ⎞ ⎛ ⎞
− + − − + − = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑                  (30) 

4) Rotational equilibrium about the circumferential direction s  

( ) ( ) ( )
2

2 1 211 12 11 66
11 662 3 2

1 1 10 0 0

sin coscos 1N N M
s i ii

ik kj ik kj jm im ij
k k mi i i i i i i ii

B B B AdR
U B U B U U

R R R R d R R R R
ϕ ϕϕϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ

ϕ ϕϕς ς ς κ
ϕ= = =

⎛ ⎞ ⎛ ⎞
+ − + − + − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ ∑  

( ) ( ) ( ) ( )1 1 1 111 66 12 66 11 12 66
2

1 1 1 10 0 0

cos cos sinM N M N
s si i is s
jm im ik jm km ik kj

m k m ki i i i i i i i

B B B B B B A
U U W

R R R R R R R R
ϕ ϕ

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ
ς ς ς κ ς

= = = =

⎛ ⎞ ⎛ ⎞⎛ ⎞
− + + + + + − +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
∑ ∑ ∑ ∑  

( ) ( )2 111 11
11 113 2 2 3

1 10 0 0

sin coscos 1 cos 1N N
i ii i

ij ik kj ik kj
k ki i i i i i i ii i

B DdR dR
B W B D B

R R R d R R R R R d
ϕ ϕϕ ϕϕ ϕ

ϕ ϕ ϕ ϕ ϕ

ϕ ϕϕ ϕς ς
ϕ ϕ= =

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟+ − − + + − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ ∑  

( ) ( )
2

2 112 11 11 66
66 662

1 10 0 0 0

sin cos cos cosM M
s si i i i s
jm im ij jm im

m mi i i i i

D D D D
D B A B B

R R R R R
ϕ ϕ

ϕ

ϕ ϕ ϕ ϕ
ς κ ς

= =

⎛ ⎞ ⎛ ⎞
+ − + + − + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑  

( ) ( ) ( )1 112 66 2
1 2

1 1

N M
s s

ik jm km ij ij
k mi i

D D
B I U I B

R R
ϕ ϕ ϕ

ϕ ϕ

ς ς ω
= =

⎛ ⎞
+ + = − +⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑                                                                                               (31) 
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5) Rotational equilibrium about the meridian direction ϕ  

( ) ( ) ( ) ( ) ( )1 1 1 2 111 66 12 66 66
662 3

1 1 1 1 10 0 0

cos cos cos 1M N M N N
s si i s si
jm im ik jm km ik kj ik kj

m k m k ki i i i i i i i i

B B B B B dR
U U U B U

R R R R R R R R d
ϕ ϕ ϕϕϕ ϕ

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕς ς ς ς ς
ϕ= = = = =

⎛ ⎞ ⎛ ⎞⎛ ⎞
+ + + + + − +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
∑ ∑ ∑ ∑ ∑  

( ) ( )
2

2 166 12 11
11 66 662

1 10 0 0 0

sin sincos sinM M
s si is si i
jm im ij jm im

m mi i i i i i

A B B
B U B U A W

R R R R R Rϕ ϕ

ϕ ϕϕ ϕς κ κ ς
= =

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟+ − − − + + − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ ∑  

( ) ( ) ( ) ( ) ( )1 1 1 2 111 66 12 66 66
662 3

1 1 1 1 10 0 0

cos cos cos 1M N M N N
s si i s si
jm im ik jm km ik kj ik kj

m k m k ki i i i i i i i i

D D D D D dR
B B B D B

R R R R R R R R d
ϕ ϕ ϕϕϕ ϕ

ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕς ς ς ς ς
ϕ= = = = =

⎛ ⎞ ⎛ ⎞⎛ ⎞
+ + + + + + − +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

∑ ∑ ∑ ∑ ∑  

( ) ( )
2

2 2
11 66 66 1 22

1 0 0

cos sinM
s s s s si i
jm im ij ij ij

m i i i

D B D A B I U I B
R R Rϕ

ϕ ϕς κ ω
=

⎛ ⎞⎛ ⎞
⎜ ⎟+ − − + = − +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑                                                             (32) 

In equations (28)-(32), ( )1
ik
ϕς , ( )1s

jmς , ( )2
ik
ϕς  and ( )2s

jmς  are the weighting coefficients of the first and second derivatives in 

ϕ  and s  directions, respectively. Furthermore, N  and M  are the total number of grid points in ϕ  and s  

directions. 

Applying the GDQ methodology, the discretized forms of the boundary and compatibility conditions are given as 

follows: 

Clamped edge boundary condition (C) 

0 for 1, and 1,2,...,

0 for 1, and 1,2,...,

s s
aj aj aj aj aj

s s
ib ib ib ib ib

U U W B B a N j M

U U W B B b M i N

ϕ ϕ

ϕ ϕ

= = = = = = =

= = = = = = =
                                                                          (33) 

Simply supported edge boundary condition (S) 

( ) ( )

( )

( )

1 111 12
12

1 10

111 12 11

10

112
12

10

0

cos

for 1, and 1,2,...,sin

cos
0

s s
aj aj aj aj

N M
sa s

ak kj aj jm am
k ma a

N
a

aj ak kj
ka a a

M
sa s

aj jm am
ma

i

U U W B

B B
U U B U

R R

a N j MB B D
W B

R R R

D
B D B

R

U

ϕ

ϕ ϕ ϕ

ϕ

ϕ ϕ

ϕ ϕ

ϕ

ϕ
ς ς

ϕ
ς

ϕ
ς

= =

=

=

⎧ = = = =
⎪
⎪

+ + +⎪
⎪
⎪ = =⎛ ⎞⎨
+ + + +⎜ ⎟⎪ ⎜ ⎟⎪ ⎝ ⎠
⎪
⎪+ + =
⎪⎩

∑ ∑

∑

∑

( ) ( )

( )

( )

1 112 11
11

1 10

112 11 12

10

111
11

10

0
cos

for 1, and 1,2,...,sin

cos
0

s
b ib ib ib

N M
si s

ik kb ib bm im
k mi i

N
i

ib ik kb
ki i i

M
si s

ib bm im
mi

U W B
B B

U U B U
R R

b M i NB B D
W B

R R R

D
B D B

R

ϕ ϕ

ϕ ϕ ϕ

ϕ

ϕ ϕ

ϕ ϕ

ϕ

ϕ
ς ς

ϕ
ς

ϕ
ς

= =

=

=

⎧ = = = =
⎪
⎪ + + +⎪
⎪
⎪ ⎛ ⎞ = =⎨
+ + + +⎜ ⎟⎪ ⎜ ⎟
⎝ ⎠⎪

⎪
⎪+ + =
⎪⎩

∑ ∑

∑

∑

                                              (34) 

 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ARTICLE IN PRESS

 14 
 

Free edge boundary condition (F) 

( ) ( ) ( ) ( )

( ) ( )

1 1 1 111 12 11 12 11 12
12 12

1 1 1 10 0 0

1 166 66
66 66

1 1 0

cos sin cos
0

cos

N M N M
s sa a as s

ak kj aj jm am aj ak kj aj jm am
k m k ma a a a a a

M N
s as s
jm am ak kj aj

m ka a

A A A A B B
U U A U W B B B B

R R R R R R

A A
A U U U B

R R

ϕ ϕϕ ϕ ϕ ϕ

ϕ ϕ ϕ

ϕϕ

ϕ

ϕ ϕ ϕ
ς ς ς ς

ϕ
ς ς ς

= = = =

= =

⎛ ⎞
+ + + + + + + =⎜ ⎟⎜ ⎟

⎝ ⎠

+ − +

∑ ∑ ∑ ∑

∑ ∑ ( ) ( )

( )

( ) ( )

1 166 66

1 1 0

166 66
66 66

1

1 111 12 11 12 11
12

1 10 0

cos
0

0

cos sin

M N
s as s
jm am ak kj aj

m ka a

N
s

aj ak kj aj aj
ka a

N M
sa as

ak kj aj jm am aj ak
k ma a a a a

B B
B B B

R R

A A
U W A B A B

R R

B B B B D
U U B U W

R R R R R

ϕϕ

ϕ

ϕϕ ϕ

ϕ ϕ

ϕ ϕϕ ϕ

ϕ ϕ ϕ

ϕ
ς

κ κ ς κ κ

ϕ ϕ
ς ς ς

= =

=

= =

+ − =

− + + + =

⎛ ⎞
+ + + + +⎜ ⎟⎜ ⎟

⎝ ⎠

∑ ∑

∑

∑ ∑ ( ) ( )

( ) ( ) ( ) ( )

1 112
12

1 10

1 1 1 166 66 66 66
66 66

1 1 1 10 0

cos
0

cos cos
0

for 1, and 1,2,...,

N M
sa s

kj aj jm am
k ma

M N M N
s sa as s s s
jm am ak kj aj jm am ak kj aj

m k m ka a a a

D
B B D B

R

B B D D
B U U U D B B B

R R R R

a N j M

ϕ ϕ

ϕ ϕϕ ϕ

ϕ ϕ

ϕ
ς

ϕ ϕ
ς ς ς ς

= =

= = = =

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪ + + =⎪
⎪
⎪
⎪ + − + + − =
⎪⎩

= =

∑ ∑

∑ ∑ ∑ ∑

  (35) 

( ) ( ) ( ) ( )

( ) ( )

1 1 1 166 66 66 66
66 66

1 1 1 10 0

1 112 11 12 11 12
11

1 10 0

cos cos
0

cos sin

M N M N
s si is s s s
bm im ik kb ib bm im ik kb ib

m k m ki i i i

N M
si is

ik kb ib bm im ib
k mi i i i

A A B B
A U U U B B B B

R R R R

A A A A B
U U A U W

R R R R R

ϕ ϕϕ ϕ

ϕ ϕ

ϕ ϕ ϕ
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Kinematic and physical compatibility conditions 
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Thus, the whole system of differential equations has been discretized and the global assembling leads to the 
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following set of linear algebraic equations: 

 2bb bd b b

db dd d dd d
ω

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

K K δ 0 0 δ
K K δ 0 M δ  (38) 

In the above matrices and vectors, the partitioning is set forth by subscripts b  and d , referring to the system 

degrees of freedom and standing for boundary and domain, respectively. In this sense, the b -equations represent the 

discrete boundary and compatibility conditions, which are valid only for the points lying on constrained edges of the 

shell; while the d -equations are the equilibrium equations, assigned on interior nodes. In order to make the 

computation more efficient, kinematic condensation of non-domain degrees of freedom is performed: 

 ( )( )-1 2
dd db bb bd d dd dω− =K K K K δ M δ  (39) 

The natural frequencies of the structure considered can be determined by solving the standard eigenvalue problem 

(39). In particular, the solution procedure by means of GDQ technique has been implemented in a MATLAB code. 

Finally, the results in terms of frequencies are obtained using the eigs function of MATLAB program. 

It is worth noting that, with the present approach, differing from the finite element method, no integration occurs 

prior to the global assembly of the linear system, and this leads to a further computational cost saving in favour of 

the differential quadrature technique. 

 

5. Results and Discussion 

This section introduces some results and considerations about the free vibration problem of functionally graded 

parabolic panels and shells of revolution. The analysis has been carried out by means of numerical procedures 

illustrated above. 

No literature is available about the results of the GDQ solution for free vibrations of FGM shells with parabolic 

meridian. Several attempts to validate the present formulations have been made for the isotropic and anisotropic 

cases and can be found in the PhD Thesis by Tornabene (2007) and in articles by Tornabene and Viola (2007, 2008). 

In this work, the frequency parameters from the present formulations are in good agreement with the results 

presented in the literature and obtained with the finite element method. 

Regarding the functionally graded materials, their two constituents are taken to be zirconia (ceramic) and aluminum 

(metal). Young’s modulus, Poisson’s ratio and mass density for the zirconia are 168GPaCE = , 0.3Cν = , 

35700Kg mCρ = , and for the aluminum are 70GPaME = , 0.3Mν = , 32707 Kg mMρ = , respectively. The 

details regarding the geometry of the structures considered are indicated below: 
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1. Toro-parabolic panel (C-F-C-F)/(S-F-S-F): 1 0 09, 9m, 0.4m, 3m, 3m, 2m, 120bR h s s S ϑ= = = = = − = = °k ; 

2. Parabolic panel (C-F-F-F): 1 0 08, 0m, 0.2m, 4m, 1m, 2m, 120bR h s s S ϑ= = = = = = = °k ; 

3. Parabolic toroid (F-C): 1 0 04.5, 6m, 0.3m, 0m, 3m, 2m, 360bR h s s S ϑ= = = = = − = = °k ; 

4. Parabolic dome (C-F): 1 0 08, 0m, 0.2m, 4m, 1m, 2m, 360bR h s s S ϑ= = = = = = = °k . 

The geometrical boundary conditions for the shell panel are identified by the following convention. For example, the 

symbolism C-S-C-F indicates that the edges 1ϕ ϕ= , 0s s= , 0ϕ ϕ= , 0s =  are clamped, simply supported, clamped 

and free, respectively (Fig. 6). For the complete shell of revolution, for example, the symbolism C-F indicates that 

the edges 1ϕ ϕ=  and 0ϕ ϕ=  are clamped and free, respectively. In this case, the missing boundary conditions are 

the kinematic and physical compatibility conditions that are applied at the same meridian for 0s =  and 0 02s Rπ= . 

In Figs. 7-10, the first mode shapes for the 1 ( 1/ 0.5 / 2 / 1)a b c pFGM = = = =  toro-parabolic panel (C-F-C-F), the 

1 ( 1/ 1/ 3 / 1)a b c pFGM = = = =  parabolic panel (C-F-F-F), the 1 ( 0 / 0.5 / 2 / 1)a b c pFGM = =− = =  parabolic toroid (F-C) and the 

1 ( 0.8 / 0.2 / 3 / 1)a b c pFGM = = = =  parabolic dome (C-F) are illustrated. In particular, for the parabolic toroid and dome, there are 

some symmetrical mode shapes due to the symmetry of the problem considered in 3D space. In these cases, the 

symmetrical mode shapes have been summarized in one figure. The mode shapes of all the structures under 

discussion have been evaluated by the authors. By using the authors’ MATLAB code, these mode shapes have been 

reconstructed in three-dimensional view by means of considering the displacement field (2) after solving the 

eigenvalue problem (39). 

Tables 1-6 illustrate the first ten frequencies of the four structures under consideration. These tables show how by 

varying only the power-law index p  of the volume fraction CV  it is possible to modify natural frequencies of FGM 

panels and shells of revolution. For the GDQ results presented in Tables 1-6, the grid distributions (26) with 

21N M= =  have been taking into account. The results are obtained using various values of the power-law exponent 

p  (i.e. 0p =  ceramic rich and p = ∞  metal rich) for the two power-law distributions 1 ( / / / )a b c pFGM  and 

2 ( / / / )a b c pFGM . For each power-law distribution the same values of the three parameters , ,a b c  are chosen. 

Tables 1-6 show that by considering the two power-law distributions 1 ( / / / )a b c pFGM  and 2 ( / / / )a b c pFGM  with the 

same values of the four parameters , , ,a b c p  the natural frequencies are different. In fact, for curved shells it is 

important, from the dynamic vibration point of view, to know if the top surface of the shell ( )2hζ =  is ceramic or 

metal rich and, inversely, if the bottom surface ( )2hζ = −  is metal or ceramic rich, respectively. Using one of the 
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two power-law distributions 1 ( / / / )a b c pFGM  and 2 ( / / / )a b c pFGM  changes the dynamic behaviour of the shell structure. 

Furthermore, Tables 1-6 show the effect of the power-law distribution choice on the frequency parameters. It is 

worth noting that the difference between 1 ( / / / )a b c pFGM  and 2 ( / / / )a b c pFGM  shell frequencies increases with 

increasing values of the shell thickness because of the curvature of the shell. From tables 1-6 it is evident that 

functionally graded shell and panel structures behave like the corresponding homogeneous structures ( 0p = ), for 

0.6p =  and 1p = . A similar behaviour was pointed out before by Abrate (2006) for the functionally graded plate. 

The influence of the index p  on the vibration frequencies is also shown in Figs. 11-16. As it can be seen from 

figures, natural frequencies of FGM panels and shells of revolution often present an intermediate value between the 

natural frequencies of the limit cases of homogeneous shells of zirconia ( 0p = ) and of aluminium ( p = ∞ ), as 

expected. However, natural frequencies sometimes exceed the limit cases, as evident in Figs. 11, 15 and 16. This 

fact can depend on various parameters, such as the geometry of the shell, the boundary conditions, the power-law 

distribution profile, etc. In particular, for specific values of the four parameters , , ,a b c p  it is possible to exceed or 

approach the ceramic limit case as shown in Figs. 11-16, even if the ceramic content is not high. Increasing the 

values of the parameter index p  up to infinity reduces the ceramic content and at the same time increases the metal 

percentage. Therefore, it is possible to obtain dynamic characteristics similar or better than the isotropic ceramic 

limit case by choosing suitable values of the four parameters , , ,a b c p . 

Each of Figs. 11-16 is divided into two parts. On the left, figures (a) show the first four frequencies versus the 

power-law index p  obtained using the 1 ( / / / )a b c pFGM  distribution, while on the right, figures (b) illustrate the first 

four frequencies versus the power-law index p  obtained using the 2 ( / / / )a b c pFGM  distribution. 

Fig. 11 shows the first four natural frequencies of the toro-parabolic panel (C-F-C-F) versus the power-law index p  

for various values of the parameter b , when 1, 2a c= = . Figs. 11(a) illustrate the variation of the first four 

frequencies obtained using the 1 ( 1/0 1/ 2/ )a b c pFGM = ≤ ≤ =  distribution, while in figures 11(b) the first four frequencies for 

the 2 ( 1/0 1/ 2/ )a b c pFGM = ≤ ≤ =  distribution are reported. It is interesting to note that, for the structures under consideration, 

frequencies attain a minimum value for a shell made only of metal, due to the fact that aluminium has a much 

smaller Young’s modulus than zirconia. In particular, it is evident that in Fig. 11 for low values of the parameter b  

most frequencies exhibit a fastly decreasing behaviour from the ceramic limit case ( 0p = ) varying the power-law 

index from 0p =  to 1p ≈ . For values of p  greater than unity frequencies increase until a maximum value. After 

this maximum, frequencies slowly decrease by increasing the power-law exponent p  and tend to the metal limit 
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case ( p = ∞ ). This is expected because the more p  increases the more the ceramic content is low and the FGM 

shell approaches the case of the fully metal shell. Otherwise, in Fig. 11 for values of the parameter b  approaching 

the unity the frequency curves present a fastly rising behaviour up to a maximum value by increasing the power-law 

index p  and exceed the ceramic limit case. After this maximum, frequencies gradually decrease. 

In the same way, by setting different values of parameters ,a c , Figs. 12-13 ( 1, 1a c= = ) and 14 ( 0, 2a c= = ) show 

the influence of the parameter b  on the dynamic vibration of the toro-parabolic panel (S-F-S-F), of the parabolic 

panel (C-F-F-F) and of the parabolic toroid (F-C), respectively. In Figs. 12 and 13 the parameter b  varies from 0  to 

1 , as in Fig. 11, while in Fig. 14 from 1−  to 0 . Moreover, the influence of the parameter a  on the dynamic 

vibration of parabolic dome (C-F) is investigated in Fig. 15 by considering 0.2, 3b c= = . In this case the parameter 

a  varies from 0.2  to 1.2 . It can be noted that in Fig. 15, for low values of the parameter a , most frequencies 

exhibit a fastly decreasing behaviour from the ceramic limit case ( 0p = ) varying the power-law index from 0p =  

to 1p ≈ , while for values of p  greater than unity frequencies increase until a maximum value. After this maximum, 

frequencies slowly decrease by increasing the power-law exponent p  and tend to the metal limit case ( p = ∞ ). 

Otherwise, approaching the value 1.2a =  the frequency curves do not present a knee as previously described, but 

present a fast rising behaviour up to a maximum value by increasing the power-law index p  and exceed the ceramic 

limit case. After this maximum, frequencies gradually decrease. This behaviour depends on the type of vibration 

mode. It is worth noting that some frequencies do not present a knee or a maximum value as described above, but 

decrease gradually from the ceramic limit case ( 0p = ) to the metal limit case ( p = ∞ ) by increasing the power-law 

exponent p . In particular, the types of vibration mode that can present a monotone gradually decrease of frequency 

are torsional, bending and axisymmetric mode shapes, while the circumferential and radial mode shapes are 

characterized by a knee or a maximum value, as it can be seen by comparing the mode shapes with variations of 

frequencies as functions of the power-law exponent p . For examples, the frequencies 3,4f  and 7f  of the parabolic 

dome of Fig. 15 correspond to bending and axisymmetric mode shape as can be observed from Fig. 10, respectively. 

However, this behaviour depends on the geometry of the shell and on its boundary conditions. 

Finally, in Fig. 16 the influence of the parameter c  on the dynamic vibration of parabolic panel (C-F-F-F) is 

investigated by considering 1, 1a b= = . The parameter c  varies from 1  to 11 . It can be noted that due to the effect of 

the parameter c  frequencies exhibit a fastly rising behaviour up to a maximum value exceeding the ceramic limit 

case ( 0p = ) by varying the power-law index from 0p =  to 10p ≈ . After this maximum, frequencies gradually 

decrease by increasing the power-law exponent p  and tend to the metal limit case ( p = ∞ ). The value of the 
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maximum depends on the value of c . By increasing the value of the parameter c  ( 1c > ) the maximum gradually 

decreases. 

In order to investigate the GDQ procedure convergence, the first ten frequencies of the functionally graded toro-

parabolic panel (C-F-C-F) for the 1 ( 1/ 0 / 0 / 5)a b c pFGM = = = =  power-law distribution are examinated by varying the 

number of grid points. Results are collected in Table 7 when the number of points of the Chebyshev-Gauss-Lobatto 

grid distribution (26) is increased from 11N M= =  up to 31N M= = . It can be seen that the proposed GDQ 

formulation well captures the dynamic behaviour of the system by using only 21 points in two co-ordinate 

directions. It can also be seen that for the system under investigation, the formulation is stable while increasing the 

number of points and that the use of 21 points guarantees convergence of the procedure. Analogous and similar 

convergence results can be obtained for all the shell structures considered in this work. A wide convergence study of  

GDQ solutions for shell structures has been shown in the PhD thesis by Tornabene (2007) and in the articles by 

Tornabene and Viola (2007, 2008). 

 

6. Conclusion Remarks and Summary 

The Generalized Differential Quadrature Method has been used to study the free vibration analysis of functionally 

graded parabolic thick panels and shells of revolution. The First-order Shear Deformation Theory has been adopted. 

The dynamic equilibrium equations discretized with the present method lead to a standard linear eigenvalue 

problem. The complete 2D differential system, governing the structural problem, has been solved. The vibration 

results are obtained without the modal expansion methodology. Thus, complete revolution shells are obtained as 

special cases of shell panels by satisfying the kinematic and physical compatibility. The GDQ method provides 

converging results for all the cases as the number of grid points increases. Convergence and stability have been 

shown for one of the four structures considered. 

In this study, ceramic-metal graded shells of revolution with four parameter power-law distributions of the volume 

fraction of the constituents in the thickness direction have been worked out. Various material profiles through the 

functionally graded shell thickness have been illustrated by varying the four parameters of power-law distributions. 

Symmetric and asymmetric volume fraction profiles have been presented. The numerical results have shown the 

influence of the power-law exponent, of the power-law distribution choice and of the choice of the four parameters 

on the free vibrations of functionally graded shells considered. The analysis provides information about the dynamic 

response of parabolic shell structures for different proportions of the ceramic and metal. For curved shells and 

panels, it has been observed that the influence of the distribution choice is marked and can be considered from the 
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structural design point of view. In general, it can be pointed out that the frequency vibration of functionally graded 

shells and panels of revolution depends on the type of vibration mode, thickness, power-law distribution, power-law 

exponent and the curvature of the structure. 
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The following are the equilibrium operators in equations (10): 
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Figure 1. Co-ordinate system of doubly curved shell. 

 
 

 

 
 

Figure 2. Shell geometry. 
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Figure 3. Variations of the ceramic volume fraction CV  through the thickness for different values of the power-law 
index p : (a) 1 ( 1/ 0 / / )a b c pFGM = = , (b) 2 ( 1/ 0 / / )a b c pFGM = = . 

 

  

  
 
Figure 4. Variations of the ceramic volume fraction CV  through the thickness for different values of the power-law 
index p : (a) 1 ( 1/ 1/ 2 / )a b c pFGM = = = , (b) 2 ( 1/ 1/ 2 / )a b c pFGM = = = , (c) 1 ( 1/ 1/ 4 / )a b c pFGM = = = , (d) 2 ( 1/ 1/ 4 / )a b c pFGM = = = . 
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Figure 5. Variations of the ceramic volume fraction CV  through the thickness for different values of the three 
parameters , ,a b c  and the power-law index p : (a) 1 ( 1/ 0.5 / 2 / )a b c pFGM = = = , (b) 2 ( 1/ 0.5 / 2 / )a b c pFGM = = = , (c) 

1 ( 0.8 / 0.2 / 3 / )a b c pFGM = = = , (d) 2 ( 0.8 / 0.2 / 3 / )a b c pFGM = = = , (e) 1 ( 0 / 0.5 / 2 / )a b c pFGM = = = , (f) 2 ( 0 / 0.5 / 2 / )a b c pFGM = = = . 
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Figure 6. C-G-L grid distribution on a parabolic panel. 
 
 
 

 
Mode shape 1 

 
Mode shape 2 

 
Mode shape 3 

 
Mode shape 4 

 
Mode shape 5 

 
Mode shape 6 

 
Mode shape 7 

 
Mode shape 8 

 
Mode shape 9 

 
Figure 7. Mode shapes for the 1 ( 1/ 0.5 / 2 / 1)a b c pFGM = = = =  toro-parabolic panel C-F-C-F. 
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Mode shape 1 

 
Mode shape 2 

 
Mode shape 3 
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Figure 8. Mode shapes for the 1 ( 1/ 1/ 3 / 1)a b c pFGM = = = =  parabolic panel C-F-F-F. 
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Figure 9. Mode shapes for the 1 ( 0 / 0.5 / 2 / 1)a b c pFGM = =− = =  parabolic toroid F-C. 
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Mode shapes 1-2 

 
Mode shapes 3-4 
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Figure 10. Mode shapes for the 1 ( 0.8 / 0.2 / 3 / 1)a b c pFGM = = = =  parabolic dome C-F. 
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Figure 11. The first four frequencies of functionally graded toro-parabolic panel (C-F-C-F) versus the power-law 
exponent p  for various values of the parameter b : (a) 1 ( 1/ 0 1/ 2 / )a b c pFGM = ≤ ≤ = , (b) 2 ( 1/ 0 1/ 2 / )a b c pFGM = ≤ ≤ = . 
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Figure 12. The first four frequencies of functionally graded toro-parabolic panel (S-F-S-F) versus the power-law 
exponent p  for various values of the parameter b : (a) 1 ( 1/ 0 1/ 1/ )a b c pFGM = ≤ ≤ = , (b) 2 ( 1/ 0 1/ 1/ )a b c pFGM = ≤ ≤ = . 
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Figure 13. The first four frequencies of functionally graded parabolic panel (C-F-F-F) versus the power-law exponent 
p  for various values of the parameter b : (a) 1 ( 1/ 0 1/ 1/ )a b c pFGM = ≤ ≤ = , (b) 2 ( 1/ 0 1/ 1/ )a b c pFGM = ≤ ≤ = . 
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Figure 14. The first four frequencies of functionally graded parabolic toroid (F-C) versus the power-law exponent p  
for various values of the parameter b : (a) 1 ( 0 / 1 0 / 2 / )a b c pFGM = − ≤ ≤ = , (b) 2 ( 0 / 1 0 / 2 / )a b c pFGM = − ≤ ≤ = . 
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Figure 15. The first four frequencies of functionally graded parabolic dome (C-F) versus the power-law exponent p  
for various values of the parameter a : (a) 1 (0.2 1.2 / 0.2 / 3 / )a b c pFGM ≤ ≤ = = , (b) 2 (0.2 1.2 / 0.2 / 3 / )a b c pFGM ≤ ≤ = = . 
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Figure 16. The first four frequencies of functionally graded parabolic panel (C-F-F-F) versus the power-law exponent 
p  for various values of the parameter c : (a) 1 ( 1/ 1/1 11/ )a b c pFGM = = ≤ ≤ , (b) 2 ( 1/ 1/1 11/ )a b c pFGM = = ≤ ≤ . 
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Table 1. The first ten frequencies for the functionally graded toro-parabolic panel (C-F-C-F) as a function of the 
power-law exponent p , for 1, 0.5, 2a b c= = = . 

1 ( 1/ 0.5 / 2 / )a b c pFGM = = =  power-law distribution 
Frequencies 

[Hz] 
0p =  0.6p =  1p =  5p =  20p =  50p =  100p =  p = ∞  

1f  99.88 99.73 99.57 98.95 97.51 95.59 94.66 93.56 
2f  103.74 103.55 103.36 102.57 101.03 99.15 98.24 97.17 
3f  111.46 111.23 111.01 110.06 108.42 106.46 105.52 104.41 
4f  130.73 130.40 130.11 128.77 126.84 124.69 123.67 122.45 
5f  158.23 157.76 157.38 155.49 153.14 150.72 149.57 148.21 
6f  184.79 184.26 183.82 181.53 178.67 175.96 174.66 173.09 
7f  191.80 191.39 191.02 189.01 185.90 182.89 181.43 179.65 
8f  193.54 192.97 192.51 189.94 186.85 184.15 182.86 181.29 
9f  202.18 201.81 201.45 199.68 196.50 193.07 191.40 189.38 

10f  208.93 208.32 207.83 205.00 201.62 198.76 197.38 195.70 

2 ( 1/ 0.5 / 2 / )a b c pFGM = = =  power-law distribution 
Frequencies 

[Hz] 
0p =  0.6p =  1p =  5p =  20p =  50p =  100p =  p = ∞  

1f  99.88 99.24 98.81 97.36 96.78 95.27 94.50 93.56 
2f  103.74 103.05 102.59 100.96 100.29 98.82 98.08 97.17 
3f  111.46 110.73 110.24 108.46 107.69 106.14 105.36 104.41 
4f  130.73 129.88 129.30 127.10 126.07 124.36 123.50 122.45 
5f  158.23 157.19 156.50 153.69 152.32 150.36 149.39 148.21 
6f  184.79 183.53 182.70 179.27 177.65 175.51 174.42 173.09 
7f  191.80 190.43 189.54 185.98 184.51 182.28 181.11 179.65 
8f  193.54 192.18 191.29 187.51 185.74 183.66 182.60 181.29 
9f  202.18 200.79 199.86 196.38 194.98 192.39 191.05 189.38 

10f  208.93 207.45 206.48 202.32 200.40 198.22 197.10 195.70 
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Table 2. The first ten frequencies for the functionally graded toro-parabolic panel (S-F-S-F) as a function of the 
power-law exponent p , for 1, 0.5, 1a b c= = = . 

1 ( 1/ 0.5 / 1/ )a b c pFGM = = =  power-law distribution 
Frequencies 

[Hz] 
0p =  0.6p =  1p =  5p =  20p =  50p =  100p =  p = ∞  

1f  72.54 72.08 71.79 70.69 71.10 69.96 69.14 67.94 
2f  77.77 77.31 77.01 75.74 75.93 74.80 74.00 72.85 
3f  87.86 87.06 86.57 84.57 85.04 84.12 83.38 82.30 
4f  110.17 108.93 108.18 105.03 105.92 105.11 104.36 103.19 
5f  139.09 137.67 136.81 133.14 134.08 132.92 131.89 130.28 
6f  152.89 152.32 151.89 150.65 152.21 149.02 146.65 143.21 
7f  155.81 155.13 154.65 153.20 154.73 151.56 149.25 145.94 
8f  164.79 163.98 163.42 161.66 163.45 160.26 157.86 154.36 
9f  171.59 169.95 168.95 164.70 165.55 163.98 162.69 160.73 

10f  176.50 175.32 174.56 172.14 174.42 171.28 168.86 165.33 

2 ( 1/ 0.5 / 1/ )a b c pFGM = = =  power-law distribution 
Frequencies 

[Hz] 
0p =  0.6p =  1p =  5p =  20p =  50p =  100p =  p = ∞  

1f  72.54 71.97 71.62 70.25 70.71 69.79 69.05 67.94 
2f  77.77 77.17 76.80 75.19 75.45 74.58 73.89 72.85 
3f  87.86 87.47 87.22 86.12 85.99 84.60 83.65 82.30 
4f  110.17 109.92 109.72 108.75 108.26 106.29 105.00 103.19 
5f  139.09 138.58 138.21 136.51 136.39 134.08 132.51 130.28 
6f  152.89 151.09 149.99 145.97 148.89 147.38 145.78 143.21 
7f  155.81 154.15 153.15 149.47 151.78 150.13 148.52 145.94 
8f  164.79 163.09 162.04 158.24 160.94 159.03 157.21 154.36 
9f  171.59 170.91 170.42 168.16 167.92 165.18 163.34 160.73 

10f  176.50 175.04 174.14 171.12 173.11 170.68 168.58 165.33 
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Table 3. The first ten frequencies for the functionally graded parabolic panel (C-F-F-F) as a function of the power-law 
exponent p , for 1, 0.5, 1a b c= = = . 

1 ( 1/ 0.5 / 1/ )a b c pFGM = = =  power-law distribution 
Frequencies 

[Hz] 
0p =  0.6p =  1p =  5p =  20p =  50p =  100p =  p = ∞  

1f  60.64 60.27 60.04 59.19 59.56 58.59 57.86 56.80 
2f  76.77 76.36 76.11 74.75 73.98 73.14 72.63 71.90 
3f  115.49 114.77 114.31 112.72 113.60 111.69 110.25 108.17 
4f  154.07 153.07 152.43 150.55 152.57 149.76 147.57 144.32 
5f  170.55 169.65 169.08 166.19 164.95 162.88 161.57 159.75 
6f  215.38 214.11 213.31 210.11 210.62 207.39 205.07 201.74 
7f  244.57 243.02 242.03 238.87 241.38 237.12 233.87 229.08 
8f  283.57 281.78 280.64 276.89 279.48 274.67 271.00 265.61 
9f  289.98 288.19 287.04 283.04 285.08 280.34 276.80 271.62 

10f  302.10 300.14 298.89 295.03 298.26 293.07 289.04 282.97 

2 ( 1/ 0.5 / 1/ )a b c pFGM = = =  power-law distribution 
Frequencies 

[Hz] 
0p =  0.6p =  1p =  5p =  20p =  50p =  100p =  p = ∞  

1f  60.64 60.15 59.84 58.71 59.25 58.43 57.78 56.80 
2f  76.77 76.23 75.91 74.27 73.68 72.99 72.55 71.90 
3f  115.49 114.54 113.95 111.84 113.01 111.40 110.10 108.17 
4f  154.07 152.72 151.89 149.23 151.69 149.33 147.34 144.32 
5f  170.55 169.33 168.58 164.94 164.10 162.46 161.35 159.75 
6f  215.38 213.69 212.64 208.45 209.49 206.83 204.78 201.74 
7f  244.57 242.48 241.19 236.82 239.98 236.44 233.50 229.08 
8f  283.57 281.19 279.72 274.59 277.93 273.90 270.59 265.61 
9f  289.98 287.60 286.13 280.78 283.54 279.59 276.40 271.62 

10f  302.10 299.50 297.89 292.63 296.72 292.31 288.62 282.97 
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Table 4. The first ten frequencies for the functionally graded parabolic panel (C-F-F-F) as a function of the power-law 
exponent p , for 1, 0.5, 3a b c= = = . 

1 ( 1/ 1/ 3 / )a b c pFGM = = =  power-law distribution 
Frequencies 

[Hz] 
0p =  0.6p =  1p =  5p =  20p =  50p =  100p =  p = ∞  

1f  60.64 61.18 61.48 62.43 60.07 58.40 57.66 56.80 
2f  76.77 76.86 76.87 76.22 74.07 72.96 72.48 71.90 
3f  115.49 116.58 117.20 119.29 114.67 111.33 109.86 108.17 
4f  154.07 156.00 157.06 160.90 154.31 149.24 146.97 144.32 
5f  170.55 170.94 171.11 170.51 165.34 162.44 161.19 159.75 
6f  215.38 216.88 217.69 219.93 212.07 206.75 204.43 201.74 
7f  244.57 247.25 248.73 253.90 243.83 236.32 232.97 229.08 
8f  283.57 286.52 288.15 293.66 282.21 273.76 270.00 265.61 
9f  289.98 292.68 294.17 298.94 287.60 279.44 275.83 271.62 

10f  302.10 305.58 307.46 313.13 301.21 292.11 287.93 282.97 

2 ( 1/ 1/ 3 / )a b c pFGM = = =  power-law distribution 
Frequencies 

[Hz] 
0p =  0.6p =  1p =  5p =  20p =  50p =  100p =  p = ∞  

1f  60.64 61.16 61.44 62.31 59.99 58.36 57.64 56.80 
2f  76.77 76.83 76.83 76.11 74.00 72.93 72.46 71.90 
3f  115.49 116.54 117.12 119.07 114.52 111.26 109.83 108.17 
4f  154.07 155.93 156.95 160.57 154.08 149.13 146.91 144.32 
5f  170.55 170.88 171.01 170.20 165.12 162.33 161.13 159.75 
6f  215.38 216.79 217.56 219.51 211.77 206.61 204.35 201.74 
7f  244.57 247.14 248.56 253.39 243.47 236.14 232.88 229.08 
8f  283.57 286.40 287.96 293.09 281.81 273.56 269.89 265.61 
9f  289.98 292.57 293.98 298.38 287.21 279.25 275.72 271.62 

10f  302.10 305.45 307.26 312.59 300.82 291.92 287.83 282.97 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



M
ANUSCRIP

T

 

ACCEPTE
D

ARTICLE IN PRESS

 40 
 

Table 5. The first ten frequencies for the functionally graded parabolic toroid (F-C) as a function of the power-law 
exponent p , for 0, 0.5, 2a b c= = − = . 

1 ( 0 / 0.5 / 2 / )a b c pFGM = =− =  power-law distribution 
Frequencies 

[Hz] 
0p =  0.6p =  1p =  5p =  20p =  50p =  100p =  p = ∞  

1f  52.59 52.37 52.24 51.47 51.16 50.99 50.77 49.26 
2f  52.59 52.37 52.24 51.47 51.16 50.99 50.77 49.26 
3f  59.27 58.97 58.79 57.79 57.75 57.75 57.56 55.52 
4f  59.27 58.97 58.79 57.79 57.75 57.75 57.56 55.52 
5f  59.69 59.46 59.32 58.47 58.08 57.85 57.58 55.91 
6f  59.69 59.46 59.32 58.47 58.08 57.85 57.58 55.91 
7f  74.38 74.04 73.83 72.53 72.61 72.53 72.24 69.66 
8f  74.76 74.29 73.99 72.53 73.01 73.36 73.21 70.03 
9f  74.77 74.29 74.00 72.68 73.01 73.36 73.22 70.03 

10f  96.51 95.78 95.33 93.20 94.42 95.26 95.17 90.39 

2 ( 0 / 0.5 / 2 / )a b c pFGM = =− =  power-law distribution 
Frequencies 

[Hz] 
0p =  0.6p =  1p =  5p =  20p =  50p =  100p =  p = ∞  

1f  52.59 52.28 52.09 51.05 50.70 50.61 50.47 49.26 
2f  52.59 52.28 52.09 51.05 50.70 50.61 50.47 49.26 
3f  59.27 58.86 58.62 57.34 57.24 57.34 57.20 55.52 
4f  59.27 58.86 58.62 57.34 57.24 57.34 57.20 55.52 
5f  59.69 59.34 59.12 57.94 57.50 57.37 57.24 55.91 
6f  59.69 59.34 59.12 57.94 57.50 57.37 57.24 55.91 
7f  74.38 73.84 73.52 71.83 71.65 71.74 71.61 69.67 
8f  74.76 74.15 73.78 71.95 72.38 72.85 72.80 70.03 
9f  74.77 74.15 73.78 71.95 72.38 72.85 72.81 70.04 

10f  96.51 95.60 95.06 92.47 93.62 94.60 94.65 90.40 
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Table 6. The first ten frequencies for the functionally graded parabolic dome (C-F) as a function of the power-law 
exponent p , for 0.8, 0.2, 3a b c= = = . 

1 ( 0.8 / 0.2 / 3 / )a b c pFGM = = =  power-law distribution 
Frequencies 

[Hz] 
0p =  0.6p =  1p =  5p =  20p =  50p =  100p =  p = ∞  

1f  125.16 124.31 123.78 122.15 120.81 119.14 118.29 117.23 
2f  125.16 124.31 123.78 122.15 120.81 119.14 118.29 117.23 
3f  171.58 170.40 169.66 165.63 162.83 161.72 161.25 160.72 
4f  171.58 170.40 169.66 165.63 162.83 161.72 161.25 160.72 
5f  179.28 178.06 177.29 175.08 173.28 170.80 169.52 167.93 
6f  179.28 178.06 177.29 175.08 173.28 170.80 169.52 167.93 
7f  207.82 206.41 205.53 201.30 198.19 196.43 195.62 194.66 
8f  220.98 219.46 218.50 216.48 214.70 211.17 209.32 206.99 
9f  220.99 219.47 218.51 216.49 214.71 211.18 209.33 206.99 

10f  225.61 224.07 223.10 219.28 216.40 213.97 212.77 211.32 

2 ( 0.8 / 0.2 / 3 / )a b c pFGM = = =  power-law distribution 
Frequencies 

[Hz] 
0p =  0.6p =  1p =  5p =  20p =  50p =  100p =  p = ∞  

1f  125.16 123.96 123.25 121.17 120.34 118.93 118.18 117.23 
2f  125.16 123.96 123.25 121.17 120.34 118.93 118.18 117.23 
3f  171.58 170.07 169.16 164.75 162.41 161.52 161.15 160.72 
4f  171.58 170.07 169.16 164.75 162.41 161.52 161.15 160.72 
5f  179.28 177.58 176.55 173.72 172.62 170.49 169.36 167.93 
6f  179.28 177.58 176.55 173.72 172.62 170.49 169.36 167.93 
7f  207.82 205.92 204.79 199.93 197.53 196.13 195.46 194.66 
8f  220.98 218.86 217.58 214.77 213.86 210.79 209.12 206.99 
9f  220.99 218.87 217.59 214.78 213.87 210.80 209.13 206.99 

10f  225.61 223.52 222.27 217.74 215.66 213.63 212.60 211.32 
 
 
 
Table 7. The first ten frequencies for the functionally graded toro-parabolic panel (C-F-C-F) for an increasing the 
number of grid points N M=  of the Chebyshev-Gauss-Lobatto distribution. 

1 ( 1/ 0 / 0 / 5)a b c pFGM = = = =  power-law distribution 
Frequencies 

[Hz] 11N M= =  15N M= =  17N M= =  21N M= =  25N M= =  29N M= =  31N M= =  

1f  98.12 99.18 99.17 99.14 99.13 99.12 99.12 
2f  101.71 102.70 102.71 102.71 102.71 102.72 102.72 
3f  109.11 110.16 110.18 110.20 110.20 110.20 110.20 
4f  129.04 128.96 128.92 128.87 128.84 128.83 128.83 
5f  154.10 155.43 155.50 155.55 155.56 155.56 155.56 
6f  181.86 181.65 181.60 181.53 181.50 181.49 181.49 
7f  188.10 189.01 189.05 189.07 189.07 189.07 189.07 
8f  191.16 189.96 189.92 189.88 189.86 189.85 189.85 
9f  198.51 199.81 199.85 199.86 199.86 199.86 199.86 

10f  203.82 204.87 204.91 204.91 204.92 204.92 204.92 
 


