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Basing on the First-order Shear Deformation Theory (FSDT), this paper focuses on the dynamic behaviour of moderately thick functionally graded parabolic panels and shells of revolution. A generalization of the power-law distribution presented in literature is proposed. Two different four parameter power-law distributions are considered for the ceramic volume fraction. Some symmetric and asymmetric material profiles through the functionally graded shell thickness are illustrated by varying the four parameters of power-law distributions. The governing equations of motion are expressed as functions of five kinematic parameters. For the discretization of the system equations the

Generalized Differential Quadrature (GDQ) method has been used. Numerical results concerning four types of parabolic shell structures illustrate the influence of the parameters of the power-law distribution on the mechanical behaviour of shell structures considered.

Introduction

Functionally graded materials (FGM) are a class of composites that have a smooth and continuous variation of material properties from one surface to another and thus can alleviate the stress concentrations found in laminated composites. Typically, these materials consist of a mixture of ceramic and metal, or a combination of different materials. Extensive research work has been carried out on this new class of composites since the concept itself was first introduced and proposed in the late 1980s in Japan. One of the advantages of using functionally graded materials is that they can survive environments with high temperature gradients, while maintaining structural integrity. Furthermore, the continuous change in the compositions leads to a smooth change in the mechanical properties, which has many advantages over the laminated composites, where the delamination and cracks are most likely to initiate at the interfaces due to the abrupt variation in mechanical properties between laminae.

In the last years, some researchers have analyzed various characteristics of functionally graded structures [START_REF] Ng | Effect of FGM materials on the parametric resonance of plate structures[END_REF][START_REF] Yang | Large amplitude vibration of thermo-electro-mechanically stressed FGM laminated plates[END_REF][START_REF] Della Croce | Finite elements for functionally graded Reissner-Mindlin plates[END_REF][START_REF] Liew | Finite element method for the feedback control of FGM shells in the frequency domain via piezoelectric sensors and actuators[END_REF][START_REF] Wu | Asymptotic DQ Solutions of Functionally Graded Annular Spherical Shells[END_REF]Elishakoff et al., 2005;[START_REF] Patel | Free vibration analysis of functionally graded elliptical cylindrical shells using higher-order theory[END_REF][START_REF] Abrate | Free vibration, buckling, and static deflection of functionally graded plates[END_REF][START_REF] Pelletier | An exact solution for the steady-state thermoelastic response of functionally graded orthotropic cylindrical shells[END_REF][START_REF] Zenkour | Generalized shear deformation theory for bending analysis of functionally graded plates[END_REF][START_REF] Arciniega | Large deformation analysis of functionally graded shells[END_REF][START_REF] Nie | Semi-analytical solution for three dimensional vibration of functionally graded circular plates[END_REF][START_REF] Roque | A radial basis function for the free vibration analysis of functionally graded plates using refined theory[END_REF][START_REF] Yang | Free vibration and parametric resonance of shear deformable functionally graded cylindrical panels[END_REF].

The aim of this paper is to study the dynamic behaviour of functionally graded parabolic shell structures derived from shells of revolution, which are very common structural elements. As a matter of fact, the approach for studying the vibration of isotropic shell [START_REF] Tornabene | 2-D Solution for free vibrations of parabolic shells using generalized differential quadrature method[END_REF]) is now extended to shells made of four parametric functionally graded materials.

The work is based on the First-order Shear Deformation Theory (FSDT) [START_REF] Reddy | Mechanics of Laminated Composites Plates and Shells[END_REF]. The geometric model refers to a moderately thick shell, and the effects of transverse shear deformation as well as rotary inertia are taken into account. Several studies have been presented earlier for the vibration analysis of such revolution shells and the most popular numerical tool in carrying out these analyses was the finite element method [START_REF] Reddy | Mechanics of Laminated Composites Plates and Shells[END_REF]. The generalized collocation method based on the ring element method has also been applied. With regard to the latter method, each static and kinematic variable is transformed into a theoretically infinite Fourier series of harmonic components, with respect to the circumferential co-ordinate [START_REF] Viola | method for the harmonic dynamic analysis of rotational shell structural elements[END_REF]Artioli et al., 2005;Artioli andViola, 2005, 2006). In other words, when dealing with a completely closed shell, the 2-D problem can be reduced using standard Fourier decomposition. In a panel, however, it is not possible to perform such a reduction operation, and the twodimensional field must be directly dealt with. In this paper, the governing equations of motion are a set of five twodimensional partial differential equations with variable coefficients. These fundamental equations are expressed in terms of kinematic parameters and can be obtained by combining the three basic sets of equations, namely equilibrium, kinematic and constitutive equations.
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3 This paper is motivated by the lack of studies in the technical literature about the free vibration analysis of functionally graded parabolic panels and shells and the effect of the power-law distribution on their mechanical behaviour.

Firstly, two different power-law variations of the volume fraction of the constituents in the thickness direction are proposed. The effect of the power-law exponent and of the power-law distribution choice on the mechanical behaviour of functionally graded parabolic panels and shells is investigated.

Symmetric and asymmetric volume fraction profiles are presented in this paper. Classical volume fraction profiles can be obtained as special cases of the general distribution laws presented in this work. For the first power-law distribution, the bottom surface of the structure is ceramic rich, whereas the top surface can be metal rich, ceramic rich or made of a mixture of the two constituents and, on the contrary, for the second power-law distribution. The homogeneous isotropic material can be regarded as a special case of functionally graded materials, too. From this point of view, the present work generalizes the paper by [START_REF] Tornabene | 2-D Solution for free vibrations of parabolic shells using generalized differential quadrature method[END_REF].

Secondly, another aim of the present paper is to demonstrate an efficient application of the differential quadrature approach [START_REF] Viola | Vibration analysis of damaged circular arches with varying cross-section[END_REF][START_REF] Tornabene | Modellazione e Soluzione di Strutture a Guscio in Materiale Anisotropo[END_REF][START_REF] Tornabene | Modellazione e Soluzione di Strutture a Guscio in Materiale Anisotropo[END_REF]Viola, 2007, 2008;[START_REF] Viola | Analytical and numerical results for vibration analysis of multi-stepped and multi-damaged circular arches[END_REF][START_REF] Marzani | Nonconservative Stability Problems via Generalized Differential Quadrature Method[END_REF], by solving the equations of motion governing the free vibration of functionally graded thick parabolic panels and shells of revolution.

The system of second-order linear partial differential equations is solved without resorting to the one-dimensional formulation of the dynamic equilibrium of the shell. The discretization of the system by means of the Generalized Differential Quadrature method (GDQ) leads to a standard linear eigenvalue problem, where two independent variables are involved. In this way, it is possible to compute the complete assessment of the modal shapes corresponding to natural frequencies of panel structures. It should be noted that there is comparatively little literature available for these structures, compared to literature on the free vibration analysis of complete shells of revolution. In this study, complete revolution shells are obtained as special cases of shell panels by satisfying the kinematic and physical compatibility at the common meridian with 0, 2 ϑ π = .

Fundamental System for Functionally Graded Panels and Shells of Revolution

The basic configuration of the problem considered here is a doubly curved shell as shown in Fig. 1. The co-ordinates along the meridian and circumferential directions of the reference surface are ϕ and s , respectively. The distance of each point from the shell mid-surface along the normal is ζ . The shells considered are assumed to be single-layer shells of uniform thickness h . It is worth noting that, differently from the work by [START_REF] Tornabene | 2-D Solution for free vibrations of parabolic shells using generalized differential quadrature method[END_REF], the . The position of an arbitrary point within the shell material is known by the co-ordinates ϕ ( )

0 1 ϕ ϕ ϕ ≤ ≤ , s ( ) 0 0 s s ≤ ≤
upon the middle surface, and ζ directed along the outward normal n and measured from the reference surface ( )

2 2 h h ζ - ≤ ≤ .
The geometry of shells considered is a surface of revolution with a parabolic curved meridian. The parabolic meridian can be described with the following equation:

( ) 2 0 3 0 b R R x′ - - = k (1)
where ( ) R ϕ ϕ with respect to ϕ can be expressed according to the well known differential geometry formulae.

2 2 1 s d S = - k is a characteristic
As regards shell theory, this work is based on the following assumptions: (1) the transverse normal is inextensible so that the normal strain is equal to zero:

( )

, , , 0

n n s t ε ε ϕ ζ = = ;
(2) the transverse shear deformation is supposed to influence the governing equations so that normal lines to the reference surface of the shell before deformation remain straight, but not necessarily normal after deformation (a relaxed Kirchhoff-Love hypothesis); (3) the shell deflections are small and the strains are infinitesimal; (4) the shell is moderately thick and therefore it is possible to assume that the thickness-direction normal stress is negligible so that the plane assumption can be invoked:
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(5) the linear elastic behaviour of anisotropic materials is assumed; (6) the rotary inertia is also taken into account.

Consistent with the assumptions of a moderately thick shell theory reported above, the displacement field considered in this study is that of the First-order Shear Deformation Theory and can be expressed in the following, well known, form:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) s s s U s t u s t s t U s t u s t s t W s t w s t ϕ ϕ ϕ ϕ ζ ϕ ζβ ϕ ϕ ζ ϕ ζβ ϕ ϕ ζ ϕ = + = + = (2)
where , , Relationships between strains and displacements along the shell reference (middle) surface ( )

0 ζ =
and the five equations of dynamic equilibrium in terms of internal actions can be written as in [START_REF] Tornabene | 2-D Solution for free vibrations of parabolic shells using generalized differential quadrature method[END_REF].

As far as the constitutive relations for a functionally graded linear elastic material are concerned, they relate internal stress resultants and internal couples with generalized strain components on the middle surface: 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 s s s s s s s s s A A B B N A A B B N A B N B B D D M B B D D M B D M A T A T ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ε ε γ χ χ χ κ γ κ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ n sn γ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ ⎦ (3)
where κ is the shear correction factor, which is usually taken as 5 6 κ =

, such as in the present work. In particular, it is worth noting that the determination of shear correction factors for composite laminated structures is still an unsolved issue, because these factors depend on various parameters [START_REF] Alfano | MITC finite elements for laminated composite plates[END_REF]Auricchio andSacco, 1999, 2003).

In equations (3) the three components , , is assumed as a further hypothesis, even if it is satisfied only in the case of spherical shells and flat plates [START_REF] Toorani | General equations of anisotropic plates and shells including transverse shear deformations, rotary inertia and initial curvature effects[END_REF]. This assumption is derived from the consideration that ratios , The extensional stiffnesses ij A , the bending stiffnesses ij D and the bending-extensional coupling stiffnesses ij B are defined as:

( ) ( ) ( ) 2 2 2 2 2 2 2 , , h h h ij ij ij ij ij ij h h h A Q d B Q d D Q d ζ ζ ζζ ζ ζζ ζ - - - = = = ∫ ∫ ∫ (4)
where the elastic constants

( ) ij ij Q Q ζ =
are functions of thickness coordinate ζ and are represented by the following:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 11 12 66 2 2 , , 2 1 1 1 E E E Q Q Q ζ νζ ζ ζ ν ζ ν ζ ν ζ = = = + - - (5) 
Typically, the functionally graded materials are made of a mixture of two constituents. In this work, it is assumed that the functionally graded material is made of a mixture of a ceramic and metal constituent. The material properties of the functionally graded shell vary continuously and smoothly along the thickness direction ζ and are functions of the volume fractions and properties of the constituent materials. The Young's modulus ( )

E ζ ,
Poisson's ratio ( ) ν ζ and mass density ( ) ρ ζ of the functionally graded shell can be expressed as a linear combination:

( ) ( ) ( ) ( ) ( ) ( ) C M C M C M C M C M C M V E E E V E V ρ ζ ρ ρ ρ ζ ν ζ ν ν ν = - + = - + = - + (6) 
where , , ,

C C C C E V ρ ν and , , , M M M M E V ρ ν
represent mass density, Young's modulus, Poisson's ratio and volume fraction of the ceramic and metal constituent materials, respectively.

In this paper, the ceramic volume fraction C V follows two simple four parameter power-law distributions:

M A N U S C R I P T A C C E P T E D ARTICLE IN PRESS 7 1 ( / / / ) 2 ( / / / ) 1 1 : 1 2 2 1 1 : 1 2 2 p c a b c p C p c a b c p C FGM V a b h h FGM V a b h h ζ ζ ζ ζ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ = - + + + ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ = - - + - ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ (7)
where the volume fraction index p ( )

0 p
≤ ≤ ∞ and the parameters , , a b c dictate the material variation profile through the functionally graded shell thickness. It is worth noting that the volume fractions of all the constituent materials should add up to unity:

1 C M V V + = (8) 
In order to choose the three parameters , , a b c in a suitable way, the relation (8) must be always satisfied for every volume fraction index p . By considering the relations (7), when the power-law exponent is set equal to zero (

0 p = )
or equal to infinity ( p = ∞ ), the homogeneous isotropic material is obtained [START_REF] Tornabene | 2-D Solution for free vibrations of parabolic shells using generalized differential quadrature method[END_REF] as a special case of the functionally graded material. In fact, from equations ( 8), ( 7) and ( 6) it is possible to obtain:

( ) ( ) ( ) ( ) ( ) ( ) 0 1 , 0 , , 0, 1 , , 
C M C C C C M M M M p V V E E p V V E E ρ ζ ρ ζ ν ζ ν ρ ζ ρ ζ ν ζ ν = → = = → = = = = ∞ → = = → = = = (9) 
Some material profiles through the functionally graded shell thickness are illustrated in Figs. 3, 4 and 5. In Fig. 3 the classical volume fraction profiles, such as reported in literature, are presented as special cases of the general distribution laws (7) by setting ) is metal or ceramic rich, or if one of these surfaces presents a mixture of two constituents. One of the aim of this work is to propose a generalization of the power-law distribution presented in literature and to illustrate the influence of the power-law exponent p and of the choice of the parameters , , a b c on the mechanical behaviour of shell structures.

The three basic sets of equations, namely the kinematic, constitutive and equilibrium equations may be combined to give the fundamental system of equations, also known as the governing system of equations. By substituting the kinematic equations into the constitutive equations and the result of this substitution into the equilibrium equations, the complete equations of motion in terms of displacements can be written as: 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 s s s s L L L L L u u I I L L L L L u u I I L L L L L w w I L L L L L I I L L L L L I I ϕ ϕ ϕ ϕ β β β β ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ = ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ && && && && && ⎥ ⎥ (10) 
where the explicit forms of the equilibrium operators , , 1,...,5 ij L i j = are listed in Appendix and the mass inertias assumed the following form:

( )

2 2 1 1 , 0 , 1 ,2 h i i h s I d i R R ϕ ζ ζ ρ ζ ζ ζ - ⎛ ⎞ ⎛ ⎞ = + + = ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ∫ (11)
Three kinds of boundary conditions are considered, namely the fully clamped edge boundary condition (C), the simply supported edge boundary condition (S) and the free edge boundary condition (F). The equations describing the boundary conditions can be written as follows:

M A N U S C R I P T A C C E P T E D ARTICLE IN PRESS 9 Clamped edge boundary condition (C) 0 1 0 0 at or , 0 s s u u w s s ϕ ϕ β β ϕ ϕ ϕ ϕ = = = = = = = ≤ ≤ (12) 0 0 1 0 at 0 or , s s u u w s s s ϕ ϕ β β ϕ ϕ ϕ = = = = = = = ≤ ≤ (13)
Simply supported edge boundary condition (S)

0 1 0 0, 0 at or , 0 s s u u w M s s ϕ ϕ β ϕ ϕ ϕ ϕ = = = = = = = ≤ ≤ (14) 0 0 1 0, 0 at 0 or , s s u u w M s s s ϕ ϕ β ϕϕ ϕ = = = = = = = ≤ ≤ (15)
Free edge boundary condition (F)

0 1 0 0 at or , 0 s s N N T M M s s ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ = = = = = = = ≤ ≤ (16) 0 0 1 0 at 0 or , s s s s s N N T M M s s s ϕ ϕ ϕ ϕ ϕ = = = = = = = ≤ ≤ (17) 
If we wish to consider a complete shell of revolution, the kinematic and physical compatibility should be satisfied at the common meridian with ( ,0, ) ( , , ), ( ,0, ) ( , , ), ( ,0, ) ( , , ), ( , 0, ) ( , , ), ( , 0, ) ( , , )

s s s s u t u s t u t u s t w t w s t t s t t s t ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ β ϕ β ϕ β ϕ β ϕ = = = ≤ ≤ = = (18)
Physical compatibility conditions

0 0 0 0 1 0 0 ( , 0, ) ( , , ), ( , 0, ) ( , , ), ( , 0, ) ( , , ), ( , 0, ) ( , , ), ( , 0, ) ( , , ) s s s s s s s s s s N t N s t N t N s t T t T s t M t M s t M t M s t ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ = = = ≤ ≤ = = (19)

Generalized Differential Quadrature Method Review

The Generalized Differential Quadrature method will be used to discretize the derivatives in the governing equations in terms of displacements and the boundary and compatibility conditions.

The essence of GDQ method is that the n-th order derivative of a smooth one-dimensional function ( ) f x defined over an interval [ ] 0, L at the i-th point of abscissa i x , can be approximated as:

( ) 1 ( ) ( ), 1, 2,..., i n N n ij j n j x x d f x f x i N dx ς = = = = ∑ (20) M A N U S C R I P T A C C E P T E D ARTICLE IN PRESS 10 where ( ) n ij
ς are the weighting coefficients at the i-th point calculated for the j-th sampling point of the domain. In equation ( 20) N is the total number of the sampling points of the grid distribution and ( ) j f x is the value of the function at the j-th point. Some simple recursive formulas are available for calculating n-th order derivative weighting coefficients ( ) n ij ς by means of Lagrange polynomial interpolation functions [START_REF] Shu | Differential Quadrature and Its Application in Engineering[END_REF]. The weighting coefficients for the first order derivative are:

(1) (1)

(1) ( ) , , 1, 2,..., , ( ) ( )

i ij i j j x i j N i j x x x ς = = ≠ - L L (21) (1) (1) 1, , , 1, 2,..., , N ii ij j j i i j N i j ς ς = ≠ = - = = ∑ (22) 
In equation ( 21) the first derivative of Lagrange interpolating polynomials at each point , 1, 2,...,

k x k N =
, is:

(

..., N k k l l l k x x x k N = ≠ = - = ∏ L 1) 1, ( ) ( ), 1, 2, 
For higher order derivatives ( 2,3,..., 1

n N = -), one gets iteratively: ( 1) ( ) ( 1) (1)
, , 1, 2,..., ,

n ij n n ij ii ij i j n i j N i j x x ς ς ς ς - - ⎛ ⎞ = - = ≠ ⎜ ⎟ ⎜ ⎟ - ⎝ ⎠ (24) ( ) ( ) 1,
, , 1, 2,..., ,

N n n ii ij j j i i j N i j ς ς = ≠ = - = = ∑ (25)
From the above equations that the weighting coefficients of the second and higher order derivatives can be determined from those of the first order derivative. Furthermore, it is interesting to note that the preceding coefficients ( ) n ij ς are dependent on the derivative order n , on the grid point distribution j

x , 1, 2,..., j N = , and on the specific point i x , where the derivative is computed. It is worth noting that, this set of expressions for the determination of the weighting coefficients is so compact and simple that it is very easy to implement them in formulating and programming because of the recurrence feature.

Throughout the paper, the Chebyshev-Gauss-Lobatto (C-G-L) grid distribution is assumed, for which the coordinates of grid points ( , )

i j s ϕ along the reference surface are:

( )

1 0 0 0 1 0 0 0 1 1 cos , 1, 2,..., , for , 1 2 1 1 cos , 1, 2,..., , for 0, (with ) 1 2 i j i i N N s j s j M s s s R M ϕ ϕ ϕ π ϕ ϕ ϕϕ π ϑ - ⎛ - ⎞ ⎛ ⎞ ⎡ ⎤ = - + = ∈ ⎜ ⎟ ⎜ ⎟ ⎣ ⎦ - ⎝ ⎠ ⎝ ⎠ ⎛ - ⎞ ⎛ ⎞ ⎡ ⎤ = - = ∈ ≤ ⎜ ⎟ ⎜ ⎟ ⎣ ⎦ - ⎝ ⎠ ⎝ ⎠ (26) M A N U S C R I P T A C C E P T E D ARTICLE IN PRESS 11
where , N M are the total number of sampling points used to discretize the domain in ϕ and s directions, respectively, of the double curved shell (Fig. 6). It has been proven that for the Lagrange interpolating polynomials, the Chebyshev-Gauss-Lobatto sampling point rule guarantees convergence and efficiency to the GDQ technique [START_REF] Tornabene | Modellazione e Soluzione di Strutture a Guscio in Materiale Anisotropo[END_REF][START_REF] Tornabene | Modellazione e Soluzione di Strutture a Guscio in Materiale Anisotropo[END_REF]Viola, 2007, 2008).

Discrete Gorverning Equations and Numerical Implementation

This section analyses the free vibration of functionally graded shells. Using the method of separation of variables, it is possible to seek solutions that are harmonic in time and whose frequency is ω . The displacements and the rotations can be written as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) , , , , , , , , , , , , , , , i t 
) ( ) ( ) 2 2 1 2 11 12 11 66 11 66 2 3 2 2 1 1 1 0 0 0 sin cos cos 1 N N M s i i i ik kj ik kj jm im ij k k m i i i i i i i i i A A A A dR U A U A U U R R R R d R R R R ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ς ς ς κ ϕ = = = ⎛ ⎞ ⎛ ⎞ + - + - + + + ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ∑ ∑ ∑ ( ) ( ) ( ) ( ) 1 1 1 1 11 66 12 66 11 12 66 2 2 1 1 1 1 0 0 0 cos cos sin M N M N s s i i i s s jm im ik jm km ik kj m k m k i i i i i i i i A A A A A A A U U W R R R R R RR R ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ς ς ς κ ς = = = = ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ - + + + + + + + ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ∑ ∑ ∑ ∑ ( ) ( ) 2 1 11 11 11 11 3 2 2 3 1 1 0 0 0 sin cos c o s 1 c o s 1 N N i i i i ij ik kj ik kj k k i i i i i i i i i i A B dR dR A W B B B R R R d R R R R R d ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ς ς ϕ ϕ = = ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎜ ⎟ + - - + + - + ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ∑ ∑ ( ) ( ) 2 2 1 12 11 66 11 66 66 2 1 1 0 0 0 0 sin cos cos cos M M s s i i i i s jm im ij jm im m m i i i i i i B B A B B B B B B R R R R R R ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ς κ ς = = ⎛ ⎞ ⎛ ⎞ + - + - - + + ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ∑ ∑ ( ) ( ) ( ) 1 1 12 66 2 0 1 1 1 N M s s ik jm km ij ij k m i i B B B I U I B R R ϕ ϕ ϕ ϕ ϕ ς ς ω = = ⎛ ⎞ + + =- + ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ∑ ∑ (28) M A N U S C R I P T A C C E P T E D ARTICLE IN PRESS 12 
2) Translational equilibrium along the circumferential direction s

( ) ( ) ( ) ( ) ( ) 1 1 1 2 1 11 66 12 66 66 66 2 3 1 1 1 1 1 0 0 0 cos cos cos 1 M N M N N s s i i s s i jm im ik jm km ik kj ik kj m k m k k i i i i i i i i i A A A A A dR U U U A U R R R R R RR R d ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ς ς ς ς ς ϕ = = = = = ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ + + + + + - + ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ∑ ∑ ∑ ∑ ∑ ( ) ( ) 2 2 2 1 66 12 11 66 11 66 2 2 1 1 0 0 0 0 0 sin sin sin cos sin M M s s i i i s s i i jm im ij jm im m m i i i i i i i A A A A A U A U W R R R R R R R ϕ ϕ ϕ ϕ ϕ ϕ ϕ ς κ κ ς = = ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎜ ⎟ + - - + + + + + ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ∑ ∑ ( ) ( ) ( ) ( ) ( ) 1 1 1 2 1 11 66 12 66 66 66 2 3 1 1 1 1 1 0 0 0 cos cos cos 1 M N M N N s s i i s s i jm im ik jm km ik kj ik kj m k m k k i i i i i i i i i B B B B B dR B B BB B R R R R R RR R d ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ς ς ς ς ς ϕ = = = = = ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ + + + + + + - + ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ∑ ∑ ∑ ∑ ∑ ( ) ( ) 2 2 66 2 11 66 0 1 2 1 0 0 0 sin cos sin M s i s s s s i i jm im ij ij ij m i i i i A B B B B IU IB R R R R ϕ ϕ ϕ ϕ ς κ ω = ⎛ ⎞ ⎛ ⎞ ⎜ ⎟ + - - - = - + ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ∑ (29)
3) Translational equilibrium along the normal direction ζ ( ) 

1
N i i i i i ik kj ij k i i i i i i i i i i i A A A A A dR U A U R R R R R R R R R R d ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ κ ς κ ϕ = ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎜ ⎟ - + + - + + - + ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ∑ ( ) ( ) ( ) 1 2 1 12 11 66 66 66 2 3 1 1 1 0 0 0 sin sin cos 1 M N N s i i s i jm im ik kj ik kj m k k i i i i i i i i A A A A dR U W A W R R R R R R R d ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ κ ς κ ς κ ς ϕ = = = ⎛ ⎞ ⎛ ⎞ - + + + + - + ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ∑ ∑ ∑ ( ) ( ) 2 2 1 11 12 11 11 12 66 66 2 2 2 1 1 0 0 0 2 sin sin sin M N s i i i jm im ij ik kj m k i i i i i i i i A A A B B A A W W B R R R R R R R R ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ κ ς κ ς = = ⎛ ⎞ ⎛ ⎞ + - + + - + - + ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ∑ ∑ ( )
M s i i i i i s ij jm im ij m i i i i i i B B A B B B A B IW R R R R R R ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ κ κ ς ω = ⎛ ⎞ ⎛ ⎞ - + - - + - = - ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ∑ (30) 4) Rotational equilibrium about the circumferential direction s ( ) ( ) ( ) 2 2 1 2 11 12 11 66 11 66 2 3 2 1 1 1 0 0 0 sin cos cos 1 N N M s i i i ik kj ik kj jm im ij k k m i i i i i i i i i B B B A dR U B U B U U R R R R d R R R R ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ς ς ς κ ϕ = = = ⎛ ⎞ ⎛ ⎞ + - + - + - + ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ∑ ∑ ∑ ( ) ( ) ( ) ( ) 1 1 1 1 11 66 12 66 11 12 66 2 1 1 1 1 0 0 0 cos cos sin M N M N s s i i i s s jm im ik jm km ik kj m k m k i i i i i i i i B B B B B B A U U W R R R R R RR R ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ς ς ς κ ς = = = = ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ - + + + + + - + ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ∑ ∑ ∑ ∑ ( ) ( ) 2 1 11 11 11 11 3 2 2 3 1 1 0 0 0 sin cos cos 1 cos 1 N N i i i i ij ik kj ik kj k k i i i i i i i i i i B D dR dR B W B D B R R R d R R R R R d ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ς ς ϕ ϕ = = ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎜ ⎟ + - - + + - + ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ∑ ∑ ( ) ( ) 2 2 1 12 11 11 66 66 66 2 1 1 0 0 0 0 sin cos cos cos M M s s i i i i s jm im ij jm im m m i i i i i D D D D D B A B B R R R R R ϕ ϕ ϕ ϕ ϕ ϕ ϕ ς κ ς = = ⎛ ⎞ ⎛ ⎞ + - + + - + + ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ∑ ∑ ( ) ( ) ( ) 1 1 12 66 2 1 2 1 1 N M s s ik jm km ij ij k m i i D D B I U I B R R ϕ ϕ ϕ ϕ ϕ ς ς ω = = ⎛ ⎞ + + =- + ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ∑ ∑ (31) M A N U S C R I P T A C C E P T E D ARTICLE IN PRESS 13 5) Rotational equilibrium about the meridian direction ϕ ( ) ( ) ( ) ( ) ( ) 1 1 1 2 1 11 66 12 66 66 66 2 3 1 1 1 1 1 0 0 0 cos cos cos 1 M N M N N s s i i s s i jm im ik jm km ik kj ik kj m k m k k i i i i i i i i i B B B B B dR U U U B U R R R R R RR R d ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ς ς ς ς ς ϕ = = = = = ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ + + + + + - + ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ∑ ∑ ∑ ∑ ∑ ( ) ( ) 2 
M M s s i i s s i i jm im ij jm im m m i i i i i i A B B B U B U A W R R R R R R ϕ ϕ ϕ ϕ ϕ ϕ ς κ κ ς = = ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎜ ⎟ + - - - + + - + ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ∑ ∑ ( ) ( ) ( ) ( ) ( ) 1 1 1 2 1 11 66 12 66 66 66 2 3 1 1 1 1 1 0 0 0 cos cos cos 1 M N M N N s s i i s s i jm im ik jm km ik kj ik kj m k m k k i i i i i i i i i D D D D D dR B B BD B R R R R R RR R d ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ς ς ς ς ς ϕ = = = = = ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ + + + + + + - + ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ∑ ∑ ∑ ∑ ∑ ( ) ( ) 2 2 2 11 66 66 1 2 2 1 0 0 cos sin M s s s s s i i jm i m i j i j i j m i i i D B D A B IU I B R R R ϕ ϕ ϕ ς κ ω = ⎛ ⎞ ⎛ ⎞ ⎜ ⎟ + - - + = - + ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ∑ (32) 
In equations ( 28)-( 32), ( )

1 ik ϕ ς , ( ) 1 s jm ς , ( ) 2 ik ϕ ς and ( ) 2 s jm ς
are the weighting coefficients of the first and second derivatives in ϕ and s directions, respectively. Furthermore, N and M are the total number of grid points in ϕ and s directions.

Applying the GDQ methodology, the discretized forms of the boundary and compatibility conditions are given as follows:

Clamped edge boundary condition (C) 

U U W B B a N j M U U W B B b M i N ϕ ϕ ϕ ϕ = = = = = = = = = = = = = = (33)
Simply supported edge boundary condition (S) 

( ) ( ) ( ) ( ) 1 
U U W B B B U U B U R R a N j M B B D W B R R R D B D B R U ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ς ς ϕ ς ϕ ς = = = = ⎧ = = = = ⎪ ⎪ + + + ⎪ ⎪ ⎪ = = ⎛ ⎞ ⎨ + + + + ⎜ ⎟ ⎪ ⎜ ⎟ ⎪ ⎝ ⎠ ⎪ ⎪ + + = ⎪ ⎩ ∑ ∑ ∑ ∑ ( ) ( ) ( ) ( ) 1 
s b i b i b i b N M s i s ik kb ib bm im k m i i N i ib ik kb k i i i M s i s ib bm im m i U W B B B U U B U R R b M i N B B D W B R R R D B D B R ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ς ς ϕ ς ϕ ς = = = = ⎧ = = = = ⎪ ⎪ + + + ⎪ ⎪ ⎪ ⎛ ⎞ = = ⎨ + + + + ⎜ ⎟ ⎪ ⎜ ⎟ ⎝ ⎠ ⎪ ⎪ ⎪ + + = ⎪ ⎩ ∑ ∑ ∑ ∑ (34) M A N U S C R I P T A C C E P T E D ARTICLE IN PRESS 14 Free edge boundary condition (F) ( ) ( ) ( ) ( ) ( ) ( ) 1 
A A A A B B U U A U W B B B B R R R R R R A A A U U U B R R ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ς ς ς ς ϕ ς ς ς = = = = = = ⎛ ⎞ + + + + + + + = ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ + - + ∑ ∑ ∑ ∑ ∑ ∑ ( ) ( ) ( ) ( ) ( ) 1 
B B B B B R R A A U W AB AB R R B B B B D U U B U W R R R R R ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ς κ κ ς κ κ ϕ ϕ ς ς ς = = = = = + - = - + + + = ⎛ ⎞ + + + + + ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ∑ ∑ ∑ ∑ ∑ ( ) ( ) ( ) ( ) ( ) ( ) 1 
D B B D B R B B D D B U U U D B B B R R R R a N j M ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ς ϕ ϕ ς ς ς ς = = = = = = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ + + = ⎪ ⎪ ⎪ ⎪ + - + + - = ⎪ ⎩ = = ∑ ∑ ∑ ∑ ∑ ∑ (35) ( ) ( ) ( ) ( ) ( ) ( ) 1 
i i i i N M s i i s ik kb ib bm im ib k m i i i i A A B B A U U U B B B B R R R R A A A A B U U A U W R R R R R ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ς ς ς ς ϕ ϕ ς ς = = = = = = + - + + - = ⎛ ⎞ + + + + + ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ∑ ∑ ∑ ∑ ∑ ∑ ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 1 11 11 1 1 0 1 66 66 66 1 1 1 1 1 66 66 66 66 66 66 1 1 1 1 0 0 cos 0 0 cos cos N M s i s ik kb ib bm im k m i i N s ik kb ib ib k i M N M N s s i i s s s bm im ik kb ib bm im ik kb ib m k m k i i i i B B B B B R A W A B A B R B B D D B U U U D B B B R R R R ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ς ς κ ς κ κ ϕ ϕ ς ς ς ς = = = = = = = + + = + + = + - + + - ∑ ∑ ∑ ∑ ∑ ∑ ∑ ( ) ( ) ( ) ( ) 1 
i i i i i i B B B B D D U U B U W B B D B R R R R R R b M i N ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ς ς ς ς = = = = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ = ⎪ ⎪ ⎛ ⎞ ⎪ + + + + + + + = ⎜ ⎟ ⎪ ⎜ ⎟ ⎪ ⎝ ⎠ ⎩ = = ∑ ∑ ∑ ∑ (36)
Kinematic and physical compatibility conditions 

( ) ( ) ( ) ( ) ( ) ( ) 1 1 1 1 1 1 1 1 1 66 66 66 66 66 1 1 1 66 1 1 1 1 1 1 1 0 0 1 1 66 66 66 1 1 , , , , cos cos s s s s i iM i iM i iM i iM i iM M N M N s s i i s s s s m im ik k i m im ik k i m k m k i i i i M N s s Mm im ik kM m k i U U U U W W B B B B A A B B A U U U B B B B R R R R A A A U U R ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ς ς ς ς ς ς = = = = = = = = = = = + - + + - = = + - ∑ ∑ ∑ ∑ ∑ ∑ ( ) ( ) ( ) ( ) ( ) ( ) 1 1 66 66 66 1 1 0 0 1 1 1 1 12 11 12 11 12 11 1 1 11 1 1 1 1 11 1 1 1 1 0 0 0 cos cos cos sin cos M N s i i s s s iM Mm im ik kM iM m k i i i N M N s s i i i s ik k i m im i ik k i m im k m k i i i i i i B B U B B B B R R R A A A A B B U U A U W B B B B R R R R R R ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ς ς ϕ ϕ ϕ ς ς ς ς = = = = = + + - ⎛ ⎞ + + + + + + + ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ∑ ∑ ∑ ∑ ∑ ( ) ( ) ( ) ( ) ( ) ( ) 1 1 1 1 1 12 11 12 11 12 11 11 11 1 1 1 1 0 0 0 1 1 66 66 1 6 6 1 6 6 1 1 cos sin cos M s m N M N M s s i i i s s ik kM iM Mm im iM ik kM iM Mm im k m k m i i i i i i N s ik k i i ik k k i i A A A A B B U U A U W B B B B R R R R R R A A W A B A B W R R ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ς ς ς ς κ ς κ κ κ ς = = = = = = = ⎛ ⎞ = + + + + + + + ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ + + = ∑ ∑ ∑ ∑ ∑ ∑ ( ) ( ) ( ) ( ) ( ) ( ) ( ) 66 66 1 1 1 1 1 66 66 66 66 66 1 1 1 66 1 1 1 1 1 1 1 0 0 1 1 1 66 66 66 66 1 1 0 cos cos cos N s M i M i M k M N M N s s i i s s s s m im ik k i m im ik k i m k m k i i i i M N s s i s s Mm im ik kM iM Mm i m k i i A B A B B B D D B U U U D B B B R R R R B B B U U U D B R R ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ κ κ ϕ ϕ ς ς ς ς ϕ ς ς ς = = = = = = = + + + - + + - = = + - + ∑ ∑ ∑ ∑ ∑ ∑ ∑ ( ) ( ) ( ) ( ) ( ) ( ) 1 66 66 1 1 0 1 1 1 1 12 11 12 11 12 11 1 1 11 1 1 1 1 11 1 1 1 1 1 0 0 0 1 12 cos cos sin cos M N i s s m i k k M i M m k i i N M N M s s i i i s s ik k i m im i ik k i m im k m k m i i i i i i ik kM i D D B B R R B B B B D D U U B U W B B D B R R R R R R B U R ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ς ϕ ϕ ϕ ς ς ς ς ς = = = = = = + - ⎛ ⎞ + + + + + + + = ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ = ∑ ∑ ∑ ∑ ∑ ∑ ( ) ( ) ( ) 1 
i i i i i B B B D D U B U W B B D B R R R R R i N ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ς ς ς = = = = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎛ ⎞ ⎪ + + + + + + + ⎜ ⎟ ⎜ ⎟ ⎪ ⎝ ⎠ ⎩ = - ∑ ∑ ∑ ∑ (37)
Thus, the whole system of differential equations has been discretized and the global assembling leads to the 

ω ⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦ K K δ 0 0 δ K K δ 0 M δ (38)
In the above matrices and vectors, the partitioning is set forth by subscripts b and d , referring to the system degrees of freedom and standing for boundary and domain, respectively. In this sense, the b -equations represent the discrete boundary and compatibility conditions, which are valid only for the points lying on constrained edges of the shell; while the d -equations are the equilibrium equations, assigned on interior nodes. In order to make the computation more efficient, kinematic condensation of non-domain degrees of freedom is performed:

( ) ( ) -1 2 dd db bb bd d dd d ω - = K K K K δ M δ (39)
The natural frequencies of the structure considered can be determined by solving the standard eigenvalue problem (39). In particular, the solution procedure by means of GDQ technique has been implemented in a MATLAB code.

Finally, the results in terms of frequencies are obtained using the eigs function of MATLAB program.

It is worth noting that, with the present approach, differing from the finite element method, no integration occurs prior to the global assembly of the linear system, and this leads to a further computational cost saving in favour of the differential quadrature technique.

Results and Discussion

This section introduces some results and considerations about the free vibration problem of functionally graded parabolic panels and shells of revolution. The analysis has been carried out by means of numerical procedures illustrated above.

No literature is available about the results of the GDQ solution for free vibrations of FGM shells with parabolic meridian. Several attempts to validate the present formulations have been made for the isotropic and anisotropic cases and can be found in the PhD Thesis by [START_REF] Tornabene | Modellazione e Soluzione di Strutture a Guscio in Materiale Anisotropo[END_REF] and in articles by [START_REF] Tornabene | Modellazione e Soluzione di Strutture a Guscio in Materiale Anisotropo[END_REF]Viola (2007, 2008).

In this work, the frequency parameters from the present formulations are in good agreement with the results presented in the literature and obtained with the finite element method.

Regarding the functionally graded materials, their two constituents are taken to be zirconia (ceramic) and aluminum (metal). Young's modulus, Poisson's ratio and mass density for the zirconia are 168GPa and 1 p = . A similar behaviour was pointed out before by [START_REF] Abrate | Free vibration, buckling, and static deflection of functionally graded plates[END_REF] for the functionally graded plate.

The influence of the index p on the vibration frequencies is also shown in Figs. 111213141516. As it can be seen from figures, natural frequencies of FGM panels and shells of revolution often present an intermediate value between the natural frequencies of the limit cases of homogeneous shells of zirconia ( 0 p = ) and of aluminium ( p = ∞ ), as expected. However, natural frequencies sometimes exceed the limit cases, as evident in Figs. 11,15 and 16. This fact can depend on various parameters, such as the geometry of the shell, the boundary conditions, the power-law distribution profile, etc. In particular, for specific values of the four parameters , , , a b c p it is possible to exceed or approach the ceramic limit case as shown in It is interesting to note that, for the structures under consideration, frequencies attain a minimum value for a shell made only of metal, due to the fact that aluminium has a much smaller Young's modulus than zirconia. In particular, it is evident that in Fig. 11 for low values of the parameter b most frequencies exhibit a fastly decreasing behaviour from the ceramic limit case ( 0 p = ) varying the power-law index from 0 p = to 1 p ≈ . For values of p greater than unity frequencies increase until a maximum value. After this maximum, frequencies slowly decrease by increasing the power-law exponent p and tend to the metal limit
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. This is expected because the more p increases the more the ceramic content is low and the FGM shell approaches the case of the fully metal shell. Otherwise, in Fig. 11 for values of the parameter b approaching the unity the frequency curves present a fastly rising behaviour up to a maximum value by increasing the power-law index p and exceed the ceramic limit case. After this maximum, frequencies gradually decrease. = . In this case the parameter a varies from 0.2 to 1.2 . It can be noted that in Fig. 15, for low values of the parameter a , most frequencies exhibit a fastly decreasing behaviour from the ceramic limit case ( 0 p = ) varying the power-law index from 0 p = to 1 p ≈ , while for values of p greater than unity frequencies increase until a maximum value. After this maximum, frequencies slowly decrease by increasing the power-law exponent p and tend to the metal limit case ( p = ∞ ).

Otherwise, approaching the value 1.2 a = the frequency curves do not present a knee as previously described, but present a fast rising behaviour up to a maximum value by increasing the power-law index p and exceed the ceramic limit case. After this maximum, frequencies gradually decrease. This behaviour depends on the type of vibration mode. It is worth noting that some frequencies do not present a knee or a maximum value as described above, but decrease gradually from the ceramic limit case ( 0 p = ) to the metal limit case ( p = ∞ ) by increasing the power-law exponent p . In particular, the types of vibration mode that can present a monotone gradually decrease of frequency are torsional, bending and axisymmetric mode shapes, while the circumferential and radial mode shapes are characterized by a knee or a maximum value, as it can be seen by comparing the mode shapes with variations of frequencies as functions of the power-law exponent p . For examples, the frequencies 3,4 f and 7 f of the parabolic dome of Fig. 15 correspond to bending and axisymmetric mode shape as can be observed from Fig. 10, respectively.

However, this behaviour depends on the geometry of the shell and on its boundary conditions.

Finally, in Fig. 16 the influence of the parameter c on the dynamic vibration of parabolic panel (C-F-F-F) is investigated by considering 1, 1 a b = = . The parameter c varies from 1 to 11 . It can be noted that due to the effect of the parameter c frequencies exhibit a fastly rising behaviour up to a maximum value exceeding the ceramic limit case ( 0 p = ) by varying the power-law index from 0 p = to 10 p ≈ . After this maximum, frequencies gradually decrease by increasing the power-law exponent p and tend to the metal limit case ( p = ∞ ). The value of the 7 when the number of points of the Chebyshev-Gauss-Lobatto grid distribution ( 26) is increased from 11

N M = = up to 31 N M = = .
It can be seen that the proposed GDQ formulation well captures the dynamic behaviour of the system by using only 21 points in two co-ordinate directions. It can also be seen that for the system under investigation, the formulation is stable while increasing the number of points and that the use of 21 points guarantees convergence of the procedure. Analogous and similar convergence results can be obtained for all the shell structures considered in this work. A wide convergence study of GDQ solutions for shell structures has been shown in the PhD thesis by [START_REF] Tornabene | Modellazione e Soluzione di Strutture a Guscio in Materiale Anisotropo[END_REF] and in the articles by [START_REF] Tornabene | Modellazione e Soluzione di Strutture a Guscio in Materiale Anisotropo[END_REF]Viola (2007, 2008).

Conclusion Remarks and Summary

The Generalized Differential Quadrature Method has been used to study the free vibration analysis of functionally graded parabolic thick panels and shells of revolution. The First-order Shear Deformation Theory has been adopted.

The dynamic equilibrium equations discretized with the present method lead to a standard linear eigenvalue problem. The complete 2D differential system, governing the structural problem, has been solved. The vibration results are obtained without the modal expansion methodology. Thus, complete revolution shells are obtained as special cases of shell panels by satisfying the kinematic and physical compatibility. The GDQ method provides converging results for all the cases as the number of grid points increases. Convergence and stability have been shown for one of the four structures considered.

In this study, ceramic-metal graded shells of revolution with four parameter power-law distributions of the volume fraction of the constituents in the thickness direction have been worked out. Various material profiles through the functionally graded shell thickness have been illustrated by varying the four parameters of power-law distributions.

Symmetric and asymmetric volume fraction profiles have been presented. The numerical results have shown the influence of the power-law exponent, of the power-law distribution choice and of the choice of the four parameters on the free vibrations of functionally graded shells considered. The analysis provides information about the dynamic response of parabolic shell structures for different proportions of the ceramic and metal. For curved shells and panels, it has been observed that the influence of the distribution choice is marked and can be considered from the
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20 structural design point of view. In general, it can be pointed out that the frequency vibration of functionally graded shells and panels of revolution depends on the type of vibration mode, thickness, power-law distribution, power-law exponent and the curvature of the structure. Table 7. The first ten frequencies for the functionally graded toro-parabolic panel (C-F-C-F) for an increasing the number of grid points N M = of the Chebyshev-Gauss-Lobatto distribution. 199.81 199.85 199.86 199.86 199.86 199.86 
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 0 , all the geometric relations and fundamental equations are re-written following the new co-ordinate system.The angle formed by the external normal n to the reference surface and the axis of rotation 3x , or the geometric axis 3 x′ of the meridian curve, is defined as the meridian angle ϕ and the angle between the radius of the parallel circle ( ϕ and the 1 x axis is designated as the circumferential angle ϑ as shown in Fig.2. The parametric coordinates ( , ) s ϕ define the meridian curves and the parallel circles upon the middle surface of the shell, respectively.The curvilinear abscissa ( ) s ϕ of a generic parallel is related to the circumferential angle ϑ by the relation 0

0 R

 0 parameter of the parabolic curve. The horizontal radius ( ) ϕ of a generic parallel of the shell represents the distance of each point from the axis of revolution and for a shell with parabolic meridian assumes the form the meridian and circumferential directions and the first derivative of ( )

ϕ

  are the in-plane meridian, circumferential and shearing force shear force resultants. We notice that, in the above definitions (3) the symmetry of shearing force resultants ,

  the transverse shearing strains.

  the material composition is continuously varied such that the bottom surface ( rich. Choosing other values for the parameters , , a b c , it is possible to obtain symmetric and asymmetric volume fraction profiles as shown in Figs. 4 and 5. In Figs. 4(a) and 4(b)present the same profiles by varying the volume fraction index p and are symmetric respect to the reference surface ( 0 h ζ = ) of the shell. Furthermore, these distributions are characterized by the fact that both the top ( rich, while there is a mixture of two constituents through the thickness. Figs. 4(c) and 4(dfigures being reviewed, we have the same constituent at the top and bottom surface but, unlike the previous cases (Figs. 4(a) and 4(b)), profiles are not symmetric with respect to the reference surface ( 0 h ζ = ) of the shell. Fig. 5 shows other cases obtained by varying the parameters , , a b c . These profiles are characterized by the fact that one of the two shell surfaces (the top or bottom surface) presents a mixture of two constituents. For example, = = distribution (Fig. 5(a)), at the top surface we have a mixture of ceramic and metal made up by fifty per cent of ceramic and fifty per cent of metal, while the bottom surface ( Figs. 5(b), (c), (d), (e) and (f) illustrate various power-law distribution cases obtained by modifying the parameters , , , a b c p . From a design point of view it is important to know if the top surface of the shell (

  the external boundary conditions. The kinematic compatibility conditions include the continuity of displacements. The physical compatibility conditions can only be the five continuous conditions for the generalized stress resultants. To consider complete revolute shells characterized

  differential system.The GDQ procedure allows writing of the equations of motion in discrete form, transforming each space derivative into a weighted sum of node values of dependent variables. Each approximate equation is valid in a single sampling point. The governing equations can be discretized and for the domain points, equilibrium along the meridian direction ϕ

  (

  conditions for the shell panel are identified by the following convention. For example, the symbolism C-S-C-F indicates that the edges 1 clamped, simply supported, clamped and free, respectively (Fig.6). For the complete shell of revolution, for example, the symbolism Cfree, respectively. In this case, the missing boundary conditions are the kinematic and physical compatibility conditions that are applied at the same meridian for 0 = = parabolic dome (C-F) are illustrated. In particular, for the parabolic toroid and dome, there are some symmetrical mode shapes due to the symmetry of the problem considered in 3D space. In these cases, the symmetrical mode shapes have been summarized in one figure. The mode shapes of all the structures under discussion have been evaluated by the authors. By using the authors' MATLAB code, these mode shapes have been reconstructed in three-dimensional view by means of considering the displacement field (2) after solving the eigenvalue problem (39).Tables 1-6 illustrate the first ten frequencies of the four structures under consideration. These tables show how by varying only the power-law index p of the volume fraction C V it is possible to modify natural frequencies of FGM panels and shells of revolution. For the GDQ results presented in Tables1-6, the grid distributions (26) with21 N M = =have been taking into account. The results are obtained using various values of the power-law exponent p (i.e. 0 p = ceramic rich and p = ∞ metal rich) for the two powerpower-law distribution the same values of the three parameters , , a b c are chosen.Tables 1-6 show that by considering the two powerthe four parameters , , , a b c p the natural frequencies are different. In fact, for curved shells it is important, from the dynamic vibration point of view, to know if the top surface of the shell ( )2 h ζ =is ceramic or metal rich and, inversely, if the bottom surface ( )2 h ζ = -is metal or ceramic rich, respectively. Using one of the behaviour of the shell structure. Furthermore, Tables1-6show the effect of the power-law distribution choice on the frequency parameters. the shell thickness because of the curvature of the shell. From tables 1-6 it is evident that functionally graded shell and panel structures behave like the corresponding homogeneous structures

  Fig.11shows the first four natural frequencies of the toro-parabolic panel (C-F-C-F) versus the power-law index p

  In the same way, by setting different values of parameters , a c , Figs. 12-13 ( the parameter b on the dynamic vibration of the toro-parabolic panel (S-F-S-F), of the parabolic panel (C-F-F-F) and of the parabolic toroid (F-C), respectively. In Figs. 12 and 13 the parameter b varies from 0 to 1 , as in Fig. 11, while in Fig. 14 from 1 to 0 . Moreover, the influence of the parameter a on the dynamic vibration of parabolic dome (C-F) is investigated in Fig. 15 by considering 0

  maximum depends on the value of c . By increasing the value of the parameter c ( 1 c > ) the maximum gradually decreases.In order to investigate the GDQ procedure convergence, the first ten frequencies of the functionally graded toroparabolic panel (C-F-C-F) for the 1 = = power-law distribution are examinated by varying the number of grid points. Results are collected in Table
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 1 Figure 1. Co-ordinate system of doubly curved shell.
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 4515 Figure 4. Variations of the ceramic volume fraction C V through the thickness for different values of the power-law index p : (a) 1 ( 1/ 1/ 2 / ) a b c p FGM = = = , (b)
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 16 Figure 16. The first four frequencies of functionally graded parabolic panel (C-F-F-F) versus the power-law exponent p for various values of the parameter c : (a) 1 ( 1/ 1/1 11/ ) a b c p FGM = = ≤ ≤ , (b)

  

Table 1 .

 1 The first ten frequencies for the functionally graded toro-parabolic panel (C-F-C-F) as a function of the

	power-law exponent p , for	a	=	1,	b	=	0.5,	c	2 = .		
	1 ( 1/ 0.5/ 2 / ) a b c p FGM = = =	power-law distribution		
	Frequencies [Hz]	p =	0		p =	0.6			p =	1	p =	5	p =	20	p =	50	p =	100	p = ∞
	1 f	99.88		99.73			99.57	98.95	97.51	95.59	94.66	93.56
	f	2	103.74		103.55			103.36	102.57	101.03	99.15	98.24	97.17
	f	3	111.46		111.23			111.01	110.06	108.42	106.46	105.52	104.41
	f	4	130.73		130.40			130.11	128.77	126.84	124.69	123.67	122.45
	f	5	158.23		157.76			157.38	155.49	153.14	150.72	149.57	148.21
	f	6	184.79		184.26			183.82	181.53	178.67	175.96	174.66	173.09
	f	7	191.80		191.39			191.02	189.01	185.90	182.89	181.43	179.65
	f	8	193.54		192.97			192.51	189.94	186.85	184.15	182.86	181.29
	f	9	202.18		201.81			201.45	199.68	196.50	193.07	191.40	189.38
	10 f	208.93		208.32			207.83	205.00	201.62	198.76	197.38	195.70
	2 ( 1/ 0.5/ 2 / ) a b c p FGM = = =		power-law distribution		
	Frequencies [Hz]	p =	0		p =	0.6			p =	1	p =	5	p =	20	p =	50	p =	100	p = ∞
	1 f	99.88		99.24			98.81	97.36	96.78	95.27	94.50	93.56
	f	2	103.74		103.05			102.59	100.96	100.29	98.82	98.08	97.17
	f	3	111.46		110.73			110.24	108.46	107.69	106.14	105.36	104.41
	f	4	130.73		129.88			129.30	127.10	126.07	124.36	123.50	122.45
	f	5	158.23		157.19			156.50	153.69	152.32	150.36	149.39	148.21
	f	6	184.79		183.53			182.70	179.27	177.65	175.51	174.42	173.09
	f	7	191.80		190.43			189.54	185.98	184.51	182.28	181.11	179.65
	f	8	193.54		192.18			191.29	187.51	185.74	183.66	182.60	181.29
	f	9	202.18		200.79			199.86	196.38	194.98	192.39	191.05	189.38
	10 f	208.93		207.45			206.48	202.32	200.40	198.22	197.10	195.70

Table 3 .

 3 The first ten frequencies for the functionally graded parabolic panel (C-F-F-F) as a function of the power-law

	exponent p , for	a	=	1,	b	=	0.5,	c	1 = .			
	1 ( 1/ 0.5 / 1/ ) a b c p FGM = = =	power-law distribution		
	Frequencies [Hz]	p =	0		p =	0.6	p =	1	p =	5	p =	20	p =	50	p =	100	p = ∞
	1 f	60.64			60.27	60.04	59.19	59.56	58.59	57.86	56.80
	f	2	76.77			76.36	76.11	74.75	73.98	73.14	72.63	71.90
	f	3	115.49		114.77	114.31	112.72	113.60	111.69	110.25	108.17
	f	4	154.07		153.07	152.43	150.55	152.57	149.76	147.57	144.32
	f	5	170.55		169.65	169.08	166.19	164.95	162.88	161.57	159.75
	f	6	215.38		214.11	213.31	210.11	210.62	207.39	205.07	201.74
	f	7	244.57		243.02	242.03	238.87	241.38	237.12	233.87	229.08
	f	8	283.57		281.78	280.64	276.89	279.48	274.67	271.00	265.61
	f	9	289.98		288.19	287.04	283.04	285.08	280.34	276.80	271.62
	10 f	302.10		300.14	298.89	295.03	298.26	293.07	289.04	282.97
	2 ( 1/ 0.5 / 1/ ) a b c p FGM = = =	power-law distribution		
	Frequencies [Hz]	p =	0		p =	0.6	p =	1	p =	5	p =	20	p =	50	p =	100	p = ∞
	1 f	60.64			60.15	59.84	58.71	59.25	58.43	57.78	56.80
	f	2	76.77			76.23	75.91	74.27	73.68	72.99	72.55	71.90
	f	3	115.49		114.54	113.95	111.84	113.01	111.40	110.10	108.17
	f	4	154.07		152.72	151.89	149.23	151.69	149.33	147.34	144.32
	f	5	170.55		169.33	168.58	164.94	164.10	162.46	161.35	159.75
	f	6	215.38		213.69	212.64	208.45	209.49	206.83	204.78	201.74
	f	7	244.57		242.48	241.19	236.82	239.98	236.44	233.50	229.08
	f	8	283.57		281.19	279.72	274.59	277.93	273.90	270.59	265.61
	f	9	289.98		287.60	286.13	280.78	283.54	279.59	276.40	271.62
	10 f	302.10		299.50	297.89	292.63	296.72	292.31	288.62	282.97

Table 4 .

 4 The first ten frequencies for the functionally graded parabolic panel (C-F-F-F) as a function of the power-law

	exponent p , for	a	=	1,	b	=	0.5,	c	3 = .			
	1 ( 1/ 1/ 3 / ) a b c p FGM = = =	power-law distribution			
	Frequencies [Hz]	p =	0		p =	0.6	p =	1	p =	5	p =	20	p =	50	p =	100	p = ∞
	1 f	60.64			61.18	61.48	62.43	60.07	58.40	57.66	56.80
	f	2	76.77			76.86	76.87	76.22	74.07	72.96	72.48	71.90
	f	3	115.49		116.58	117.20	119.29	114.67	111.33	109.86	108.17
	f	4	154.07		156.00	157.06	160.90	154.31	149.24	146.97	144.32
	f	5	170.55		170.94	171.11	170.51	165.34	162.44	161.19	159.75
	f	6	215.38		216.88	217.69	219.93	212.07	206.75	204.43	201.74
	f	7	244.57		247.25	248.73	253.90	243.83	236.32	232.97	229.08
	f	8	283.57		286.52	288.15	293.66	282.21	273.76	270.00	265.61
	f	9	289.98		292.68	294.17	298.94	287.60	279.44	275.83	271.62
	10 f	302.10		305.58	307.46	313.13	301.21	292.11	287.93	282.97
	2 ( 1/ 1/ 3/ ) a b c p FGM = = =	power-law distribution			
	Frequencies [Hz]	p =	0		p =	0.6	p =	1	p =	5	p =	20	p =	50	p =	100	p = ∞
	1 f	60.64			61.16	61.44	62.31	59.99	58.36	57.64	56.80
	f	2	76.77			76.83	76.83	76.11	74.00	72.93	72.46	71.90
	f	3	115.49		116.54	117.12	119.07	114.52	111.26	109.83	108.17
	f	4	154.07		155.93	156.95	160.57	154.08	149.13	146.91	144.32
	f	5	170.55		170.88	171.01	170.20	165.12	162.33	161.13	159.75
	f	6	215.38		216.79	217.56	219.51	211.77	206.61	204.35	201.74
	f	7	244.57		247.14	248.56	253.39	243.47	236.14	232.88	229.08
	f	8	283.57		286.40	287.96	293.09	281.81	273.56	269.89	265.61
	f	9	289.98		292.57	293.98	298.38	287.21	279.25	275.72	271.62
	10 f	302.10		305.45	307.26	312.59	300.82	291.92	287.83	282.97

Table 5 .

 5 The first ten frequencies for the functionally graded parabolic toroid (F-C) as a function of the power-law

	exponent p , for	a	=	0,	b	=-	0.5,	c	2 = .				
	1 ( 0 / a FGM = =-= 0.5 / 2 / ) b c p		power-law distribution			
	Frequencies [Hz]	p =	0			p =	0.6	p =	1	p =	5	p =	20	p =	50	p =	100	p = ∞
	1 f	52.59			52.37	52.24	51.47	51.16	50.99	50.77	49.26
	f	2	52.59			52.37	52.24	51.47	51.16	50.99	50.77	49.26
	f	3	59.27			58.97	58.79	57.79	57.75	57.75	57.56	55.52
	f	4	59.27			58.97	58.79	57.79	57.75	57.75	57.56	55.52
	f	5	59.69			59.46	59.32	58.47	58.08	57.85	57.58	55.91
	f	6	59.69			59.46	59.32	58.47	58.08	57.85	57.58	55.91
	f	7	74.38			74.04	73.83	72.53	72.61	72.53	72.24	69.66
	f	8	74.76			74.29	73.99	72.53	73.01	73.36	73.21	70.03
	f	9	74.77			74.29	74.00	72.68	73.01	73.36	73.22	70.03
	10 f	96.51			95.78	95.33	93.20	94.42	95.26	95.17	90.39
	2 ( 0 / a FGM = =-= 0.5 / 2 / ) b c p		power-law distribution			
	Frequencies [Hz]	p =	0			p =	0.6	p =	1	p =	5	p =	20	p =	50	p =	100	p = ∞
	1 f	52.59			52.28	52.09	51.05	50.70	50.61	50.47	49.26
	f	2	52.59			52.28	52.09	51.05	50.70	50.61	50.47	49.26
	f	3	59.27			58.86	58.62	57.34	57.24	57.34	57.20	55.52
	f	4	59.27			58.86	58.62	57.34	57.24	57.34	57.20	55.52
	f	5	59.69			59.34	59.12	57.94	57.50	57.37	57.24	55.91
	f	6	59.69			59.34	59.12	57.94	57.50	57.37	57.24	55.91
	f	7	74.38			73.84	73.52	71.83	71.65	71.74	71.61	69.67
	f	8	74.76			74.15	73.78	71.95	72.38	72.85	72.80	70.03
	f	9	74.77			74.15	73.78	71.95	72.38	72.85	72.81	70.04
	10 f	96.51			95.60	95.06	92.47	93.62	94.60	94.65	90.40

Table 6 .

 6 The first ten frequencies for the functionally graded parabolic dome (C-F) as a function of the power-law

	exponent p , for	a	=	0.8,	b	=	0.2,	c	3 = .			
	1 ( 0.8/ 0.2 / 3/ ) a b c p FGM = = =		power-law distribution		
	Frequencies [Hz]	p =	0			p =	0.6	p =	1	p =	5	p =	20	p =	50	p =	100	p = ∞
	1 f	125.16			124.31	123.78	122.15	120.81	119.14	118.29	117.23
	f	2	125.16			124.31	123.78	122.15	120.81	119.14	118.29	117.23
	f	3	171.58			170.40	169.66	165.63	162.83	161.72	161.25	160.72
	f	4	171.58			170.40	169.66	165.63	162.83	161.72	161.25	160.72
	f	5	179.28			178.06	177.29	175.08	173.28	170.80	169.52	167.93
	f	6	179.28			178.06	177.29	175.08	173.28	170.80	169.52	167.93
	f	7	207.82			206.41	205.53	201.30	198.19	196.43	195.62	194.66
	f	8	220.98			219.46	218.50	216.48	214.70	211.17	209.32	206.99
	f	9	220.99			219.47	218.51	216.49	214.71	211.18	209.33	206.99
	10 f	225.61			224.07	223.10	219.28	216.40	213.97	212.77	211.32
	2 ( 0.8 / 0.2 / 3 / ) a b c p FGM = = =	power-law distribution		
	Frequencies [Hz]	p =	0			p =	0.6	p =	1	p =	5	p =	20	p =	50	p =	100	p = ∞
	1 f	125.16			123.96	123.25	121.17	120.34	118.93	118.18	117.23
	f	2	125.16			123.96	123.25	121.17	120.34	118.93	118.18	117.23
	f	3	171.58			170.07	169.16	164.75	162.41	161.52	161.15	160.72
	f	4	171.58			170.07	169.16	164.75	162.41	161.52	161.15	160.72
	f	5	179.28			177.58	176.55	173.72	172.62	170.49	169.36	167.93
	f	6	179.28			177.58	176.55	173.72	172.62	170.49	169.36	167.93
	f	7	207.82			205.92	204.79	199.93	197.53	196.13	195.46	194.66
	f	8	220.98			218.86	217.58	214.77	213.86	210.79	209.12	206.99
	f	9	220.99			218.87	217.59	214.78	213.87	210.80	209.13	206.99
	10 f	225.61			223.52	222.27	217.74	215.66	213.63	212.60	211.32

f 203.82 204.87 204.91 204.91 204.92 204.92 204.92
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Appendix

The following are the equilibrium operators in equations (10):