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We consider the problem of estimating the number of species (denoted by S) of a biological community located in a region composed of n quadrats. To address this question, different parametric approaches have been recently developed. However, they all have some limitations which reduce their use in practice: indeed, either they presuppose that the sampled quadrats are taken from a large population of quadrats (theoretically infinite), or they require an upper bound on S. Our approach is more general in that it applies without limitation on n and it can be used in the presence of prior information on S, as well as in totally unknown regions. We pay attention to the prior adopted for S; in particular, different non informative priors are considered and motivated. We first consider a simple model which assumes that occurrence and detectability parameters do not depend on quadrats. It constitutes a suitable framework to clarify the links existing between current approaches and ours. We then extend this model by assuming that the region of study is spatially heterogeneous. We illustrate our approach by estimating the number of species of a birds community located in a forest.

Introduction

The species richness of a community of animals or plants -that is the number of species present within this community -is a basic measure of its bio-diversity [START_REF] Huston | Biological diversity[END_REF].

Estimating the species richness (denoted by S) of a biological community located in some specified region, called afterwards R, often relies on quadrat sampling data [START_REF] Krebs | Ecological Methodology[END_REF].

Assume that that the region R is composed of n quadrats, inference on S is thus based on a sample of quadrats (of size T < n). Of course, the region R has to be bounded, or else estimating S is an ill-posed problem (eg [START_REF] Dorazio | Estimating species richness and accumulation by modeling species occurrence and detectability[END_REF]. Nonparametric methods have been used for estimating S when quadrat sampling is used. They include the Jacknife and the boostrap estimates; see Mingoti and Meden (1992); [START_REF] Bunge | Estimating the number of species: A review[END_REF], [START_REF] Chao | Species richness estimation and applications[END_REF], [START_REF] Hass | An estimator of number of species from quadrat sampling[END_REF].

Recently, parametric approaches have been developed for estimating species richness from quadrat sampling. They are all characterized by a hierarchical modeling of the data which separates assumptions related to occurrences of species in the quadrats and those related to their detectability (this constitutes an interesting characteristic of these approaches, compared to the nonparametric approaches). Three approaches can be distinguished according to whether an upper bound on S is required or not, and according to whether the number n of quadrats which composes R is assumed to be large (in theory infinite) or not. From here on, it is important to point out that, in practice, n is not necessarily large; in fact, its value strongly varies from one survey to another (see Section 2). We recall these three approaches below, and make clear the limitation(s) of each. [START_REF] Dorazio | Estimating size and composition of biological communities by modeling occurrence of species[END_REF] have developed an approach (afterwards called the DR approach) which does not require an upper bound on S, but assumes that the number of quadrats which composes R is theoretically infinite (we will write n = ∞, for convenience). Consistently, n is not a part of the model, and [START_REF] Dorazio | Estimating size and composition of biological communities by modeling occurrence of species[END_REF] define the species richness S as the limit of S T when T -→ ∞, where S T represents the number of species present in T sampled quadrats (or as the asymptote of a cumulative species-area curve). This approach is thus not appropriate to deal with the problem examined in this paper (recall that we assume nothing regarding the size of n). [START_REF] Dupuis | Bayesian estimation of species richness from quadrat sampling data in the presence of prior information[END_REF] have developed an approach which has no limitation on n, but requires to have some information on S; in particular, an upper bound. More precisely, their approach assumes that it is possible to draw up a list of species liable to be present in R. Consequently, it cannot be implemented in little known regions. Furthermore, it requires to have some prior information on the probabilities of presence (in R) of species not detected by the quadrat sampling, which constitutes a limitation of this approach. Royle et al. (2006) have developed a Bayesian approach which presents some similarities with the previous one, in that they introduce a supercommunity of species which is supposed to include the species population of interest (see also [START_REF] Royle | Analysis of multinomial models with unknown index using data augmentation[END_REF]. As in Dupuis and Jochim (2006), the size M of this supercommunity is assumed to be known and has to satisfy the constraint M ≥ S, while S is actually unknown. Not surprisingly the estimate of S depends on M, and the choice of M is thus important in this method (as in Dupuis and Jochim, 2006). As a rule, the approach of Royle et al. (2006) requires to have some idea on the size of S, to meet -as far as possible -the constraint M ≥ S. However, it can be used when nothing is known on the size of S, by assigning large values to M; indeed, such values lead effectively to flat priors on S because Royle et al. (2006) assume that S|M follows a uniform distribution on {1, . . . , M}. Nevertheless, such a strategy is not very satisfactory in practice, because assigning large values to M induces high computational costs, as stressed by Royle et al. (2006) and by [START_REF] Royle | Analysis of multinomial models with unknown index using data augmentation[END_REF]. In other respects, we note that the approach of Royle et al. (2006) is able to estimate the number of species present in any finite subset of quadrats, but it is unclear if the region R has to be composed of an infinite number of quadrats or not.

However, we note that n plays no part in their modeling and that its value is actually not mentioned; this element and others (cf Section 3.3) lead us to believe that the authors implicitly assume that n is theoretically infinite (as in [START_REF] Dorazio | Estimating size and composition of biological communities by modeling occurrence of species[END_REF]. Lastly, we also note that Royle et al. (2006) assume that the probability of presence (in R) of any species s belonging to the supercommunity does not depend on s, which constitutes a strong biological assumption which is not always reasonable (cf Section 3.3.2); by contrast, [START_REF] Dupuis | Bayesian estimation of species richness from quadrat sampling data in the presence of prior information[END_REF] do not make such an assumption. For all these reasons, we believe that the approach of Royle et al. (2006) is not suitable to deal with the situation considered in this paper.

The model developed in this paper is closer to that of [START_REF] Dorazio | Estimating size and composition of biological communities by modeling occurrence of species[END_REF] than the two other models (Royle et al., 2006;Dupuis and Jochim, 2006). Contrary to [START_REF] Dorazio | Estimating size and composition of biological communities by modeling occurrence of species[END_REF], we do not assume that n is theoretically infinite, which allows us to introduce it in the model. When n is finite, it is indeed preferable that it is a part of the model. Ignoring n can actually lead to unreasonable estimates of S, simply because the resulting model will produce the same estimate of S whatever the sampling fraction T /n (eg [START_REF] Hass | An estimator of number of species from quadrat sampling[END_REF]. Our approach extends the one of [START_REF] Dorazio | Estimating size and composition of biological communities by modeling occurrence of species[END_REF] to the situation where no assumption is made regarding the size of n; we show in particular that the DR likelihood and ours coincide asymptotically (that is when n -→ ∞). Moreover, obtaining the Bayesian estimate of S involves serious computational difficulties (cf Section 3.7), and the DR approach is rather ad hoc, in that it is not fully Bayesian (in particular, no prior distribution is placed on S). In this paper, we show how to overcome these difficulties and provide a full Bayesian analysis of the problem.

We stress that existing approaches cannot incorporate satisfactorily some prior information on S, except (of course) for a prior consisting of an upper bound on S; for example, it is not possible to incorporate information on S consisting of an estimate S * of S and an interval [a * , b * ] containing S * , such that Pr(S ∈ [a * , b * ]) = 0.95, while prior information is typically available under this form (when it exists). As far as the approaches of [START_REF] Dupuis | Bayesian estimation of movement and survival probabilities from capture-recapture data[END_REF][START_REF] Dupuis | Bayesian estimation of species richness from quadrat sampling data in the presence of prior information[END_REF]Royle et al. (2006) are concerned, the key reason is that S is not a parameter of the model (see Sections 3.3.2 and 3.6). In [START_REF] Dorazio | Estimating size and composition of biological communities by modeling occurrence of species[END_REF], S is a parameter of the model, but no prior is placed on S (as already mentioned above). The approach developed in this paper has no such a limitation. We also pay particular attention to the situation where no prior information is available; so, different non informative priors on S are considered and the sensitivity to such priors is examined. In particular, we provide arguments for the standard non-informative prior of Jeffreys. To our knowledge, no theoretical justification has yet been provided for this choice of prior; see, for example, [START_REF]The selection of prior distributions by formal rules[END_REF].

The experimental protocol and underlying processes 2.1 The experimental protocol and data description

The experimental protocol to collect the data is standard (Krebs, 1984;[START_REF] Mingoti | Estimating the total number of distinct species using presence and absence data[END_REF][START_REF] Dupuis | Bayesian estimation of species richness from quadrat sampling data in the presence of prior information[END_REF]. The region R is divided into n spatial units, called quadrats for convenience, though they may have different shapes. In this paper we assume that these quadrats are of equal area. A sample of T quadrats is then taken, and the sampled quadrats are numbered from 1 to T . The draw is usually performed at random so as to have a sample representative of the whole region R. Finally, an experimenter visits each sampled quadrat K ≥ 2 times, and records the species detected. Detections are typically based on visual or oral recognitions; we assume that species are correctly identified. The protocol used for collecting the data set analyzed in [START_REF] Dorazio | Estimating size and composition of biological communities by modeling occurrence of species[END_REF] enters in this framework. It is in fact described in details in Royle et al. (2006); see the Section Protocol for Sampling Communities. We note that the number n of spatial units (quadrats) which compose the study region does not appear in this description; this is not actually surprising since this quantity is not a part of the model. In fact, in most papers which ignores n during the modelling, its value is not provided, as pointed out by [START_REF] Mingoti | Estimating the total number of distinct species using presence and absence data[END_REF], and by [START_REF] Hass | An estimator of number of species from quadrat sampling[END_REF].

Sometimes, all the n quadrats are explored, thus T = n; such a situation typically occurs when the size n is small or moderate. Interestingly, the methodology developed in this paper also applies to this particular situation.

We denote by y s = (y sj ; j = 1, . . . , T ) the record (or history) related to species s.

When K = 4 and T = 6, a possible record is: y s = (3 0 0 0 4 0). Such a record means that species s has been detected in quadrat 1 during three visits, and detected in quadrat 5 during each visit. Moreover, it has not been detected in quadrats 2, 3, 4, 6. We stress that when y sj = 0, it does not necessarily mean that species s is absent from quadrat j. Indeed, it is possible that a species is present in a quadrat, but is not detected during the K visits. From a statistical point of view, the problem is to estimate the number S of species present in R, from the records of species whose the presence (in R) has been detected at least once.

The size of n is a key element of the paper. In practice, its range is particularly large, since its value strongly varies from one survey to another. Let us illustrate this variability through a few examples, by limiting ourselves to ornithological surveys. The size of n can be moderate as in [START_REF] Dupuis | Bayesian estimation of species richness from quadrat sampling data in the presence of prior information[END_REF] where n = 40 quadrats, or relatively large as in [START_REF] Decamps | The importance for birds of the riparian woodlands within the alluvial corridor of the river Garonne, s.w. France[END_REF] where n = 98 quadrats. In this study the values of n are relatively small 18 and 22 (or moderate 40). In [START_REF] Dorazio | Estimating size and composition of biological communities by modeling occurrence of species[END_REF], Royle et al. (2006), [START_REF] Royle | Analysis of multinomial models with unknown index using data augmentation[END_REF], the value of n is is not provided.

2.2 Underlying processes and missing data.

For any species s, we introduce two underlying processes: the first one is related to its occurrences in the quadrats, and the other one is related to its detections.

-For j = 1, . . . , n, we denote by z sj the indicator of presence of species s in quadrat j; thus z sj = 1 if species s is present in quadrat j, and zero otherwise.

-Let j be a sampled quadrat. For a species s present in quadrat j (thus such that z sj = 1), x sj ∈ {0, 1, . . . , K} denotes the number of times that species s has been detected in quadrat j during the K visits. If z sj = 0 thus x sj = 0 (with probability one).

Introducing these two latent processes allows us to formulate rigorously the biological assumptions made, and to introduce, in a natural way, the parameters of biological interest; such a strategy is standard when one process is partially observed; see eg [START_REF] Dupuis | Bayesian estimation of movement and survival probabilities from capture-recapture data[END_REF] in a capture-recapture context. [START_REF] Dupuis | Estimating occupancy rate of spatially rare or hard to detect species: a conditional approach[END_REF] have exhibited the missing data structure of quadrat sampling data; this structure will be particularly useful here to obtain the expression of the likelihood in closed form. It is recalled below. When species s has not been detected in a sampled quadrat j (that is when y sj = 0), it is clear that z sj is missing. In fact the event (y sj = 0) covers two exclusive situations: either species s is present in the sampled quadrat j but has not been detected, or it is not present in it (that is z sj = 0). Formally, we have the equivalence (y sj = 0) ⇐⇒ (z sj = 1 and x sj = 0) or (z sj = 0). When (y sj = k), where 1 ≤ k ≤ K, it is clear that z sj is not missing (z sj = 1), and formally one has (y sj = k) ⇐⇒ (z sj = 1 and x sj = k). Moreover, z sj is of course missing, when quadrat j is not a part of the sampled quadrats. Lastly, note that the whole vector (z s1 , . . . , z sn ) is missing when species s has not been detected by the quadrat sampling, that is when y s = (0, . . . , 0).

3. The homogeneous model M 0 3.1 Some additional notation.

Our notation is essentially the same as the one adopted in [START_REF] Dupuis | Bayesian estimation of species richness from quadrat sampling data in the presence of prior information[END_REF].

Throughout the paper, p(.) denotes a probability mass function. We denote by 1I (C) the indicator function that takes the value 1 when the condition C is true and zero otherwise.

The null vector is denoted by 0. Let v be a vector; we denote by |v| the sum of all its components. The number of species detected by the quadrat sampling is denoted by d. The vectors (z sj ; j = 1, . . . , T ) and (x sj ; j = 1, . . . , T ) are denoted by z s and x s , respectively.

Lastly, we denote by z s the vector (z sj ; j = 1, . . . , n). We stress that, in [START_REF] Dorazio | Estimating size and composition of biological communities by modeling occurrence of species[END_REF], J denotes the number of sampled quadrats, while this quantity is denoted by T in this paper (as in [START_REF] Dupuis | Bayesian estimation of species richness from quadrat sampling data in the presence of prior information[END_REF].

Modeling detectability

Biological assumptions related to detections are supported by the random vectors x s 's.

Assumption A1. We assume that x 1 , . . . , x s , . . . , x S are independent.

Assumption A2. We assume that: p(x s |z s ) = T j=1 p(x sj |z sj ) Assumption A3. We assume that x sj |z sj = 1 ∼ Binomial(K, q s ).

Assumptions A1, A2 and A3 are standard; they are also present in [START_REF] Dorazio | Estimating size and composition of biological communities by modeling occurrence of species[END_REF] and in Royle et al. (2006). A2 means that the probability of detecting species s in quadrat j does not depend on its (possible) detections in the other quadrats. A3 means that, s and j being fixed, the detections of species s during the K visits in quadrat j are independent. Moreover, q s represents the probability of detecting species s in any quadrat j during any visit, given that it is present in quadrat j.

Modeling occurrence of species in the quadrats.

Assumption A4. We assume that z 1 , . . . , z s , . . . , z S are independent.

A4 is standard and means that the species present in R do not interact relative to their presence (in the quadrats). We thus exclude predator-prey relationships between species.

Concerning the probabilistic assumptions made on the z sj 's (s being fixed), one can distinguish two types of approach according to whether one models occurrences of species liable to be present in R (unconditional approach), or whether modeling involves species present in R (conditional approach). This terminology has been introduced by [START_REF] Dupuis | Estimating occupancy rate of spatially rare or hard to detect species: a conditional approach[END_REF]. This distinction between conditional and unconditional approaches is crucial when estimating species richness is of concern; it is the reason why we indicate how each approach deals with this stage of the modeling. The way of modeling occurrence is unconditional in [START_REF] Royle | Analysis of multinomial models with unknown index using data augmentation[END_REF] and in [START_REF] Dupuis | Bayesian estimation of species richness from quadrat sampling data in the presence of prior information[END_REF]; it is conditional in [START_REF] Dorazio | Estimating size and composition of biological communities by modeling occurrence of species[END_REF], as well as in this paper. Moreover, it is useful to introduce the indicator ξ s equal to 1 if species s is present in R and zero otherwise. We denote by λ s the probability that species s is present in R; thus λ s =Pr(ξ s = 1).

Conditional approaches

• The way we model occurrences in this paper is the one adopted by [START_REF] Dupuis | Estimating occupancy rate of spatially rare or hard to detect species: a conditional approach[END_REF]. We briefly recall this approach. The following assumption is made.

Assumption A5. Let s be a species present in R; then it exists at least one quadrat j ∈ {1, . . . , n} such that z sj = 1 (or equivalently z s = 0). We assume that:

p(z s |ϕ s ) = ϕ |zs| s (1 -ϕ s ) n-|zs| 1 -(1 -ϕ s ) n (3.1)
where |z s | represents the number of quadrats in which species s is present.

It is easy to check that ϕ s represents the probability that species s is present in quadrat j, given that it is present in at least one other quadrat [START_REF] Dupuis | Estimating occupancy rate of spatially rare or hard to detect species: a conditional approach[END_REF]. Parameter ϕ s is connected to the rarety (in a spatial sense) of species s; a small occurrence probability ϕ s being associated with a species s which occupies (on average) a small number of quadrats.

Indeed, it is easy to check that the expectation of

|z s | is equal to nϕ s [1 -(1 -ϕ s ) n ] -1
which is an increasing one-to-one function of ϕ s (it varies from 1 to n). Moreover, due to the constraint z s = 0, the z sj 's are clearly not independent. However, a certain form of conditional independence between the z sj 's holds: namely z si and z sk are independent conditionally on the presence of species s in any other quadrat j, distinct from i and k [START_REF] Dupuis | Estimating occupancy rate of spatially rare or hard to detect species: a conditional approach[END_REF]. The result below makes it possible to obtain the likelihood in closed form and also links the way we model occurrences in the sampled quadrats and the way [START_REF] Dorazio | Estimating size and composition of biological communities by modeling occurrence of species[END_REF] proceed.

Proposition 3.1. The probability mass function of z s is:

p(z s |ϕ s ) = [ϕ |zs| s (1 -ϕ s ) T -|zs| ] / [1 -(1 -ϕ s ) n ] if z s = 0 (3.2) and p(z s |ϕ s )) = [(1 -ϕ s ) T -(1 -ϕ s ) n ] / [1 -(1 -ϕ s ) n ] otherwise.
Proof. See Appendix A1.

Note that the above Proposition also holds in the particular case T = n.

• [START_REF] Dorazio | Estimating size and composition of biological communities by modeling occurrence of species[END_REF] model occurrences of species s only in the sampled quadrats, by assuming that z s1 , . . . , z sT are independent outcomes of a Bernoulli random variable.

We note that the above constraint z s = 0 (which characterizes the fact that species s is present in R when n is finite) has no equivalent in the DR modeling. [START_REF] Dorazio | Estimating size and composition of biological communities by modeling occurrence of species[END_REF] assume that:

p(z s |ψ s ) = ψ |zs| s (1 -ψ s ) T -|zs| (3.3)
where |z s | represents the number of sampled quadrats in which species s is present, and ψ s =pr(z sj = 1). Note that ψ s and ϕ s do not have the same meaning, hence two distinct notations; in fact, ϕ s is a conditional occurrence parameter (contrary to ψ s ); as stressed in [START_REF] Dupuis | Estimating occupancy rate of spatially rare or hard to detect species: a conditional approach[END_REF]. Here, it is of interest to compare the probability mass function of z s we use in this paper (cf Propostion 3.1) and the one adopted by [START_REF] Dorazio | Estimating size and composition of biological communities by modeling occurrence of species[END_REF].

First, note that both T and n appear in (3.2), contrary to (3.3). More importantly, if in (3.2) we make n -→ ∞ (T being fixed), we observe that both p.m.f. coincide (ϕ s and ψ s being confounded when n -→ ∞, as explained in Section 3.5).

Unconditional approaches

Unconditional approaches -which model occurrences (in the quadrats) of species liable to be present in R -are essentially characterized by three elements. First, a supercommunity, denoted by M, is introduced; it includes the species community of interest and its size (denoted by M) is assumed to be known. Note that S ≤ M; in other words, M is an upper bound of S. Second, the species richness S is not a parameter of the model, one has S = M s=1 ξ s . Third, unconditional approaches give a positive probability to the event ξ s = 0 (or equivalently to the event z s = 0 when n is finite), contrary to conditional approaches. We can distinguish two unconditional approaches according to whether n plays a part in the way occurrences are modeled [START_REF] Dupuis | Bayesian estimation of species richness from quadrat sampling data in the presence of prior information[END_REF], or not (Royle et et al., 2006); see below.

• Let s be a species belonging to the supercommunity M, [START_REF] Dupuis | Bayesian estimation of species richness from quadrat sampling data in the presence of prior information[END_REF] consider the hierarchical model below:

ξ s |λ s ∼ Bernouilli(λ s ) p(z s |ξ s = 1, ϕ s ) = ϕ |zs| s (1 -ϕ s ) n-|zs| 1 -(1 -ϕ s ) n (3.4)
where the meaning of ϕ s is the one given above. The way a species s present in R occupies the n quadrats is thus modeled as in (3.1).

• Similarly, for any species s ∈ M, Royle et al. (2006) introduce the indicator ξ s and the parameter λ. Note that λ (denoted by Ω by these authors) is therefore assumed to be the same for all species, which constitutes a strong biological assumption which is not always reasonable. For example, in the paper of [START_REF] Dupuis | Bayesian estimation of species richness from quadrat sampling data in the presence of prior information[END_REF], estimating S requires to estimate λ s for each species s not detected; now, a strong variability among these different estimates can be observed, since they vary from 0.13 to 0.95. Consequently, for this species population (which is also the one considered in this paper), the assumption of Royle et al. (2006) concerning λ would not be tenable from a biological point of view.

Moreover, Royle et al. (2006) assume independence between the z sj 's, conditionally on ξ s = 1. This independence assumption (called afterwards A6) is more general than in [START_REF] Dorazio | Estimating size and composition of biological communities by modeling occurrence of species[END_REF], in that it applies to any finite subset of quadrats taken from the population of quadrats which composes R. Assumption A6 proves to be necessary when estimating the number of species present in such a subset is of interest (cf the introduction). Now, it is not clear if the model assumes that the region of study has to be composed of an infinite number of quadrats or not. However, different elements lead us to believe that their model presupposes that n is theoretically infinite (as [START_REF] Dorazio | Estimating size and composition of biological communities by modeling occurrence of species[END_REF]. First, no notation is introduced to designate the number of quadrats which compose R (consequently, this quantity is not a part of the model); second, and more importantly, assuming that n is finite will be not consistent with Assumption A6. Indeed, let us assume that n is finite and that the size of the subset (above mentioned) is equal to n; thus assumption A6 will imply that z s1 , . . . , z sn are independent (conditionally on ξ s = 1), which is not possible since ξ s = 1 implies exactly that z s1 , . . . , z sn are not independent, as stressed in Section 3.3.1 (first paragraph). Therefore the Royle et al. (2006) approach does not apply to the situation considered in our paper, where n is assumed to be finite and not necessarily large.

Modeling species heterogeneity

As in [START_REF] Dorazio | Estimating size and composition of biological communities by modeling occurrence of species[END_REF] we model heterogeneity between species via random effects, as follows:

logit(q sj ) = α + µ s and logit(ϕ sj ) = β + ν s (3.6)
where the µ s 's are i.i.d according to a normal distribution N (0, σ 2 µ ), and the ν s 's are i.i.d according to a N (0, σ 2 ν ). Contrary to the DR paper, and for brevity, we do not introduce a prior correlation between µ s and ν s .

3.5 Likelihood.

It is convenient to number histories from 0 to H = (K + 1) T -1 (note that one has (K +1) T distinct histories) where the history 0 is associated with the record 0; only histories distinct from 0 are observable. Moreover, we denote by N h the number of species having the history h, and by d the number of detected species; therefore, we have d = H h=1 N h . Note that the count N 0 = Sd which represents the number of undetected species is not a part of the data. Due to Assumptions A1 and A4, it is clear that

(N 1 , . . . , N H )|S, α, β, σ 2 µ , σ 2 ν ∼ Multinomial(S; ω 1 , . . . , ω H )
where ω h = Pr(y s = h|α, β, σ 2 µ , σ 2 ν ). Note that ω h cannot be analytically calculated; indeed:

ω h = Pr(y s = h|α, β, µ s , ν s )π(µ s |σ 2 µ )π(ν s |σ 2 ν )d µ s d ν s ;
and this integral is untractable; see indeed the expression of Pr(y s = h|α, β, µ s , ν s ) below.

Nevertheless this integral can be easily evaluated via classical Monte Carlo simulation methods. The expression of Pr(y s = h|α, β, µ s , ν s ), which is also equal to Pr(y s = h|ϕ s , q s ), is given by Proposition 3.2.

Proposition 3.2. Let s be a species detected by the quadrat sampling, one has:

p(y s |ϕ s , q s ) = ρ s q Ws s (1 -q s ) KVs-Ws ϕ Vs s (1 -q s ) K ϕ s + 1 -ϕ s T -Vs 1 -(1 -ϕ s ) n (3.7)
where V s denotes the number of quadrats in which species s is detected, W s the total number of visits during which it is detected, and

ρ s = T j=1 K y sj .
Moreover,

Pr(y s = 0|ϕ s , q s ) = (1 -q s ) K ϕ s + 1 -ϕ s T -(1 -ϕ s ) n 1 -(1 -ϕ s ) n . (3.8) Proof. See Appendix A2.
The expressions of p(y s ) which appear in Proposition 3.2 have been already mentioned in [START_REF] Dupuis | Estimating occupancy rate of spatially rare or hard to detect species: a conditional approach[END_REF], but the proof has never been published.

Considering that (N 1 , . . . , N H )|S, α, β, σ 2 µ , σ 2 ν ∼ Multinomial(S; ω 1 , . . . , ω H ), the likelihood of the data y = {N 1 , . . . , N H } is

L(θ 0 ; y) = S! (S -d)! H h=1 N h ! ω S-d 0 H h=1 ω N h h
where θ 0 = (S, α, β, σ 2 µ , σ 2 ν ) denotes the parameter of the model M 0 . It is easy to see that {N vw ; v = 1, . . . , n; w = v, . . . , Kv}, where N vw represents the number of detected species s such that V s = v and W s = w, constitutes a sufficient statistics for θ 0 .

Due to Proposition 3.1, it is expected that inference on S based on the DR likelihood should coincide with ours asymptotically (that is when n -→ ∞). It is effectively the case.

Under the DR approach, one has

p(y s |ψ s , q s ) = ρ s q Ws s (1 -q s ) KVs-Ws ψ Vs s (1 -q s ) K ψ s + 1 -ψ s T -Vs (3.9)
if y s = 0, and Pr(y s = 0|ψ s , q s ) = (1q s ) K ψ s + 1ψ s T .

(3.10)

If we now make n -→ +∞ in (3.7) and (3.8), T and K and ϕ s being fixed, we observe that the likelihood of the DR model and ours coincide. Indeed, (1ϕ s ) n -→ 0 when n tends to +∞, and the two parameters ϕ s and ψ s are confounded asymptotically. To check this second point, it is convenient to introduce the parameter ζ s equal to the probability that [START_REF] Dupuis | Estimating occupancy rate of spatially rare or hard to detect species: a conditional approach[END_REF].

z sj = 1 (under the model M 0 ); one has ζ s = ϕ s /[1 -(1 -ϕ s ) n ] (see
We note that the parameters ψ s and ζ s do not take their values in the same set; indeed, 

ψ s ∈]0, 1[ while ζ s ∈]1/n, 1 

Prior distributions

We assume that the parameters S, α, β, σ 2 µ and σ 2 ν are a priori independent. In other words, we assume that: π(θ 0 ) = π(α)π(β)π(σ 2 µ )π(σ 2 ν )π(S). • As [START_REF] Dorazio | Estimating size and composition of biological communities by modeling occurrence of species[END_REF], we assume that:

π(α) = exp(α) (1 + exp(α)) 2 and π(β) = exp(β) (1 + exp(β)) 2 ,
so that logit -1 (α) and logit -1 (β) follow a uniform distribution.

• As far as σ 2 µ and σ 2 ν are concerned, we adopt the following flat priors:

σ 2 µ ∼ Γ -1 (2 + ǫ, 1 + ǫ) and σ 2 ν ∼ Γ -1 (2 + ǫ, 1 + ǫ)
with small ǫ, arguing that Var(σ 2 µ ) = 1/ǫ is thus large, while E(σ 2 µ ) is constant (equal to 1); and the same for σ 2 ν . In the above Γ -1 distribution, the used parametrisation is such that if Z ∼ Γ -1 (a, b), where a > 2 and b > 0, then the p.d.f.

f of Z is f (z|a, b) ∝ z -(a+1) exp(-b/z), E(Z) = b/(a -1) and Var(Z) = [E(Z)) 2 ]/(a -2).
The priors Γ -1 (2.1, 1.1) and Γ -1 (4, 3) used by [START_REF] King | On the Bayesian estimation of a closed population size in the presence of heterogeneity and model uncertainty[END_REF] enter in this general framework.

• A negative binomial distribution is usually placed on an integer parameter (eg [START_REF] King | On the Bayesian estimation of population size[END_REF]. When no prior information is available, the improper Jeffreys prior distribution, is usually proposed: namely π(S) ∝ 1 S in our context. Now, to our knowledge, no theoretical motivation exists in the literature concerning the Jeffreys prior, as already pointed out by Kass and [START_REF]The selection of prior distributions by formal rules[END_REF]; these authors simply note that its extends the standard non informative prior for a real parameter β > 0 (namely, π(β) ∝ 1/β) to the case of an integer parameter. Our motivation for the use of the Jeffreys prior as a non informative prior is provided by the following proposition which establishes a natural link between the Negative Binomial distribution and the Jeffreys prior.

Proposition 3.3. The Jeffreys prior coincides with the limiting case of a negative binomial distribution in which the prior variance tends to ∞ (the prior mean being fixed).

Proof. See Appendix A3.

The main alternative to the Jeffreys prior is π(S) = 1 which is also improper (eg Casteldine, 1981). In the next Section, we indicate in what extent choosing this prior, instead of the Jeffreys prior, could affect the Bayesian estimate of S. Note that in the absence of prior information on S, we can also use a Negative Binomial distribution NegBin(r, p) such that p is small and r = p; arguing that Var(S) is thus large, while E(S) is close to 1;

Recall that E(S) = (1p) r p and Var(S) = E(S)/p. Moreover, it is clear that the Bayesian estimate of S based on such a flat proper prior (namely a NegBin(p, p) with small p) will be close to the one yielded by the Jeffreys prior (due to the Proposition 3.3); see also the way S is generated during the MCMC algorithm (cf Section 3.7).

So far, we have focused on non-informative priors on S, but an advantage of our approach, compared to the unconditional approaches of [START_REF] Dupuis | Bayesian estimation of species richness from quadrat sampling data in the presence of prior information[END_REF] and of Royle et al. (2006), is that it easily allows prior information on S to be incorporated (when it exists), simply because S is a parameter of the model. For example, it is possible to incorporate -via a negative binomial distribution -prior information consisting of an estimate S * of S and of its standard error e (on condition that e 2 > S * ), as follows: set E(S) = S * and Var(S) = e 2 , then use the fact the negative binomial distribution can be parametrized by its mean and variance (cf Appendix A3). More interestingly, it is also possible (in general) to incorporate -via a negative binomial distribution -a prior consisting of (available from the authors on request) which uses the above parametrization and proceeds by dichotomy (details are omitted). This is of course an interesting characteristic easy to check that S -d|α, β, σ 2 µ , σ 2 ν , y follows a Negative Binomial (r + d, 1 -(1p)ω 0 ). Consequently, if one uses a Negative Binomial distribution (r, p), with r = p and small p, as a non informative prior distribution on S (as suggested in Section 3.6), it is clear that the estimate of S based on this proper prior distribution, and the one based on the Jeffreys prior, will be very close.

Implementing this MCMC algorithm requires that ω 0 and the ω h 's such that N h = 0 be computed at each iteration; that is integrals which are not analytically tractable (see Section 3.5). Although they can be easily approximated by classical Monte Carlo methods, obtaining the Bayesian estimate of S by this strategy is computationally intensive; simply because the number of ω h we have to compute (namely those such that N h = 0) rapidly increases with T and K (recall that one has (K + 1) T possible histories). This strategy is actually no more conceivable when one assumes that occurrence and detectability parameters are quadrat dependent (cf Section 4). Hence it is necessary to propose an alternative to this MCMC algorithm, to overcome these computational difficulties (already mentioned by [START_REF] Dorazio | Estimating size and composition of biological communities by modeling occurrence of species[END_REF]; as well as by Royle et al., 2006).

Our idea is to implement a MCMC algorithm in which only one integral (namely ω 0 ) will have to be calculated at each MCMC step. We achieve this objective by treating (in the MCMC algorithm) the random effects µ s and ν s of detected species at the same level as the parameters S, α, β, σ 2 µ , σ 2 ν . In other words the MCMC algorithm is implemented on (µ, ν, S, α, β, σ 2 µ , σ 2 ν ) where µ = {µ s ; s = 1, . . . , d} and ν = {ν s ; s = 1, . . . , d}, instead of (S, α, β, σ 2 µ , σ 2 ν ). This algorithm relies on the joint distribution of (y, d, µ, ν, θ 0 ) where y = {y s ; s = 1, . . . , d}. This density decomposes as follows:

p(y|µ, ν, d, α, β) p(µ, ν|d, σ 2 µ , σ 2 ν ) p(d|S, α, β, σ 2 µ , σ 2 ν ) π(θ 0 ) where p(y|µ, ν, d, α, β) = d s=1 p(y s |y s = 0, µ s , ν s , α, β) = d s=1 p(y s |y s = 0, ϕ s , q s ), p(µ, ν|d, σ 2 µ , σ 2 ν ) = d s=1 p(µ s |σ 2 µ )p(ν s |σ 2 ν ) and p(d|S, α, β, σ 2 µ , σ 2 ν ) = S d ω S-d 0 (1 -ω 0 ) d .
The expression of p(y s |y s = 0, ϕ s , q s ) (where s represents a detected species) is derived from Proposition 3.2; so, one has:

p(y s |y s = 0, ϕ s , q s ) = ρ s q Ws s (1 -q s ) KVs-Ws ϕ Vs s (1 -q s ) K ϕ s + 1 -ϕ s T -Vs 1 -(1 -q s ) K ϕ s + 1 -ϕ s T .
Updating α, β, σ 2 µ , σ 2 ν , as well as µ and ν, is done via Metropolis-Hastings steps (details are omitted). Updating S is done via a Gibbs step as in (3.11).

The heterogeneous model M 1

In this Section we no longer assume that the region under investigation, R, is spatially homogeneous, but assume that it is composed of A ≥ 2 homogeneous subregions of biological interest; for example a forest can be divided into the edge and the inner forest (as in our illustration). The experimental protocol is without change, except that the region of study is first divided into A subregions, called R 1 , . . . , R a , . . . , R A ; then a quadrat sampling is performed in each subregion R a (as indicated in Section 2). The number of quadrats in which R a is divided is denoted by n a , and the number of quadrats sampled in R a is denoted by T a .

• The assumptions A1, A2 and A4 of the model M 0 are not modified. The detectability parameters are now indexed by s and a; more precisely we denote by q sa the probability to detect (during a visit) species s in any quadrat j located in the subregion R a . The distribution of species s in the n quadrats is characterized by the probability mass function:

p(z s ) = A a=1 ϕ |zsa| sa (1 -ϕ sa ) na-|zsa| 1 -A a=1 (1 -ϕ sa ) na (4.1)
where |z sa | represents the number of quadrats of R a in which species s is present. It is easy to check that ϕ sa represents the probability that species s is present in any quadrat j located in region R a , given that it is present in at least one other quadrat. The p.m.f. (4.1) is in fact a natural extension of the one adopted for the model M 0 , as well as a particular case of the more general p.m.f.:

p(z s ) = n j=1 ϕ z sj sj (1 -ϕ sj ) 1-z sj 1 -n j=1 (1 -ϕ sj )
where a distinct occurrence parameter ϕ sj is introduced for each quadrat j.

• The species effects are modeled as random effects (as in M 0 ), and the region effects as fixed effects, as follows:

logit(q sa ) = α a + µ s (a) and logit(ϕ sa ) = β a + ν s (a) , (4.2) 
where the µ s (a) are i.i.d according to a normal distribution N (0, σ 2 µ (a)), and the ν s (a) are i.i.d according to a N (0, σ 2 ν (a)). • The priors are similar to those used for model M 0 .

• The likelihood under model M 1 , is derived from the Proposition 4.1 below. Let s be a detected species; we denote by V sa the number of quadrats of R a in which species s has been detected, and by W sa the total number of visits (made in region R a ) during which species s has been detected. Moreover we denote by q s the vector (q sa ; a = 1, . . . , A) and by ϕ s the vector (ϕ sa ; a = 1, . . . , A).

Proposition 4.1. Let s be any detected species. We have:

p(y s |ϕ s , q s ) = ρ s A a=1 ϕ Vsa sa q Wsa sa 1 -q sa Usa (1 -q sa ) K ϕ sa + 1 -ϕ sa Ta-Vsa 1 -A a=1
(1ϕ sa ) na where U sa = KV sa -W sa and ρ s is defined as for the model M 0 , except that now T = a T a .

Moreover, we have:

Pr(y s = 0|ϕ s , q s ) = A a=1 (1 -q sa ) K ϕ sa + 1 -q sa Ta -A a=1 1 -ϕ sa na 1 -A a=1 (1 -ϕ sa ) na .
The proof is very similar to the one established in the homogeneous case; consequently, details are omitted.

• Estimating S relies on the MCMC algorithm described in Section 3.7 and which requires only one integral to be computed at each iteration.

An illustration 5.1 The Montech forest

An illustration is given by data collected in May 1987 in order to estimate the number of bird species present in the forest of Montech (France), except for the birds of prey (recall that we exclude predator-prey relationships between species, cf Assumption A4). This forest, with a surface area of 1000 hectares, is relatively spatially homogeneous, mainly composed of oaks and hornbeams [START_REF] Decamps | The importance for birds of the riparian woodlands within the alluvial corridor of the river Garonne, s.w. France[END_REF][START_REF] Dupuis | Bayesian estimation of species richness from quadrat sampling data in the presence of prior information[END_REF].

However, it is expected that the detectability and occurrence parameters (that is q sj and ϕ sj ) could depend on quadrat j, according to whether j is located at the edge or in the inner forest (species s being fixed). It is why we have first estimated the species richness of the Montech forest (taken as a whole) under model M 0 , then under model M 1 . Moreover, we have also estimated separately the number of species present at the edge, and the number of species present in the inner forest (by using each time the model M 0 ).

The experimental protocol

The protocol and field description are detailed in [START_REF] Decamps | The importance for birds of the riparian woodlands within the alluvial corridor of the river Garonne, s.w. France[END_REF]; consequently only the main details are given here. The Montech forest has been divided into n = 40 quadrats of equal size; only half of the quadrats have been sampled (thus T = 20). The inner forest (called R 1 ) includes n 1 = 22 quadrats; the edge (called R 2 ) includes n 2 = 18; moreover, T 1 = 14 quadrats have been sampled in R 1 , and T 2 = 6 in R 2 . We consider that species s occupies quadrat j (that is z sj = 1), if at least one pair belonging to species s has nested in quadrat j, during May. Information about the presence of nesting species was provided by acoustic recognition of singing males according to the following procedure. In spring, songs of males (only) indicate the presence of a nesting pair close by. The researcher spent a prescribed time (twenty minutes in our study) at each station (in the center of quadrat), listening for birds. More precisely, data have been collected

according to the following point count protocol: each 20-minute session has been sliced into four subsessions of 5 minutes each, during which the experimenter records whether the presence of the species of interest has been detected or not. Each slice is the equivalent of a visit, therefore K = 4. As information 29 species have been detected in the inner forest, 23 in the edge, and 33 in the whole forest. The complete data set is available from the first author on request.

Results

Under model M 0 , the non-informative (Jeffreys) Bayesian estimate of the number of species present in the whole forest of Montech is 38.8 (posterior mean); [34,47] being a 95% posterior credible interval. Under model M 1 , the posterior mean is 35.1, and [33, 39] is a 95% posterior credible interval. These results show that taking into the fact that detectability and occurence parameters could differ between the inner forest and the edge has a significant impact on the estimation of S. [START_REF] Dupuis | Bayesian estimation of species richness from quadrat sampling data in the presence of prior information[END_REF] have also estimated the species richness of the Montech forest in 1987, assuming spatial homogeneity of the region of study. But authors limited themselves to passerines species, estimation of S was based on a sub-sample of size T = 8, and additional data have been used to built the priors on the parameters λ s of species s not detected by the quadrat sampling; consequently, comparing estimates of S is not relevant.

Table 1 below provides the posterior means and 95% credible intervals of S, α, β, σ µ and σ ν in each part of the Montech forest: the edge and the inner forest.

[Table 1 about here.]

These results are based on the MCMC algorithm described in Section 6.3 (with the Jeffreys prior used for S). Recall that, at each step of the MCMC algorithm, ω 0 (defined in Section 6.1) is calculated by a classical Monte Carlo method. A preliminary simulation study has shown that a run of 500 iterations was sufficient to satisfactorily approximate ω 0 .

Results appearing in Table 1 are based on a long MCMC sequence which was run for 10 6 iterations (with the first 10% discarded as burn-in). Independent replications (run from overdispersed starting points) produced essentially identical results (as those appearing in Table 1), so that convergence was assumed.

Let us comment on these results.

• An interesting element which emerges from these results is that the estimate of the species richness is significantly greater in the inner forest than at the edge.

• The species richness S constitutes the parameter of main interest in this paper, but the model also allows us to investigate other issues of biological interest, via the parameters α, β, σ µ and σ µ . Indeed, parameters β and σ ν provide some global information on the rarety (in a spatial sense) of the species present in the study region (cf Section 3.3.1), while α and σ µ provide some global information on their detectability. We observe, on a logit scale, that detectability is (on average) smaller at the edge (-0.9) than in the inner forest (-0.5); conversely, we note that species are more rare (always on a logit scale and on average) in the inner forest (-0.4) than at the edge (0.7). Moreover, we note that, for the inner forest, α (-0.5) and β (-0.4) are very close, whereas, for the edge, it is σ µ (1.2) and σ ν (1.1) which are practically equal (for convenience, the estimate of α is denoted by α;

and a similar notation is adopted for β, σ µ and σ µ ). These two observations lead us to the following comments. As far as the edge is concerned, the fact that α (-0.9) is significantly smaller than β (0.7) suggests that species missed by the quadrat sampling in this part of the forest are mainly due to the presence of species not easily detectable. As far the inner forest is concerned, the fact that σ ν (2.1) is significantly greater than σ µ (0.8) suggests, by contrast, that species missed by the quadrat sampling in this other part of the forest are mainly due to the presence of species spatially rare.

• Lastly, it is of interest to compare our estimates of α, β, σ µ and σ µ with those obtained by [START_REF] Dorazio | Estimating size and composition of biological communities by modeling occurrence of species[END_REF]. For the BBS data set; α = -1.5, β = -1.9, σ µ = 1.1, σ ν = 2.2.

They are thus of the same order of magnitude; however, we observe non negligible distances between their estimates of α and β, and ours; that suggests that species involved with the BBS data set were, on average, not only more difficult to detect, but also rarer (in a spatial sense) than in our illustration. This could explain why, in [START_REF] Dorazio | Estimating size and composition of biological communities by modeling occurrence of species[END_REF], the ratio between the number of detected species and the estimate of S, namely 75/93.3 ≈ 80%, is smaller than ours: indeed, for the whole forest, this ratio is equal to 85% under model M 0 , and to 94% under model M 1 ; moreover, it is equal to 89% for the inner forest ; and to 86% for the edge.

Conclusion

This paper proposes a new approach for estimating the species richness from quadrat sampling when the study region is composed of a finite number n of quadrats. The fact that nothing is assumed regarding the size of n constitutes a key element of our approach which differentiates it from the ones developed by [START_REF] Dorazio | Estimating size and composition of biological communities by modeling occurrence of species[END_REF] and by Royle et al. (2006) which suppose that the study region is theoretically composed of an infinite number of quadrats. As a consequence, n is not a part of their models, contrary to ours.

Compared with the conditional approach of [START_REF] Dorazio | Estimating size and composition of biological communities by modeling occurrence of species[END_REF], our approach can be viewed as an extension, in that the DR likelihood coincides with ours asymptotically (that is when n -→ ∞). In other respects, recall that the estimate of S yielded by [START_REF] Dorazio | Estimating size and composition of biological communities by modeling occurrence of species[END_REF] is not fully Bayesian, but rather ad hoc. In this paper, we implement an efficient MCMC algorithm which allows us to obtain the Bayesian estimate of S (in spite of serious computational difficulties). Interestingly, our algorithm could be easily modified to perform a fully bayesian analysis of the problem under the Dorazio and Royle assumption (namely n = ∞).

Compared with the unconditional approaches of [START_REF] Dorazio | Estimating species richness and accumulation by modeling species occurrence and detectability[END_REF] and of [START_REF] Dupuis | Bayesian estimation of species richness from quadrat sampling data in the presence of prior information[END_REF], our approach can be used in the absence of information on S (thus in totally unknown regions). By contrast, implementing unconditional approaches in such a context is somewhat delicate as mentioned in the introduction. On the other hand, our approach allows us to incorporate easily (via a negative binomial distribution) some information on S, when its exists; for example, when it consists of an estimate S * of S and of its standard error. By contrast, unconditional approaches do not offer such a possibility, because S is not a parameter of the model.

Lastly, it is of interest to mention the unconditional approach of MacKenzie et al.

( 2006), which assumes that the region is divided in n quadrats (no assumption is made on the size of n, as in our paper) and models occurrences of species s in the n quadrats as follows:

p(z s ) = ψ |zs| s (1ψ s ) n-|zs| (5.1)

To our knowledge, this model has never be used when estimating species richness is of interest, and we believe that it could constitute an interesting alternative to the conditional approach proposed in this paper (cf 3.1). As in [START_REF] Dupuis | Bayesian estimation of species richness from quadrat sampling data in the presence of prior information[END_REF] and Royle et al. (2006), this model will require that a supercommunity of known size is introduced. But, contrary to Royle et al. (2006) which assume that the probability of presence (in R) of any species s belonging to this supercommunity does not depend on s, MacKenzie et al.

( 2006) do not make such a biological assumption, since λ s = 1 -(1ψ s ) n .

The model developed in this paper has to be considered as starting points for more elaborate models. We assume that the presence of a given species in a given quadrat is not affected by whether or not the species is present in the neighbouring quadrats, but such an assumption is not always reasonable in animal populations, and a possible extension would thus be to introduce some spatial correlation between z sj and its neighbours (via an autologistic model, for example). We also assume that species occupy the quadrats independently, a challenging problem would be to develop a model for estimating the species richness of an animal population within which predator-prey relationships exist. [23, 32] [-1.6, -0.2] [-0.2, 1.7] [0.7, 1.9] [0.5, 2.4] 

  [; the verification is immediate. But, when n -→ +∞, the three parameters ϕ s , ζ s and ψ s are confounded, since ζ s = ϕ s /[1 -(1ϕ s ) n ] -→ ϕ s and ζ s and ψ s now take their values in the same set.

S

  * = E(S) and an interval [a * , b * ] (containing S * ) such that Pr(S ∈ [a * , b * ]) = 0.95; obtaining the coefficients of the corresponding negative binomial distribution requires a program

Table 1

 1 Posterior means and 95% credible intervals of S, α, β, σ µ and σ ν

		S	α	β	σ µ	σ ν
	inner forest	32.5	-0.5	-0.4	0.8	2.1
		[29, 38]	[-1.0, 0.1]	[-1.3, 0.5] [0.4, 1.2] [1.3, 3.4]
	edge	26.8	-0.9	0.7	1.2	1.1

of the negative binomial distribution since, in practice, prior information will typically be available under this form. (Note that analogous observations have been made by [START_REF] Dupuis | Bayesian estimation of movement and survival probabilities from capture-recapture data[END_REF] while incorporating some similar prior information on a parameter belonging to [0, 1].) When an unconditional approach is used, incorporating such an informative prior (consisting of S * and [a * , b * ]) is not possible, simply because S is not a parameter of the model. So, in Royle et al. (2006), the distribution of S|M is in fact completely determined by the prior distribution placed on λ; now, the latter is practically constrained (owing to biological considerations). More precisely, S|M follows a uniform distribution on distribution on {1, . . . , M} because a uniform distribution on [0, 1] has been placed on λ (other distributions on λ will be difficult to justify, in practice).

3.7

Estimating S and computational issues.

Obtaining the posterior distribution of S (and in particular the posterior mean) requires the implementation of MCMC methods. A possible algorithm is as follows. The parameters (α, β, σ 2 µ , σ 2 ν ) are updated via Metropolis-Hastings steps. For example, updating α proceeds as follows. We propose a new value α ′ ∼ Normal(α, δ) where δ is fixed via tuning pilot.

The proposal α ′ is accepted with probability min(1, r) where

where θ 0 = (S, α, β, σ 2 µ , σ 2 ν ) represents the current state and θ ′ 0 = (S, α ′ , β, σ 2 µ , σ 2 ν ) the proposal. The parameter S is updated via a Gibbs step; it is easy to check that if we adopt the Jeffreys prior, then

where

ν , y follows a Negative Binomial (d + 1, 1ω 0 ). Therefore, these two non informative priors should give close estimates of S, as long as 1 is small compared with d. When S ∼ NegBin (r, p), it is

Appendices

For convenience, the conditionings on the parameter(s) are omitted.

Appendix A1

We denote by E the set {0, 1} n \{ 0}. We have p(z s ) = z ′ s p(z s , z ′

Appendix A2

We begin by calculating p(y s ) in function of q s and ϕ s , when y s = 0. We set:

The sum zs p(x s , z s ) is over all the possible values of z s (including 0). Using the Proposition 3.1, we have:

Now, it is easy to check that

hence the result.

• Second case: T = n. Thus z s and z s are now confounded, and the sum zs p(x s , z s ) is over all the possible values of z s (excluding 0), due to the constraint z s = 0. We have:

from which we easily deduce that:

Appendix A3

If S ∼ NegBin (r, p), where r ∈]0, +∞[ and p ∈]0, 1[, let us first recall that its probability mass function is such that:

We now express r and p in terms of E(S) and Var(S). This is easily done by using the well known formulae E(S) = r 1-p p and Var(S) = r 1-p p 2 , from which we deduce that: (2)

If we let Var(S) -→ +∞ in (2) it is clear that, for any fixed E(S), p -→ 0 and r -→ 0.

If we now let p and r -→ 0 in the right-hand side of (1), it is easy to verify that it tends to 1/S, since Γ(r + S) -→ Γ(S) = (S -1)! and (1p) S -→ 1.