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Summary. We consider the problem of estimating the number of species (denoted by S)

of a biological community located in a region composed of n quadrats. To address this

question, different parametric approaches have been recently developed. However, they all

have some limitations which reduce their use in practice: indeed, either they presuppose

that the sampled quadrats are taken from a large population of quadrats (theoretically

infinite), or they require an upper bound on S. Our approach is more general in that it

applies without limitation on n and it can be used in the presence of prior information

on S, as well as in totally unknown regions. We pay attention to the prior adopted for

S; in particular, different non informative priors are considered and motivated. We first

consider a simple model which assumes that occurrence and detectability parameters do

not depend on quadrats. It constitutes a suitable framework to clarify the links existing

between current approaches and ours. We then extend this model by assuming that the

region of study is spatially heterogeneous. We illustrate our approach by estimating the

number of species of a birds community located in a forest.
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1. Introduction

The species richness of a community of animals or plants - that is the number of species

present within this community - is a basic measure of its bio-diversity (Huston, 1994).

Estimating the species richness (denoted by S) of a biological community located in some

specified region, called afterwards R, often relies on quadrat sampling data (Krebs, 1989).

Assume that that the region R is composed of n quadrats, inference on S is thus based on

a sample of quadrats (of size T < n). Of course, the region R has to be bounded, or else

estimating S is an ill-posed problem (eg Dorazio et al., 2006). Nonparametric methods

have been used for estimating S when quadrat sampling is used. They include the Jacknife

and the boostrap estimates; see Mingoti and Meden (1992); Bunge and Fitzpatrick (1993),

Chao (2005), Hass et al. (2006).

Recently, parametric approaches have been developed for estimating species richness

from quadrat sampling. They are all characterized by a hierarchical modeling of the data

which separates assumptions related to occurrences of species in the quadrats and those

related to their detectability (this constitutes an interesting characteristic of these ap-

proaches, compared to the nonparametric approaches). Three approaches can be distin-

guished according to whether an upper bound on S is required or not, and according to

whether the number n of quadrats which composes R is assumed to be large (in theory

infinite) or not. From here on, it is important to point out that, in practice, n is not

necessarily large; in fact, its value strongly varies from one survey to another (see Section

2). We recall these three approaches below, and make clear the limitation(s) of each.

Dorazio and Royle (2005) have developed an approach (afterwards called the DR ap-

proach) which does not require an upper bound on S, but assumes that the number of

quadrats which composes R is theoretically infinite (we will write n = ∞, for conve-

nience). Consistently, n is not a part of the model, and Dorazio & Royle (2005) define the
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species richness S as the limit of ST when T −→ ∞, where ST represents the number of

species present in T sampled quadrats (or as the asymptote of a cumulative species-area

curve). This approach is thus not appropriate to deal with the problem examined in this

paper (recall that we assume nothing regarding the size of n).

Dupuis and Joachim (2006) have developed an approach which has no limitation on n,

but requires to have some information on S; in particular, an upper bound. More precisely,

their approach assumes that it is possible to draw up a list of species liable to be present

in R. Consequently, it cannot be implemented in little known regions. Furthermore, it

requires to have some prior information on the probabilities of presence (in R) of species

not detected by the quadrat sampling, which constitutes a limitation of this approach.

Royle et al. (2006) have developed a Bayesian approach which presents some similar-

ities with the previous one, in that they introduce a supercommunity of species which is

supposed to include the species population of interest (see also Dorazio, Royle and Link,

2007). As in Dupuis and Jochim (2006), the size M of this supercommunity is assumed

to be known and has to satisfy the constraint M ≥ S, while S is actually unknown. Not

surprisingly the estimate of S depends on M , and the choice of M is thus important in this

method (as in Dupuis and Jochim, 2006). As a rule, the approach of Royle et al. (2006)

requires to have some idea on the size of S, to meet - as far as possible - the constraint

M ≥ S. However, it can be used when nothing is known on the size of S, by assigning

large values to M ; indeed, such values lead effectively to flat priors on S because Royle et

al. (2006) assume that S|M follows a uniform distribution on {1, . . . ,M}. Nevertheless,

such a strategy is not very satisfactory in practice, because assigning large values to M

induces high computational costs, as stressed by Royle et al. (2006) and by Dorazio, Royle

and Link (2007). In other respects, we note that the approach of Royle et al. (2006)

is able to estimate the number of species present in any finite subset of quadrats, but it
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is unclear if the region R has to be composed of an infinite number of quadrats or not.

However, we note that n plays no part in their modeling and that its value is actually

not mentioned; this element and others (cf Section 3.3) lead us to believe that the authors

implicitly assume that n is theoretically infinite (as in Dorazio and Royle, 2005). Lastly,

we also note that Royle et al. (2006) assume that the probability of presence (in R) of

any species s belonging to the supercommunity does not depend on s, which constitutes a

strong biological assumption which is not always reasonable (cf Section 3.3.2); by contrast,

Dupuis and Joachim (2006) do not make such an assumption. For all these reasons, we

believe that the approach of Royle et al. (2006) is not suitable to deal with the situation

considered in this paper.

The model developed in this paper is closer to that of Dorazio and Royle (2005) than

the two other models (Royle et al., 2006; Dupuis and Jochim, 2006). Contrary to Dorazio

and Royle (2005), we do not assume that n is theoretically infinite, which allows us to

introduce it in the model. When n is finite, it is indeed preferable that it is a part of the

model. Ignoring n can actually lead to unreasonable estimates of S, simply because the

resulting model will produce the same estimate of S whatever the sampling fraction T/n

(eg Hass et al., 2006). Our approach extends the one of Dorazio and Royle (2005) to the

situation where no assumption is made regarding the size of n; we show in particular that

the DR likelihood and ours coincide asymptotically (that is when n −→ ∞). Moreover,

obtaining the Bayesian estimate of S involves serious computational difficulties (cf Section

3.7), and the DR approach is rather ad hoc, in that it is not fully Bayesian (in particular, no

prior distribution is placed on S). In this paper, we show how to overcome these difficulties

and provide a full Bayesian analysis of the problem.

We stress that existing approaches cannot incorporate satisfactorily some prior infor-

mation on S, except (of course) for a prior consisting of an upper bound on S; for example,
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it is not possible to incorporate information on S consisting of an estimate S∗ of S and an

interval [a∗, b∗] containing S∗, such that Pr(S ∈ [a∗, b∗]) = 0.95, while prior information is

typically available under this form (when it exists). As far as the approaches of Dupuis &

Joachim (2006), and Royle et al. (2006) are concerned, the key reason is that S is not a

parameter of the model (see Sections 3.3.2 and 3.6). In Dorazio and Royle (2005), S is a

parameter of the model, but no prior is placed on S (as already mentioned above). The

approach developed in this paper has no such a limitation. We also pay particular atten-

tion to the situation where no prior information is available; so, different non informative

priors on S are considered and the sensitivity to such priors is examined. In particular, we

provide arguments for the standard non-informative prior of Jeffreys. To our knowledge,

no theoretical justification has yet been provided for this choice of prior; see, for example,

Kass and Wasserman (1996).

2. The experimental protocol and underlying processes

2.1 The experimental protocol and data description

The experimental protocol to collect the data is standard (Krebs, 1984; or Mingoti and

Meeden, 1992; Dupuis and Joachim, 2006). The region R is divided into n spatial units,

called quadrats for convenience, though they may have different shapes. In this paper we

assume that these quadrats are of equal area. A sample of T quadrats is then taken, and the

sampled quadrats are numbered from 1 to T . The draw is usually performed at random

so as to have a sample representative of the whole region R. Finally, an experimenter

visits each sampled quadrat K ≥ 2 times, and records the species detected. Detections

are typically based on visual or oral recognitions; we assume that species are correctly

identified. The protocol used for collecting the data set analyzed in Dorazio and Royle

(2005) enters in this framework. It is in fact described in details in Royle et al. (2006);

see the Section Protocol for Sampling Communities. We note that the number n of spatial
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units (quadrats) which compose the study region does not appear in this description; this

is not actually surprising since this quantity is not a part of the model. In fact, in most

papers which ignores n during the modelling, its value is not provided, as pointed out by

Mingoti and Meeden (1992), and by Hass et al., (2006).

Sometimes, all the n quadrats are explored, thus T = n; such a situation typically

occurs when the size n is small or moderate. Interestingly, the methodology developed in

this paper also applies to this particular situation.

We denote by ys = (ysj; j = 1, . . . , T ) the record (or history) related to species s.

When K = 4 and T = 6, a possible record is: ys = (3 0 0 0 4 0). Such a record means

that species s has been detected in quadrat 1 during three visits, and detected in quadrat

5 during each visit. Moreover, it has not been detected in quadrats 2, 3, 4, 6. We stress

that when ysj = 0, it does not necessarily mean that species s is absent from quadrat j.

Indeed, it is possible that a species is present in a quadrat, but is not detected during

the K visits. From a statistical point of view, the problem is to estimate the number S

of species present in R, from the records of species whose the presence (in R) has been

detected at least once.

The size of n is a key element of the paper. In practice, its range is particularly large,

since its value strongly varies from one survey to another. Let us illustrate this variability

through a few examples, by limiting ourselves to ornithological surveys. The size of n can

be moderate as in Dupuis and Joachim (2006) where n = 40 quadrats, or relatively large

as in Decamps et al. (1987) where n = 98 quadrats. In this study the values of n are

relatively small 18 and 22 (or moderate 40). In Dorazio and Royle (2005), Royle et al.

(2006), Dorazio, Royle and Link (2007), the value of n is is not provided.
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2.2 Underlying processes and missing data.

For any species s, we introduce two underlying processes: the first one is related to its

occurrences in the quadrats, and the other one is related to its detections.

- For j = 1, . . . , n, we denote by zsj the indicator of presence of species s in quadrat j;

thus zsj = 1 if species s is present in quadrat j, and zero otherwise.

- Let j be a sampled quadrat. For a species s present in quadrat j (thus such that

zsj = 1), xsj ∈ {0, 1, . . . , K} denotes the number of times that species s has been detected

in quadrat j during the K visits. If zsj = 0 thus xsj = 0 (with probability one).

Introducing these two latent processes allows us to formulate rigorously the biological

assumptions made, and to introduce, in a natural way, the parameters of biological interest;

such a strategy is standard when one process is partially observed; see eg Dupuis (1995) in

a capture-recapture context. Dupuis, Bled, and Joachim (2010) have exhibited the missing

data structure of quadrat sampling data; this structure will be particularly useful here to

obtain the expression of the likelihood in closed form. It is recalled below. When species

s has not been detected in a sampled quadrat j (that is when ysj = 0), it is clear that zsj

is missing. In fact the event (ysj = 0) covers two exclusive situations: either species s is

present in the sampled quadrat j but has not been detected, or it is not present in it (that

is zsj = 0). Formally, we have the equivalence (ysj = 0) ⇐⇒ (zsj = 1 and xsj = 0) or

(zsj = 0). When (ysj = k), where 1 ≤ k ≤ K, it is clear that zsj is not missing (zsj = 1),

and formally one has (ysj = k) ⇐⇒ (zsj = 1 and xsj = k). Moreover, zsj is of course

missing, when quadrat j is not a part of the sampled quadrats. Lastly, note that the

whole vector (zs1, . . . , zsn) is missing when species s has not been detected by the quadrat

sampling, that is when ys = (0, . . . , 0).
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3. The homogeneous model M0

3.1 Some additional notation.

Our notation is essentially the same as the one adopted in Dupuis and Joachim (2006).

Throughout the paper, p(.) denotes a probability mass function. We denote by 1I(C) the

indicator function that takes the value 1 when the condition C is true and zero otherwise.

The null vector is denoted by ~0. Let v be a vector; we denote by |v| the sum of all its

components. The number of species detected by the quadrat sampling is denoted by d. The

vectors (zsj ; j = 1, . . . , T ) and (xsj ; j = 1, . . . , T ) are denoted by zs and xs, respectively.

Lastly, we denote by zs the vector (zsj; j = 1, . . . , n). We stress that, in Dorazio and Royle

(2005), J denotes the number of sampled quadrats, while this quantity is denoted by T in

this paper (as in Dupuis and Joachim, 2006).

3.2 Modeling detectability

Biological assumptions related to detections are supported by the random vectors xs’s.

Assumption A1. We assume that x1, . . . , xs, . . . , xS are independent.

Assumption A2. We assume that: p(xs|zs) =
∏T

j=1 p(xsj|zsj)

Assumption A3. We assume that xsj |zsj = 1 ∼ Binomial(K, qs).

Assumptions A1, A2 and A3 are standard; they are also present in Dorazio & Royle

(2005) and in Royle et al. (2006). A2 means that the probability of detecting species s in

quadrat j does not depend on its (possible) detections in the other quadrats. A3 means

that, s and j being fixed, the detections of species s during the K visits in quadrat j are

independent. Moreover, qs represents the probability of detecting species s in any quadrat

j during any visit, given that it is present in quadrat j.

3.3 Modeling occurrence of species in the quadrats.

Assumption A4. We assume that z1, . . . , zs, . . . , zS are independent.

A4 is standard and means that the species present in R do not interact relative to their
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presence (in the quadrats). We thus exclude predator-prey relationships between species.

Concerning the probabilistic assumptions made on the zsj’s (s being fixed), one can

distinguish two types of approach according to whether one models occurrences of species

liable to be present in R (unconditional approach), or whether modeling involves species

present inR (conditional approach). This terminology has been introduced by Dupuis, Bled

and Joachim (2010). This distinction between conditional and unconditional approaches

is crucial when estimating species richness is of concern; it is the reason why we indicate

how each approach deals with this stage of the modeling. The way of modeling occurrence

is unconditional in Dorazio, Royle & Link (2007) and in Dupuis & Joachim (2006); it is

conditional in Dorazio & Royle (2005), as well as in this paper. Moreover, it is useful to

introduce the indicator ξs equal to 1 if species s is present in R and zero otherwise. We

denote by λs the probability that species s is present in R; thus λs =Pr(ξs = 1).

3.3.1. Conditional approaches

• The way we model occurrences in this paper is the one adopted by Dupuis, Bled and

Joachim (2010). We briefly recall this approach. The following assumption is made.

Assumption A5. Let s be a species present in R; then it exists at least one quadrat

j ∈ {1, . . . , n} such that zsj = 1 (or equivalently zs 6= ~0). We assume that:

p(zs|ϕs) =
ϕ
|zs|
s (1 − ϕs)

n−|zs|

1 − (1 − ϕs)n
(3.1)

where |zs| represents the number of quadrats in which species s is present.

It is easy to check that ϕs represents the probability that species s is present in quadrat

j, given that it is present in at least one other quadrat (Dupuis et al., 2010). Parameter ϕs

is connected to the rarety (in a spatial sense) of species s; a small occurrence probability ϕs

being associated with a species s which occupies (on average) a small number of quadrats.

Indeed, it is easy to check that the expectation of |zs| is equal to nϕs[1 − (1 − ϕs)
n]−1
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which is an increasing one-to-one function of ϕs (it varies from 1 to n). Moreover, due

to the constraint zs 6= ~0, the zsj ’s are clearly not independent. However, a certain form

of conditional independence between the zsj ’s holds: namely zsi and zsk are independent

conditionally on the presence of species s in any other quadrat j, distinct from i and k

(Dupuis et al., 2010). The result below makes it possible to obtain the likelihood in closed

form and also links the way we model occurrences in the sampled quadrats and the way

Dorazio and Royle (2005) proceed.

Proposition 3.1. The probability mass function of zs is:

p(zs|ϕs) = [ϕ|zs|
s (1 − ϕs)

T−|zs|] / [1 − (1 − ϕs)
n] if zs 6= ~0 (3.2)

and p(zs|ϕs)) = [(1 − ϕs)
T − (1 − ϕs)

n] / [1 − (1 − ϕs)
n] otherwise.

Proof. See Appendix A1.

Note that the above Proposition also holds in the particular case T = n.

• Dorazio and Royle (2005) model occurrences of species s only in the sampled quadrats,

by assuming that zs1, . . . , zsT are independent outcomes of a Bernoulli random variable.

We note that the above constraint zs 6= ~0 (which characterizes the fact that species s is

present in R when n is finite) has no equivalent in the DR modeling. Dorazio and Royle

(2005) assume that:

p(zs|ψs) = ψ|zs|
s (1 − ψs)

T−|zs| (3.3)

where |zs| represents the number of sampled quadrats in which species s is present, and

ψs =pr(zsj = 1). Note that ψs and ϕs do not have the same meaning, hence two distinct

notations; in fact, ϕs is a conditional occurrence parameter (contrary to ψs); as stressed in

Dupuis et al., (2010). Here, it is of interest to compare the probability mass function of zs

we use in this paper (cf Propostion 3.1) and the one adopted by Dorazio and Royle (2005).

First, note that both T and n appear in (3.2), contrary to (3.3). More importantly, if in
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(3.2) we make n −→ ∞ (T being fixed), we observe that both p.m.f. coincide (ϕs and ψs

being confounded when n −→ ∞, as explained in Section 3.5).

3.3.2. Unconditional approaches

Unconditional approaches - which model occurrences (in the quadrats) of species liable

to be present in R - are essentially characterized by three elements. First, a supercommu-

nity, denoted by M, is introduced; it includes the species community of interest and its

size (denoted by M) is assumed to be known. Note that S ≤ M ; in other words, M is an

upper bound of S. Second, the species richness S is not a parameter of the model, one

has S =
∑M

s=1 ξs. Third, unconditional approaches give a positive probability to the event

ξs = 0 (or equivalently to the event zs = ~0 when n is finite), contrary to conditional ap-

proaches. We can distinguish two unconditional approaches according to whether n plays

a part in the way occurrences are modeled (Dupuis and Joachim, 2006), or not (Royle et

et al., 2006); see below.

• Let s be a species belonging to the supercommunity M, Dupuis and Joachim (2006)

consider the hierarchical model below:

ξs|λs ∼ Bernouilli(λs) p(zs|ξs = 1, ϕs) =
ϕ
|zs|
s (1 − ϕs)

n−|zs|

1 − (1 − ϕs)n
(3.4)

where the meaning of ϕs is the one given above. The way a species s present in R occupies

the n quadrats is thus modeled as in (3.1).

• Similarly, for any species s ∈ M, Royle et al. (2006) introduce the indicator ξs and

the parameter λ. Note that λ (denoted by Ω by these authors) is therefore assumed to

be the same for all species, which constitutes a strong biological assumption which is not

always reasonable. For example, in the paper of Dupuis and Joachim (2006), estimating

S requires to estimate λs for each species s not detected; now, a strong variability among

these different estimates can be observed, since they vary from 0.13 to 0.95. Consequently,

for this species population (which is also the one considered in this paper), the assumption
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of Royle et al. (2006) concerning λ would not be tenable from a biological point of view.

Moreover, Royle et al. (2006) assume independence between the zsj ’s, conditionally on

ξs = 1. This independence assumption (called afterwards A6) is more general than in

Dorazio and Royle (2005), in that it applies to any finite subset of quadrats taken from the

population of quadrats which composes R. Assumption A6 proves to be necessary when

estimating the number of species present in such a subset is of interest (cf the introduction).

Now, it is not clear if the model assumes that the region of study has to be composed of an

infinite number of quadrats or not. However, different elements lead us to believe that their

model presupposes that n is theoretically infinite (as Dorazio and Royle, 2005). First, no

notation is introduced to designate the number of quadrats which compose R (consequently,

this quantity is not a part of the model); second, and more importantly, assuming that n

is finite will be not consistent with Assumption A6. Indeed, let us assume that n is finite

and that the size of the subset (above mentioned) is equal to n; thus assumption A6 will

imply that zs1, . . . , zsn are independent (conditionally on ξs = 1), which is not possible

since ξs = 1 implies exactly that zs1, . . . , zsn are not independent, as stressed in Section

3.3.1 (first paragraph). Therefore the Royle et al. (2006) approach does not apply to the

situation considered in our paper, where n is assumed to be finite and not necessarily large.

3.4 Modeling species heterogeneity

As in Dorazio and Royle (2005) we model heterogeneity between species via random

effects, as follows:

logit(qsj) = α + µs and logit(ϕsj) = β + νs (3.6)

where the µs’s are i.i.d according to a normal distribution N (0, σ2
µ), and the νs’s are i.i.d

according to a N (0, σ2
ν). Contrary to the DR paper, and for brevity, we do not introduce

a prior correlation between µs and νs.
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3.5 Likelihood.

It is convenient to number histories from 0 to H = (K + 1)T − 1 (note that one has

(K+1)T distinct histories) where the history 0 is associated with the record ~0; only histories

distinct from 0 are observable. Moreover, we denote by Nh the number of species having

the history h, and by d the number of detected species; therefore, we have d =
∑H

h=1Nh.

Note that the count N0 = S − d which represents the number of undetected species is not

a part of the data. Due to Assumptions A1 and A4, it is clear that

(N1, . . . , NH)|S, α, β, σ2
µ, σ

2
ν ∼ Multinomial(S;ω1, . . . , ωH)

where ωh = Pr(ys = h|α, β, σ2
µ, σ

2
ν). Note that ωh cannot be analytically calculated; indeed:

ωh =

∫ ∫
Pr(ys = h|α, β, µs, νs)π(µs|σ

2
µ)π(νs|σ

2
ν)d µsd νs ;

and this integral is untractable; see indeed the expression of Pr(ys = h|α, β, µs, νs) below.

Nevertheless this integral can be easily evaluated via classical Monte Carlo simulation

methods. The expression of Pr(ys = h|α, β, µs, νs), which is also equal to Pr(ys = h|ϕs, qs),

is given by Proposition 3.2.

Proposition 3.2. Let s be a species detected by the quadrat sampling, one has:

p(ys|ϕs, qs) =
ρs q

Ws
s (1 − qs)

KVs−Ws ϕVs
s

[
(1 − qs)

Kϕs + 1 − ϕs

]T−Vs

1 − (1 − ϕs)n
(3.7)

where Vs denotes the number of quadrats in which species s is detected, Ws the total

number of visits during which it is detected, and

ρs =

T∏

j=1

(
K
ysj

)
.

Moreover,

Pr(ys = ~0|ϕs, qs) =

[
(1 − qs)

Kϕs + 1 − ϕs

]T
− (1 − ϕs)

n

1 − (1 − ϕs)n
. (3.8)
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Proof. See Appendix A2.

The expressions of p(ys) which appear in Proposition 3.2 have been already mentioned

in Dupuis, Bled and Joachim (2010), but the proof has never been published.

Considering that (N1, . . . , NH)|S, α, β, σ2
µ, σ

2
ν ∼ Multinomial(S;ω1, . . . , ωH), the likeli-

hood of the data y = {N1, . . . , NH} is

L(θ0;y) =
S!

(S − d)!
∏H

h=1Nh!
ω S−d

0

H∏

h=1

ωNh

h

where θ0 = (S, α, β, σ2
µ, σ

2
ν) denotes the parameter of the model M0. It is easy to see that

{Nvw; v = 1, . . . , n;w = v, . . . , Kv}, where Nvw represents the number of detected species

s such that Vs = v and Ws = w, constitutes a sufficient statistics for θ0.

Due to Proposition 3.1, it is expected that inference on S based on the DR likelihood

should coincide with ours asymptotically (that is when n −→ ∞). It is effectively the case.

Under the DR approach, one has

p(ys|ψs, qs) = ρs q
Ws

s (1 − qs)
KVs−Ws ψVs

s

[
(1 − qs)

Kψs + 1 − ψs

]T−Vs
(3.9)

if ys 6= ~0, and

Pr(ys = ~0|ψs, qs) =
[
(1 − qs)

Kψs + 1 − ψs

]T
. (3.10)

If we now make n −→ +∞ in (3.7) and (3.8), T and K and ϕs being fixed, we observe that

the likelihood of the DR model and ours coincide. Indeed, (1 − ϕs)
n −→ 0 when n tends

to +∞, and the two parameters ϕs and ψs are confounded asymptotically. To check this

second point, it is convenient to introduce the parameter ζs equal to the probability that

zsj = 1 (under the model M0); one has ζs = ϕs/[1 − (1 − ϕs)
n] (see Dupuis et al., 2010).

We note that the parameters ψs and ζs do not take their values in the same set; indeed,

ψs ∈]0, 1[ while ζs ∈]1/n, 1[; the verification is immediate. But, when n −→ +∞, the three

parameters ϕs, ζs and ψs are confounded, since ζs = ϕs/[1 − (1 − ϕs)
n] −→ ϕs and ζs and

ψs now take their values in the same set.
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3.6 Prior distributions

We assume that the parameters S, α, β, σ2
µ and σ2

ν are a priori independent. In other

words, we assume that: π(θ0) = π(α)π(β)π(σ2
µ)π(σ2

ν)π(S).

• As Dorazio and Royle (2005), we assume that:

π(α) =
exp(α)

(1 + exp(α))2
and π(β) =

exp(β)

(1 + exp(β))2
,

so that logit−1(α) and logit−1(β) follow a uniform distribution.

• As far as σ2
µ and σ2

ν are concerned, we adopt the following flat priors:

σ2
µ ∼ Γ−1(2 + ǫ, 1 + ǫ) and σ2

ν ∼ Γ−1(2 + ǫ, 1 + ǫ)

with small ǫ, arguing that Var(σ2
µ) = 1/ǫ is thus large, while E(σ2

µ) is constant (equal

to 1); and the same for σ2
ν . In the above Γ−1 distribution, the used parametrisation

is such that if Z ∼ Γ−1(a, b), where a > 2 and b > 0, then the p.d.f. f of Z is

f(z|a, b) ∝ z−(a+1) exp(−b/z), E(Z) = b/(a − 1) and Var(Z) = [E(Z))2]/(a − 2). The

priors Γ−1(2.1, 1.1) and Γ−1(4, 3) used by King and Brooks (2008) enter in this general

framework.

• A negative binomial distribution is usually placed on an integer parameter (eg King

and Brooks, 2001). When no prior information is available, the improper Jeffreys prior

distribution, is usually proposed: namely π(S) ∝ 1
S

in our context. Now, to our knowledge,

no theoretical motivation exists in the literature concerning the Jeffreys prior, as already

pointed out by Kass and Wasserman (1996); these authors simply note that its extends

the standard non informative prior for a real parameter β > 0 (namely, π(β) ∝ 1/β) to

the case of an integer parameter. Our motivation for the use of the Jeffreys prior as a non

informative prior is provided by the following proposition which establishes a natural link

between the Negative Binomial distribution and the Jeffreys prior.
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Proposition 3.3. The Jeffreys prior coincides with the limiting case of a negative bino-

mial distribution in which the prior variance tends to ∞ (the prior mean being fixed).

Proof. See Appendix A3.

The main alternative to the Jeffreys prior is π(S) = 1 which is also improper (eg Castel-

dine, 1981). In the next Section, we indicate in what extent choosing this prior, instead

of the Jeffreys prior, could affect the Bayesian estimate of S. Note that in the absence

of prior information on S, we can also use a Negative Binomial distribution NegBin(r, p)

such that p is small and r = p; arguing that Var(S) is thus large, while E(S) is close to 1;

Recall that E(S) = (1−p) r
p

and Var(S) = E(S)/p. Moreover, it is clear that the Bayesian

estimate of S based on such a flat proper prior (namely a NegBin(p, p) with small p) will

be close to the one yielded by the Jeffreys prior (due to the Proposition 3.3); see also the

way S is generated during the MCMC algorithm (cf Section 3.7).

So far, we have focused on non-informative priors on S, but an advantage of our ap-

proach, compared to the unconditional approaches of Dupuis and Joachim (2006) and of

Royle et al. (2006), is that it easily allows prior information on S to be incorporated

(when it exists), simply because S is a parameter of the model. For example, it is possible

to incorporate - via a negative binomial distribution - prior information consisting of an

estimate S∗ of S and of its standard error e (on condition that e2 > S∗), as follows: set

E(S) = S∗ and Var(S) = e2, then use the fact the negative binomial distribution can be

parametrized by its mean and variance (cf Appendix A3). More interestingly, it is also pos-

sible (in general) to incorporate - via a negative binomial distribution - a prior consisting of

S∗ = E(S) and an interval [a∗, b∗] (containing S∗) such that Pr(S ∈ [a∗, b∗]) = 0.95; obtain-

ing the coefficients of the corresponding negative binomial distribution requires a program

(available from the authors on request) which uses the above parametrization and pro-

ceeds by dichotomy (details are omitted). This is of course an interesting characteristic
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of the negative binomial distribution since, in practice, prior information will typically be

available under this form. (Note that analogous observations have been made by Dupuis

(1995) while incorporating some similar prior information on a parameter belonging to

[0, 1].) When an unconditional approach is used, incorporating such an informative prior

(consisting of S∗ and [a∗, b∗]) is not possible, simply because S is not a parameter of the

model. So, in Royle et al. (2006), the distribution of S|M is in fact completely determined

by the prior distribution placed on λ; now, the latter is practically constrained (owing to

biological considerations). More precisely, S|M follows a uniform distribution on distribu-

tion on {1, . . . ,M} because a uniform distribution on [0, 1] has been placed on λ (other

distributions on λ will be difficult to justify, in practice).

3.7 Estimating S and computational issues.

Obtaining the posterior distribution of S (and in particular the posterior mean) requires

the implementation of MCMC methods. A possible algorithm is as follows. The parameters

(α, β, σ2
µ, σ

2
ν) are updated via Metropolis-Hastings steps. For example, updating α proceeds

as follows. We propose a new value α′ ∼ Normal(α, δ) where δ is fixed via tuning pilot.

The proposal α′ is accepted with probability min(1, r) where

r =
π(θ′

0|y)

π(θ0|y)
=
L(θ′

0;y)

L(θ0;y)
×
π(α′)

π(α)
,

where θ0 = (S, α, β, σ2
µ, σ

2
ν) represents the current state and θ′

0 = (S, α′, β, σ2
µ, σ

2
ν) the

proposal. The parameter S is updated via a Gibbs step; it is easy to check that if we adopt

the Jeffreys prior, then

S − d|α, β, σ2
µ, σ

2
ν ,y ∼ Negative Binomial(d, 1 − ω0) (3.11)

where ω0=Pr(ys = ~0|α, β, σ2
µ, σ

2
ν). If π(S) = 1 thus S − d|α, β, σ2

µ, σ
2
ν ,y follows a Negative

Binomial (d + 1, 1 − ω0). Therefore, these two non informative priors should give close

estimates of S, as long as 1 is small compared with d. When S ∼ NegBin (r, p), it is
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easy to check that S − d|α, β, σ2
µ, σ

2
ν ,y follows a Negative Binomial (r + d, 1 − (1 − p)ω0).

Consequently, if one uses a Negative Binomial distribution (r, p), with r = p and small p,

as a non informative prior distribution on S (as suggested in Section 3.6), it is clear that

the estimate of S based on this proper prior distribution, and the one based on the Jeffreys

prior, will be very close.

Implementing this MCMC algorithm requires that ω0 and the ωh’s such that Nh 6= 0

be computed at each iteration; that is integrals which are not analytically tractable (see

Section 3.5). Although they can be easily approximated by classical Monte Carlo methods,

obtaining the Bayesian estimate of S by this strategy is computationally intensive; simply

because the number of ωh we have to compute (namely those such that Nh 6= 0) rapidly

increases with T and K (recall that one has (K + 1)T possible histories). This strategy is

actually no more conceivable when one assumes that occurrence and detectability param-

eters are quadrat dependent (cf Section 4). Hence it is necessary to propose an alternative

to this MCMC algorithm, to overcome these computational difficulties (already mentioned

by Dorazio and Royle, 2005; as well as by Royle et al., 2006).

Our idea is to implement a MCMC algorithm in which only one integral (namely ω0)

will have to be calculated at each MCMC step. We achieve this objective by treating (in

the MCMC algorithm) the random effects µs and νs of detected species at the same level

as the parameters S, α, β, σ2
µ, σ

2
ν . In other words the MCMC algorithm is implemented

on (µ, ν, S, α, β, σ2
µ, σ

2
ν) where µ = {µs; s = 1, . . . , d} and ν = {νs; s = 1, . . . , d}, instead

of (S, α, β, σ2
µ, σ

2
ν). This algorithm relies on the joint distribution of (y, d, µ, ν, θ0) where

y = {ys; s = 1, . . . , d}. This density decomposes as follows:

p(y|µ, ν, d, α, β) p(µ, ν|d, σ2
µ, σ

2
ν) p(d|S, α, β, σ

2
µ, σ

2
ν) π(θ0)
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where

p(y|µ, ν, d, α, β) =
d∏

s=1

p(ys|ys 6= ~0, µs, νs, α, β) =
d∏

s=1

p(ys|ys 6= ~0, ϕs, qs),

p(µ, ν|d, σ2
µ, σ

2
ν) =

d∏

s=1

p(µs|σ
2
µ)p(νs|σ

2
ν) and p(d|S, α, β, σ2

µ, σ
2
ν) =

(
S
d

)
ωS−d

0 (1 − ω0)
d.

The expression of p(ys|ys 6= ~0, ϕs, qs) (where s represents a detected species) is derived

from Proposition 3.2; so, one has:

p(ys|ys 6= ~0, ϕs, qs) =
ρs q

Ws
s (1 − qs)

KVs−Ws ϕVs
s

[
(1 − qs)

Kϕs + 1 − ϕs

]T−Vs

1 −
[
(1 − qs)Kϕs + 1 − ϕs

]T
.

Updating α, β, σ2
µ, σ

2
ν , as well as µ and ν, is done via Metropolis-Hastings steps (details are

omitted). Updating S is done via a Gibbs step as in (3.11).

4. The heterogeneous model M1

In this Section we no longer assume that the region under investigation, R, is spatially ho-

mogeneous, but assume that it is composed of A ≥ 2 homogeneous subregions of biological

interest; for example a forest can be divided into the edge and the inner forest (as in our

illustration). The experimental protocol is without change, except that the region of study

is first divided into A subregions, called R1, . . . , Ra, . . . , RA; then a quadrat sampling is

performed in each subregion Ra (as indicated in Section 2). The number of quadrats in

which Ra is divided is denoted by na, and the number of quadrats sampled in Ra is denoted

by Ta.

• The assumptions A1, A2 and A4 of the model M0 are not modified. The detectability

parameters are now indexed by s and a; more precisely we denote by qsa the probability

to detect (during a visit) species s in any quadrat j located in the subregion Ra. The

distribution of species s in the n quadrats is characterized by the probability mass function:

p(zs) =

∏A
a=1 ϕ

|zsa|
sa (1 − ϕsa)

na−|zsa|

1 −
∏A

a=1(1 − ϕsa)na

(4.1)
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where |zsa| represents the number of quadrats of Ra in which species s is present. It is

easy to check that ϕsa represents the probability that species s is present in any quadrat j

located in region Ra, given that it is present in at least one other quadrat. The p.m.f. (4.1)

is in fact a natural extension of the one adopted for the model M0, as well as a particular

case of the more general p.m.f.:

p(zs) =

∏n
j=1 ϕ

zsj

sj (1 − ϕsj)
1−zsj

1 −
∏n

j=1(1 − ϕsj)

where a distinct occurrence parameter ϕsj is introduced for each quadrat j.

• The species effects are modeled as random effects (as in M0), and the region effects

as fixed effects, as follows:

logit(qsa) = αa + µs(a) and logit(ϕsa) = βa + νs(a) , (4.2)

where the µs(a) are i.i.d according to a normal distribution N (0, σ2
µ(a)), and the νs(a) are

i.i.d according to a N (0, σ2
ν(a)).

• The priors are similar to those used for model M0.

• The likelihood under model M1, is derived from the Proposition 4.1 below. Let s be

a detected species; we denote by Vsa the number of quadrats of Ra in which species s has

been detected, and by Wsa the total number of visits (made in region Ra) during which

species s has been detected. Moreover we denote by qs the vector (qsa; a = 1, . . . , A) and

by ϕs the vector (ϕsa; a = 1, . . . , A).

Proposition 4.1. Let s be any detected species. We have:

p(ys|ϕs, qs) = ρs

∏A

a=1 ϕ
Vsa
sa q

Wsa
sa

[
1 − qsa

]Usa
[
(1 − qsa)

Kϕsa + 1 − ϕsa

]Ta−Vsa

1 −
∏A

a=1(1 − ϕsa)na

where Usa = KVsa−Wsa and ρs is defined as for the model M0, except that now T =
∑

a Ta.

Moreover, we have:

Pr(ys = ~0|ϕs, qs) =

∏A
a=1

(
(1 − qsa)

Kϕsa + 1 − qsa
)Ta −

∏A
a=1

(
1 − ϕsa

)na

1 −
∏A

a=1(1 − ϕsa)na

.
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The proof is very similar to the one established in the homogeneous case; consequently,

details are omitted.

• Estimating S relies on the MCMC algorithm described in Section 3.7 and which

requires only one integral to be computed at each iteration.

5. An illustration

5.1 The Montech forest

An illustration is given by data collected in May 1987 in order to estimate the number of

bird species present in the forest of Montech (France), except for the birds of prey (recall

that we exclude predator-prey relationships between species, cf Assumption A4). This

forest, with a surface area of 1000 hectares, is relatively spatially homogeneous, mainly

composed of oaks and hornbeams (Decamps et al., 1987; Dupuis and Joachim, 2006).

However, it is expected that the detectability and occurrence parameters (that is qsj and

ϕsj) could depend on quadrat j, according to whether j is located at the edge or in the inner

forest (species s being fixed). It is why we have first estimated the species richness of the

Montech forest (taken as a whole) under model M0, then under model M1. Moreover, we

have also estimated separately the number of species present at the edge, and the number

of species present in the inner forest (by using each time the model M0).

5.2 The experimental protocol

The protocol and field description are detailed in Decamps et al. (1987); consequently

only the main details are given here. The Montech forest has been divided into n = 40

quadrats of equal size; only half of the quadrats have been sampled (thus T = 20). The

inner forest (called R1) includes n1 = 22 quadrats; the edge (called R2) includes n2 = 18;

moreover, T1 = 14 quadrats have been sampled in R1, and T2 = 6 in R2. We consider

that species s occupies quadrat j (that is zsj = 1), if at least one pair belonging to

species s has nested in quadrat j, during May. Information about the presence of nesting
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species was provided by acoustic recognition of singing males according to the following

procedure. In spring, songs of males (only) indicate the presence of a nesting pair close

by. The researcher spent a prescribed time (twenty minutes in our study) at each station

(in the center of quadrat), listening for birds. More precisely, data have been collected

according to the following point count protocol: each 20-minute session has been sliced

into four subsessions of 5 minutes each, during which the experimenter records whether

the presence of the species of interest has been detected or not. Each slice is the equivalent

of a visit, therefore K = 4. As information 29 species have been detected in the inner

forest, 23 in the edge, and 33 in the whole forest. The complete data set is available from

the first author on request.

5.3 Results

Under model M0, the non-informative (Jeffreys) Bayesian estimate of the number of

species present in the whole forest of Montech is 38.8 (posterior mean); [34, 47] being a

95% posterior credible interval. Under model M1, the posterior mean is 35.1, and [33, 39]

is a 95% posterior credible interval. These results show that taking into the fact that

detectability and occurence parameters could differ between the inner forest and the edge

has a significant impact on the estimation of S. Dupuis and Joachim (2006) have also

estimated the species richness of the Montech forest in 1987, assuming spatial homogeneity

of the region of study. But authors limited themselves to passerines species, estimation

of S was based on a sub-sample of size T = 8, and additional data have been used to

built the priors on the parameters λs of species s not detected by the quadrat sampling;

consequently, comparing estimates of S is not relevant.

Table 1 below provides the posterior means and 95% credible intervals of S, α, β, σµ

and σν in each part of the Montech forest: the edge and the inner forest.

[Table 1 about here.]
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These results are based on the MCMC algorithm described in Section 6.3 (with the

Jeffreys prior used for S). Recall that, at each step of the MCMC algorithm, ω0 (defined

in Section 6.1) is calculated by a classical Monte Carlo method. A preliminary simulation

study has shown that a run of 500 iterations was sufficient to satisfactorily approximate ω0.

Results appearing in Table 1 are based on a long MCMC sequence which was run for 106

iterations (with the first 10% discarded as burn-in). Independent replications (run from

overdispersed starting points) produced essentially identical results (as those appearing in

Table 1), so that convergence was assumed.

Let us comment on these results.

• An interesting element which emerges from these results is that the estimate of the species

richness is significantly greater in the inner forest than at the edge.

• The species richness S constitutes the parameter of main interest in this paper, but the

model also allows us to investigate other issues of biological interest, via the parameters

α, β, σµ and σµ. Indeed, parameters β and σν provide some global information on the

rarety (in a spatial sense) of the species present in the study region (cf Section 3.3.1),

while α and σµ provide some global information on their detectability. We observe, on a

logit scale, that detectability is (on average) smaller at the edge (−0.9) than in the inner

forest (−0.5); conversely, we note that species are more rare (always on a logit scale and on

average) in the inner forest (−0.4) than at the edge (0.7). Moreover, we note that, for the

inner forest, α̂ (−0.5) and β̂ (−0.4) are very close, whereas, for the edge, it is σ̂µ (1.2) and

σ̂ν (1.1) which are practically equal (for convenience, the estimate of α is denoted by α̂;

and a similar notation is adopted for β, σµ and σµ). These two observations lead us to the

following comments. As far as the edge is concerned, the fact that α̂ (−0.9) is significantly

smaller than β̂ (0.7) suggests that species missed by the quadrat sampling in this part of

the forest are mainly due to the presence of species not easily detectable. As far the inner
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forest is concerned, the fact that σ̂ν (2.1) is significantly greater than σ̂µ (0.8) suggests, by

contrast, that species missed by the quadrat sampling in this other part of the forest are

mainly due to the presence of species spatially rare.

• Lastly, it is of interest to compare our estimates of α, β, σµ and σµ with those obtained by

Dorazio and Royle (2005). For the BBS data set; α̂ = −1.5, β̂ = −1.9, σ̂µ = 1.1, σ̂ν = 2.2.

They are thus of the same order of magnitude; however, we observe non negligible distances

between their estimates of α and β, and ours; that suggests that species involved with the

BBS data set were, on average, not only more difficult to detect, but also rarer (in a spatial

sense) than in our illustration. This could explain why, in Dorazio and Royle (2005), the

ratio between the number of detected species and the estimate of S, namely 75/93.3 ≈ 80%,

is smaller than ours: indeed, for the whole forest, this ratio is equal to 85% under model

M0, and to 94% under model M1; moreover, it is equal to 89% for the inner forest ; and

to 86% for the edge.

6. Conclusion

This paper proposes a new approach for estimating the species richness from quadrat

sampling when the study region is composed of a finite number n of quadrats. The fact

that nothing is assumed regarding the size of n constitutes a key element of our approach

which differentiates it from the ones developed by Dorazio & Royle (2005 ) and by Royle

et al. (2006) which suppose that the study region is theoretically composed of an infinite

number of quadrats. As a consequence, n is not a part of their models, contrary to ours.

Compared with the conditional approach of Dorazio & Royle (2005), our approach can

be viewed as an extension, in that the DR likelihood coincides with ours asymptotically

(that is when n −→ ∞). In other respects, recall that the estimate of S yielded by Dorazio

& Royle (2005) is not fully Bayesian, but rather ad hoc. In this paper, we implement an

efficient MCMC algorithm which allows us to obtain the Bayesian estimate of S (in spite of
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serious computational difficulties). Interestingly, our algorithm could be easily modified to

perform a fully bayesian analysis of the problem under the Dorazio and Royle assumption

(namely n = ∞).

Compared with the unconditional approaches of Dorazio & Royle (2006) and of Dupuis

& Joachim (2006), our approach can be used in the absence of information on S (thus

in totally unknown regions). By contrast, implementing unconditional approaches in such

a context is somewhat delicate as mentioned in the introduction. On the other hand,

our approach allows us to incorporate easily (via a negative binomial distribution) some

information on S, when its exists; for example, when it consists of an estimate S∗ of S and

of its standard error. By contrast, unconditional approaches do not offer such a possibility,

because S is not a parameter of the model.

Lastly, it is of interest to mention the unconditional approach of MacKenzie et al.

(2006), which assumes that the region is divided in n quadrats (no assumption is made on

the size of n, as in our paper) and models occurrences of species s in the n quadrats as

follows:

p(zs) = ψ|zs|
s (1 − ψs)

n−|zs| (5.1)

To our knowledge, this model has never be used when estimating species richness is of

interest, and we believe that it could constitute an interesting alternative to the conditional

approach proposed in this paper (cf 3.1). As in Dupuis & Joachim (2006) and Royle et al.

(2006), this model will require that a supercommunity of known size is introduced. But,

contrary to Royle et al. (2006) which assume that the probability of presence (in R) of

any species s belonging to this supercommunity does not depend on s, MacKenzie et al.

(2006) do not make such a biological assumption, since λs = 1 − (1 − ψs)
n.

The model developed in this paper has to be considered as starting points for more

elaborate models. We assume that the presence of a given species in a given quadrat is not
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affected by whether or not the species is present in the neighbouring quadrats, but such

an assumption is not always reasonable in animal populations, and a possible extension

would thus be to introduce some spatial correlation between zsj and its neighbours (via

an autologistic model, for example). We also assume that species occupy the quadrats

independently, a challenging problem would be to develop a model for estimating the

species richness of an animal population within which predator-prey relationships exist.
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Appendices

For convenience, the conditionings on the parameter(s) are omitted.

Appendix A1

We denote by E the set {0, 1}n\{~0}. We have p(zs) =
∑

z′s
p(zs, z

′
s) where (zs, z

′
s) ∈ E.

This sum is over all the possible values of z′s when zs 6= ~0, and over all the possible values of

z′s, apart from ~0, when zs = ~0 (to meet the constraint zs = (zs, z
′
s) 6= ~0). We first consider

the case zs 6= ~0. We have:

p(zs, z
′
s) =

ϕ
|zs|+|z′s|
s (1 − ϕs)

n−|zs|−|z′s|

1 − (1 − ϕs)n
,

from which we deduce that

p(zs) =
ϕ
|zs|
s (1 − ϕs)

T−|zs|

1 − (1 − ϕs)n

∑

z′s

ϕ|z′s|
s (1 − ϕs)

n−T−|z′s|.

Hence:

p(zs) =
ϕ
|zs|
s (1 − ϕs)

T−|zs|

1 − (1 − ϕs)n

by observing that
∑

z′s
ϕ
|z′s|
s (1 − ϕs)

n−T−|z′s| = 1. When zs = ~0, we have:

p(zs) =
(1 − ϕs)

T

1 − (1 − ϕs)n

∑

z′s 6=~0

ϕ|z′s|
s (1 − ϕs)

n−T−|z′s|.

We deduce the result by observing that

∑

z′s 6=~0

ϕ|z′s|
s (1 − ϕs)

n−T−|z′s| = 1 − (1 − ϕs)
n−T .

Appendix A2

We begin by calculating p(ys) in function of qs and ϕs, when ys 6= ~0. We set:

ρs =

T∏

j=1

(
K
ysj

)
.

27



Given ys, we partition the vector zs in zobs
s = {zsj|ysj 6= 0} and zmis

s = {zsj|ysj = 0}. Note

that zobs
s is known as soon as ys is available, and that ys 6= ~0 implies that zobs

s is not empty

(and therefore zmis
s and zs are distinct vectors). We have:

p(ys) =
∑

zmis
s

p(xs, z
obs
s , zmis

s ) =
∑

zmis
s

p(xs|z
obs
s , zmis

s )p(zobs
s , zmis

s ).

Due to Assumption A2, we have:

p(xs|z
obs
s , zmis

s ) = ρs q
Ws

s (1 − qs)
KVs−Ws (1 − qs)

K|zmis
s |

where Vs and Ws are defined in Proposition 3.2. Due to Proposition 3.1 we have:

p(zobs
s , zmis

s ) =
ϕVs

s ϕ
|zmis

s |
s (1 − ϕs)

T−Vs−|zmis
s |

1 − (1 − ϕs)n
,

from which we deduce that:

p(ys) = ρs

ϕVs
s q

Ws
s (1 − qs)

KVs−Ws

1 − (1 − ϕs)n

∑

zmis
s

[ϕs(1 − qs)
K ] |zmis

s |(1 − ϕs)
T−Vs−|zmis

s |.

Now, it is easy to check that

∑

zmis
s

[ϕs(1 − qs)
K ]|z

mis
s |(1 − ϕs)

T−Vs−|zmis
s | = [ϕs(1 − qs)

K + (1 − ϕs)]
T−Vs ;

hence the result.

We now calculate p(ys) for a not detected species s, that is such that ys = ~0. Note that

now zobs
s = ∅ and that zmis

s = zs . We start from:

p(ys) =
∑

zs

p(xs|zs)p(zs).

Due to Assumption A2, we have: p(xs|zs) = (1 − qs)
K|zs|. Two cases have to be distin-

guished: T < n and T = n.

• First case: T < n.
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The sum
∑

zs
p(xs, zs) is over all the possible values of zs (including ~0). Using the

Proposition 3.1, we have:

p(ys) =
(1 − ϕs)

T − (1 − ϕs)
n

1 − (1 − ϕs)n
+

∑

zs 6=~0

(1 − qs)
K|zs|

ϕ
|zs|
s (1 − ϕs)

T−Vs−|zs|

1 − (1 − ϕs)n
.

Now, it is easy to check that

∑

zs 6=~0

[ϕs(1 − qs)
K ]|zs|(1 − ϕs)

T−Vs−|zs| = [ϕs(1 − qs)
K + (1 − ϕs)]

T − (1 − ϕs)
T ;

hence the result.

• Second case: T = n. Thus zs and zs are now confounded, and the sum
∑

zs
p(xs, zs)

is over all the possible values of zs (excluding ~0), due to the constraint zs 6= ~0. We have:

p(ys) =
∑

zs 6=~0

(1 − qs)
K|zs|

ϕ
|zs|
s (1 − ϕs)

T−Vs−|zs|

1 − (1 − ϕs)T
.

from which we easily deduce that:

p(ys) =

[
(1 − qs)

Kϕs + 1 − ϕs

]T
− (1 − ϕs)

T

1 − (1 − ϕs)T
.

Appendix A3

If S ∼ NegBin (r, p), where r ∈]0,+∞[ and p ∈]0, 1[, let us first recall that its probability

mass function is such that:

π(S) ∝
Γ(r + S)

S!
(1 − p)S. (1)

We now express r and p in terms of E(S) and Var(S). This is easily done by using the

well known formulae E(S) = r 1−p

p
and Var(S) = r 1−p

p2 , from which we deduce that:

r =
[E(S)]2

Var(S) − E(S)
and p =

E(S)

Var(S)
. (2)
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If we let Var(S) −→ +∞ in (2) it is clear that, for any fixed E(S), p −→ 0 and r −→ 0.

If we now let p and r −→ 0 in the right-hand side of (1), it is easy to verify that it tends

to 1/S, since Γ(r + S) −→ Γ(S) = (S − 1)! and (1 − p)S −→ 1.
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Table 1

Posterior means and 95% credible intervals of S, α, β, σµ and σν

S α β σµ σν

inner forest 32.5 −0.5 −0.4 0.8 2.1
[29, 38] [−1.0, 0.1] [−1.3, 0.5] [0.4, 1.2] [1.3, 3.4]

edge 26.8 −0.9 0.7 1.2 1.1
[23, 32] [−1.6,−0.2] [−0.2, 1.7] [0.7, 1.9] [0.5, 2.4]
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