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Abstract

EM algorithm is used to obtain the maximum likelihood estimates for the parame-
ters of extreme value distributions when the data are truncated. The method is used
for the parameters of the type I least extreme value distribution (or Gumbel minimum)
from right truncated data. Using transforms between the di¤erent types of extreme
value distributions, the algorithm can be used to estimate the parameters of the Type
I greatest extreme value distribution (Gumbel maximum) from left truncated data, for
the two parameters Weibull distribution from right truncated data and for the Fréchet
distribution from left truncated data. The algorithm is illustrated with simulated ex-
amples.

1 Introduction

Extreme value distributions are popular models in lifetime and reliability analysis where
samples are often either truncated or censored. They are also useful in the analysis of
environmental data such as rainfall, �ood �ow, earthquake among others. They approximate
distributions of extremes (least or greatest) in large random samples and are more widely
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known as the Gumbel (type I), Fréchet (type II) and Weibull (type III) distributions. For a
thorough account of the theory of extreme value distributions we refer to the book by Coles
[2].
The data are said to be truncated when measuring devices fail to report observations

below and/or above certain readings. For example, truncated data frequently arise in the
statistical analysis of astronomical observations ( see Efron and Petrosian [4]) and in medical
data (see Klein and Zhang [6]), and if the truncation is ignored this can cause considerable
bias in the estimation. There exists in the literature many approaches of estimation from
"incomplete data" such as moment based estimators, maximum likelihood based approach
of the EM algorithm (Dempster et al [3]) or nonparametric methods (see for example [4]).
Samples to be considered in this paper include those that are singly right or singly left
truncated. The EM algorithm is a powerfull iterative procedure which by repetition �ll in
the missing data with estimated values and to update the parameter estimates.
Our main focus is on the estimation of the parameters of extreme value distributions from

truncated data by using the method of the EM algorithm. In his book on truncated and
censored samples, Cohen [1] did not treat the case of truncated samples for extreme value
distributions and from the best of our knowlegde there is no reported work on this subject
until now. In section 2, we provide an EM algorithm for the estimation of the parameters of
the type I least extreme value distribution (or Gumbel minimum) from right truncated data.
Using transforms between the di¤erent types of extreme value distributions, the algorithm
can be used to estimate the parameters of the Type I greatest extreme value distribution
(Gumbel maximum) from left truncated data, for the two parameters Weibull distribution
from right truncated data and for the Fréchet distribution from left truncated data. In section
3 we present two simulated examples.

2 Estimations of the parameters of Extreme value dis-
tribution from truncated data

The Type-I least extreme values distribution function is de�ned as:

F (x) = exp

�
� exp

�
1

�
(x� �)

��
;

for x 2 R; and it has the probability density

f(x) =
1

�
exp

�
1

�
(x� �)

�
exp

�
� exp

�
1

�
(x� �)

��
;

where � > 0 and � 2 R:
If X is a random variable from a type I greatest extreme values distribution or Gumbel

maximum Gmax (�; �) with location parameter � and shape parameter � then �X follows a
type I least extreme values distribution with location parameter �� and shape parameter �
[1].
For the two parameters Weibull distribution W(�; �) the pdf is given by

f (x; �; �) =
�

��
x��1 exp

h
� (x=�)�

i
; x > 0; �; � > 0:
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If X followsW(�; �) then Y = logX follows a Gumbel minimum Gmin (�; �) with � = 1=�
and � = ln�:
The two-parameter Fréchet distribution or type II extreme value distribution is largely

used as a model for extremes of �ood and rainfall data. The probability density function of
the two-parameter Fréchet distribution F (�; �) is

f(x) =
�

�

�
�

x

��+1
exp

�
�
�
�

x

���
;

where x > 0; �; � > 0: If a random variable X follows a Fréchet distribution with parameters
� and � then Y = ln(X) follows a Gumbel maximum distribution with parameters � = ln(�)
and � = 1=�:
Let x1; :::; xnu a right truncated sample from the type I least extreme value distribution

which is also called the Gumbel minimum distribution which we denote by Gmin (�; �), where
nu is the known number of untruncated observations. Consider C the cuto¤ point above
which observations are discarded, that is we observe only the observations xi < C. Consider
y = (y1; :::; ynt)

0 the discarded data where nt is the unknown number of truncated observations
which is a random variable. Hence, the missing data is the pair

�
y; nt

	
:We can say that the

complete data, denoted by z; is z =
�
x; nt; y

�
such that x = fzi : zi � Cg ; y = fzi : zi > Cg

and nt = # fzi : zi > Cg :
We shall estimate the Gumbel (minimum) distribution parameters from right truncated

data, then the likelihood function for the observed data is

Lobs =
nuQ
i=1

f(xi)

F (C)
(1)

where F (C) is the value of the distribution function at the truncation point. The relation
(1) will be

Lobs =
nuQ
i=1

1

�F (C)
exp

�
xi � �

�

�
exp

�
� exp

�
xi � �

�

��
where F (C) = 1� exp

�
� exp

�
C��
�

		
:

The complete likelihood function is given by

Lc (�; �; z) =
nQ
i=1

f(zi); � 2 R; � > 0; (2)

where n = nu+nt the number of complete data. It should be noted that n is unknown since nt
is a random variable following a negative binomial distribution with parameters nu and F (C)
(see McLachlan and Krishnan [8], pp 78-79). It is di¢ cult to estimate the parameters from
(2) since it lacks to know zi completely, for this we will use the Expectation-Maximisation
algorithm (EM) which is used generally for incomplete data, it globally recover the missed
information from the expectation of the known one.

2.1 The EM Algorithm

This method is one of the numerical algorithms which helps to compute the maximum likeli-
hood estimations based on missing or latent data. This method was introduced in the paper
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of Dempster et al. [3] and they applied it for censored and truncated data for some distri-
butions and also for mixture of distributions. For a detail review on this method, see the
book by McLachlan and Krishnan [8]. For applying this algorithm, we need �rst to �nd the
expectation of the likelihood function for complete data given by 2, and then compute the
estimations by �nding the maximum of the expectation of the likelihood.

2.1.1 The E-step

Consider � = (�; �) the set of parameters to estimate, then �(k) =
�
�(k); �(k)

�
for k = 0; 1; :::

the estimations corresponding to the kth step of the algorithm. In this case, the log-likelihood
is given by

lnL = � (nu + nt) ln�+
1
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1
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�
1

�
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�
(3)

Taking the expectation and using Wald�s formula we obtain

E (lnL) = �nu ln� + E (nt) ln � +
1
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nuX
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E
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�
(4)

Then, using the fact that nt follows a negative binomial distribution with parameters nu and
F (C);we obtain

E (lnL) = �nu ln� +
nu (1� F (C))

F (C)
ln� +

1

�

nuX
i=1

(xi � �)�
nuX
i=1

exp

�
1

�
(xi � �)

�
� �

�

nu (1� F (C))

F (C)

+
nu (1� F (C))

�F (C)
E (Yi)�

nu (1� F (C))
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exp

�
��
�

�
E

�
exp

Yi
�

�
: (5)

To compute the quantities E (Yi) and E
�
exp Yi

�

�
we make use of moment generating function

of the Gumbel distribution of least extreme values truncated on the right used by Ng et al.
[7], given by the equations:

MYi��
�

(t) = exp(exp(�))�
�
t+ 1; e�

�
= � (t+ 1)

"
ee

� �
1X
p=0

e(t+p+1)�

� (t+ p+ 2)

#
;

where f (yi=yi > C) = 1
�
exp(exp(�)) exp

�
yi��
�
� exp

�
yi��
�

��
; C < yi <1; � = (C � �) =�:

�
�
t+ 1; e�

�
is the incomplete gamma function and � (t+ 1) the complete gamma func-

tion, hence we can deduce the conditional expectations which are the derivatives of the
moment generating function at t = 0 and given by:

E (Yi j �; �; �) = E1;i� + �;

E
�
eYi=� j �; �; �

�
= e�=�

�
e� + 1

�
;

E
�
Yie

Yi=� j �; �; �
�
= e�=�

�
E2;i� + �

�
e� + 1

��
; (6)
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where

E1;i =  (1) exp (exp (�)) +
1X
p=0

e(p+1)� (p+ 2)

� (p+ 2)
� [�+  (1)]

1X
p=0

e(p+1)�

� (p+ 2)
;

E2;i =  (2) exp (exp (�)) +
1X
p=0

e(p+2)� (p+ 3)

� (p+ 3)
� [�+  (2)]

1X
p=0

e(p+2)�

� (p+ 3)
;

and  (1) and  (2) are the digamma functions obtained as the �rst and second deriva-
tives of the gamma function at t = 0: precisely,  (1) = d

dt
ln [� (t+ 1)] jt=0 and  (2) =

d2

dt2
ln [� (t+ 1)] jt=0 :

2.1.2 The M-step

In this step we obtain the estimations from the formulas

� = �

"
ln

 
nX
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exp
�zi
�

�!
� ln (n)

#
(7)

� =

Pn
i=1 zi exp

�
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�

�Pn
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�

� �
Pn

i=1 zi
n

from which we will obtain the (k + 1) iteration of the algorithm. The estimations will be
obtained using the �xed point iteration used by Kernane and Raizah [5] as following:

�(k+1) =

Pnu
i=1 xi exp
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�(k+1)

�
+ E (nt)E

�
Yie
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(8)
In fact E (nt) = E

�
nt j �; �(k); �(k)

�
; and equation (7) becomes

�(k+1) = �(k+1)

"
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�
+ E (nt)E
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(9)
with E (nt) =

nu(1�F (C))
F (C)

the expectation of the random variable nt which follows a negative

binomial distribution. Also F (C) = 1� exp
h
� exp

�
C��(k)
�(k)

�i
and � =

C��(k)
�(k)

:

Remark 1 If X follows a Gumbel maximum distribution Gmax(�; �) then if data arising from
X are truncated on the left, that is observations below a threshold C (X > C) are discarded,
then Y = �X will be a type-I lest extreme value distribution treated above with data truncated
on the right (Y < �C observed) and we can use the EM algorithm above to estimate � = ��
and � = �:

Remark 2 If we have a data truncated on the right from a Weibull distribution X  W(�; �)
that is X < C observed, then Y = lnX will follow a type-I lest extreme value distribution
treated above with data truncated on the right (Y < lnC observed) and we can use the EM
algorithm above to estimate � = ln� and � = 1=�:
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Remark 3 for the Fréchet distribution X  F(�; �), if data are truncated on the left X >
C then Y = � lnX follow a type-I lest extreme value distribution treated above with data
truncated on the right (Y < � lnC observed) and we can use the EM algorithm above to
estimate � = � ln � and � = 1=�:

3 Simulation Examples

Example 4 Consider a simulated data of size 300 from the extreme value distribution by
taking � = �4 and � = 2: The data was truncated at C = �3: The untruncated sample size
was nu = 246: The procedure will follow the following steps. Firstly we take for example the
starting values �(0) = 0 and �(0) = 1 and compute the conditional expectations given in (6)
then we use the �xed point iterations given in equations (8,9). repeat the procedure until the
algorithm converges. By using this algorithm we obtained the estimations b� = 2:0543 andb� = �4:3249:
Example 5 We generated a data of size 200 from the extreme value distribution with � = 2
and � = 1:2:We choose the threshold point C = 2:5 and obtained the untruncated sample size
nu = 155: By using the EM algorithm explained in this paper we get the results b� = 1:1932
and b� = 1:8947:
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