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ABSTRACT

The multi-objective covariance matrix adaptation evolution
strategy (MO-CMA-ES) is an evolutionary algorithm for
continuous vector-valued optimization. It combines indica-
tor-based selection based on the contributing hypervolume
with the efficient strategy parameter adaptation of the elitist
covariance matrix adaptation evolution strategy (CMA-ES).
Step sizes (i.e., mutation strengths) are adapted on indivi-
dual-level using an improved implementation of the 1/5-th
success rule. In the original MO-CMA-ES, a mutation is
regarded as successful if the offspring ranks better than its
parent in the elitist, rank-based selection procedure. In con-
trast, we propose to regard a mutation as successful if the
offspring is selected into the next parental population. This
criterion is easier to implement and reduces the computa-
tional complexity of the MO-CMA-ES, in particular of its
steady-state variant. The new step size adaptation improves
the performance of the MO-CMA-ES as shown empirically
using a large set of benchmark functions. The new update
scheme in general leads to larger step sizes and thereby coun-
teracts premature convergence. The experiments comprise
the first evaluation of the MO-CMA-ES for problems with
more than two objectives.

Categories and Subject Descriptors

G.1.6 [Optimization]: Global Optimization; I.2.8 [Problem

Solving, Control Methods, and Search]: Heuristic meth-
ods

General Terms

Algorithms, Performance

Keywords

multi-objective optimization, step size adaptation, covari-
ance matrix adaptation, evolution strategy, MO-CMA-ES
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1. INTRODUCTION
The multi-objective covariance matrix adaptation evolu-

tion strategy (MO-CMA-ES, [14, 16, 19]) is an extension
of the CMA-ES [12, 11] for real-valued multi-objective opti-
mization. It combines the mutation and strategy adaptation
of the (1+1)-CMA-ES [14, 15, 19] with a multi-objective se-
lection procedure based on non-dominated sorting [6] and
the contributing hypervolume [2] acting on a population of
individuals.

In the MO-CMA-ES, step sizes (i.e., mutation strengths)
are adapted on individual-level. The step size update pro-
cedure originates in the well-known 1/5-th rule originally
presented by [18] and extended by [17]. If the success rate,
that is, the fraction of successful mutations, is high, the step
size is increased, otherwise it is decreased. In the original
MO-CMA-ES, a mutation is regarded as successful if the re-
sulting offspring is better than its parent. In this study, we
propose to replace this criterion and to consider a mutation
as being successful if the offspring becomes a member of the
next parent population. We argue that this notion of success
is easier to implement, computationally less demanding, and
improves the performance of the MO-CMA-ES.

In the next section, we briefly review the MO-CMA-ES.
In Sec. 3, we discuss our new notion of success for the step
size adaptation. Then, we empirically evaluate the resulting
algorithms. In this evaluation, the MO-CMA-ES is for the
first time benchmarked on functions with more than two
objectives. As a baseline, we consider a new variant of the
NSGA-II, in which the crowding distance is replaced by the
contributing hypervolume for sorting individuals at the same
level of non-dominance.

2. THE MO-CMA-ES
In the following, we briefly outline the MO-CMA-ES ac-

cording to [14, 16, 19], see Algorithm 1. For a detailed
description and a performance evaluation on bi-objective
benchmark functions we refer to [14, 21]. We consider ob-

jective functions f : Rn → Rm, x 7→ (f1(x), . . . , fm(x))T.

In the MO-CMA-ES, a candidate solution a
(g)
i in generation

g is a tuple
h

x
(g)
i , p̄

(g)
succ,i, σ

(g)
i , p

(g)
i,c , C

(g)
i

i

, where x
(g)
i ∈ Rn is

the current search point, p̄
(g)
succ,i∈ [0, 1] is the smoothed suc-

cess probability, σ
(g)
i ∈ R+

0 is the global step size, p
(g)
i,c∈ Rn

is the cumulative evolution path, C
(g)
i ∈ Rn×n is the covari-

ance matrix of the search distribution. For an individual
a encoding search point x, we write f (a) for f (x) with a
slight abuse of notation.



We first describe the general ranking procedure and sum-
marize the other parts of the MO-CMA-ES. The MO-CMA-
ES relies on the non-dominated sorting selection scheme [6].
As in the SMS-EMOA [2], the hypervolume-indicator serves
as second-level sorting criterion to rank individuals at the
same level of non-dominance. Let A be a population, and let
a, a′ be two individuals in A. Let the non-dominated solu-
tions in A be denoted by ndom(A) = {a ∈ A

˛

˛ ∄a′ ∈ A : a′ ≺
a}, where ≺ denotes the Pareto-dominance relation. The
elements in ndom(A) are assigned a level of non-dominance
of 1. The other ranks of non-dominance are defined recur-
sively by considering the set A without the solutions with
lower ranks [6]. Formally, let dom0(A) = A, doml(A) =
doml−1(A) \ndoml(A), and ndoml(A) = ndom(doml−1(A))
for l ≥ 1. For a ∈ A we define the level of non-dominance
rank(a, A) to be i iff a ∈ ndomi(A).

The hypervolume measure or S-metric was introduced
in the domain of evolutionary multi-objective optimization
(MOO) in [26]. It is defined as

Sf ref(A) = Λ

 

[

a∈A

h

f1(a), f ref
1

i

× · · · ×
h

fm(a), f ref
m

i

!

,

(1)
with f ref ∈ Rm referring to an appropriately chosen refer-
ence point and Λ(·) being the Lebesgue measure. The con-
tributing hypervolume of a point a ∈ A′ = ndom(A) is given
by

∆S(a, A′) = Sf ref(A
′)− Sf ref(A

′ \ {a}) . (2)

Now we define the contribution rank cont(a, A′) of a. This is
again done recursively. The element, say a, with the smallest
contributing hypervolume is assigned contribution rank 1.
The next rank is assigned by considering A′ \{a} etc. More
precisely, let c0(A

′) = argmina∈A′ ∆S(a, A′) and

ci(A
′) = c0

 

A′ \
i−1
[

j=0

˘

cj(A
′)
¯

!

(3)

for i > 0. For a ∈ A′ we define the contribution rank
cont(a, A′) to be i + 1 iff a = ci(A

′). In the ranking pro-
cedure ties are broken at random. We refer to the points
{a | a = argmina∈A fi(a), i = 1, . . . , m} as boundary ele-

ments of A. The reference point f ref is chosen in each it-
eration such that an individual with fitness f ref would be
dominated by all individuals in the current population and
such that all boundary elements get the highest contribu-
tion ranks (i.e., the boundary elements are always selected).
Such a reference point always exists, is easy to find and its
exact choice does not matter for the MO-CMA-ES as long
as the boundary elements get the highest ranks.

Finally, the following relation between individuals a, a′ ∈
A is defined:

a ≺A a′ ⇔ rank(a, A) < rank(a′, A)∨
ˆ

rank(a, A) = rank(a′, A)∧
cont(a, ndom(A)) > cont(a′, ndom(A))

˜

(4)

The success indicator succQ(g)

“

a
(g)
i , a

′(g+1)
i

”

in Algorithm 1

evaluates to one if the mutation that has created a
′(g+1)
i is

considered to be successful and to zero otherwise, see Sec. 3.
In each generation, λ offspring individuals are sampled

(lines 3–7). If λ does not equal µ (e.g., in case of the steady-

Algorithm 1: (µ +λ)-MO-CMA-ES

1 g ← 0, initialize parent population Q(0);
2 repeat

3 for k = 1, . . . , λ do

4a ik ← U
“

1, | ndom
“

Q(g)
”

|
”

;

4b ik ← k;

5 a′(g+1)
k ← a

(g)
ik

;

6 x′(g+1)
k ∼ x

(g)
ik

+ σ
(g)
ik
N
“

0, C
(g)
ik

”

;

7 Q(g) ← Q(g) ∪
n

a′(g+1)
k

o

;

8 for k = 1, . . . , λ do

9 p̄′(g+1)
succ,k ←

(1− cp)p̄′(g+1)
succ,k + cp succQ(g)

“

a
(g)
ik

, a
′(g+1)
k

”

;

10 σ′(g+1)
k ← σ′(g+1)

k exp

„

1
d

p̄′
(g+1)
succ,k

−ptarget
succ

1−p
target
succ

«

;

11 if p̄′(g+1)
succ,k < pthresh then

12 p′(g+1)
c,k ←

(1− cc) p′(g+1)
c,k +

p

cc(2− cc)
x′(g+1)

k
−x

(g)
ik

σ
(g)
ik

;

13 C ′(g+1)
k ←

(1− ccov) C ′(g+1)
k + ccovp

′(g+1)
c,k p′(g+1)

c,k

T
;

14

else

15 p′(g+1)
c,k ← (1− cc) p′(g+1)

c,k ;

16 C ′(g+1)
k ← (1− ccov) C ′(g+1)

k +

ccov

“

p′(g+1)
c,k p′(g+1)

c,k

T
+ cc (2− cc) C ′(g+1)

k

”

;

17 p̄
(g)
ik
← (1− cp)p̄

(g)
ik

+ cp succQ(g)

“

a
(g)
ik

, a
′(g+1)
k

”

;

18 σ
(g)
ik
← σ

(g)
ik

exp

„

1
d

p̄
(g)
succ,ik

−ptarget
succ

1−p
target
succ

«

;

19 g ← g + 1;

20 Q(g) ←
n

Q
(g−1)
≺:i

˛

˛1 ≤ i ≤ µ
o

;

until stopping criterion is met ;

state MO-CMA-ES), the parent is chosen uniformly at ran-

dom from the set of non-dominated individuals ndom
“

Q(g)
”

(line 4a). Otherwise, one offspring individual is created from
every parent individual (line 4b). Thereafter, the strategy
parameters of parent and offspring individuals are adapted
(lines 9–18). The decision whether a new candidate solu-
tion is better than its parent is made in the context of the
population Q(g) of parent and offspring individuals subject
to the indicator-based selection strategy implemented in the
algorithm. The step sizes and the covariance matrix of the
offspring individuals are updated (lines 9–16). Subsequently,

the step sizes σ
(g)
ik

of the parent individuals a
(g)
ik

are adapted
(line 17 and 18). Finally, the new parent population is se-
lected from the set of parent and offspring individuals ac-
cording to the indicator-based selection scheme (line 20).

Here, Q
(g)
≺:i denotes the ith best individual in Q(g) ranked by

non-dominated sorting and the contributing hypervolume
according to (Eq. 4).

When in this study the MO-CMA-ES is applied to a bench-



mark problem f with box constraints, we consider a penal-
ized fitness function

f
penalty(x) = f (feasible(x)) + α‖x − feasible(x))‖22 , (5)

where feasible(x) returns the closest feasible point to x w.r.t.
the L1-norm.

The (external) strategy parameters are the population
size, initial global step size, target success probability ptarget

succ ,
step size damping d, success rate averaging parameter cp, cu-
mulation time horizon parameter cc, and covariance matrix
learning rate ccov. Default values as given in [14] and used

in this paper are d = 1 + n/2, ptarget
succ = (5 +

p

1/2)−1, cp =
ptarget
succ /(2 + ptarget

succ ), cc = 2/(n + 2), ccov = 2/(n2 + 6), and
pthresh = 0.44. In the constraint handling we set α = 10−6.

The initial global step sizes σ
(0)
i are set dependent on the

problem (e.g., in the case of box constraints, see below, with
xu

i − xl
i = xu

j − xl
j for 1 ≤ i, j ≤ n to 0.6 · (xu

1 − xl
1)).

2.1 Step Size Update Procedure
The focus of this study is the step size adaptation, which

is described in more detail in the following. After sampling
the new candidate solutions, the step size of parent a is up-
dated based on the smoothed success rate (different notions
of success are discussed in Sec. 3)

p̄succ = (1− cp) p̄succ + cp succQ

`

a, a′
´

, (6)

with a learning rate cp (0 < cp ≤ 1) according to

σ = σ · exp

„

1

d

psucc − ptarget
succ

1− ptarget
succ

«

. (7)

The update rule is rooted in the 1/5-success-rule proposed
by [18] and is an extension from the rule proposed by [17].
It implements the well-known heuristic that the step size
should be increased if the success rate (i.e., the fraction of
offspring better than the parent) is high, and the step size
should be decreased if the success rate is low. The rule is
reflected in the argument of the exponential function. For
p̄succ > ptarget

succ the argument is greater than zero and the
step size increases; for p̄succ < ptarget

succ the argument is smaller
than zero and the step size decreases; for p̄succ = ptarget

succ the
argument becomes zero and no change of σ takes place.

The argument to the exponential function is always smaller
than 1/d and larger than −1/d if ptarget

succ < 0.5 (a necessary
assumption). Therefore, the damping parameter d controls
the rate of the step size adaptation. Using p̄succ instead

of succQ(g)

“

a
(g)
i , a

′(g+1)
i

”

primarily smooths the single step

size changes.

2.2 Hypervolume Computations
Computing the contributing hypervolume (see Eq. 2) is

computationally demanding [24, 23, 3, 1]. In fact, calcu-
lating the contributing hypervolume is #P-hard (see [5]),
where #P is the analog of NP for counting problems (see
[20]).

Thus, in an efficient implementation of the MO-CMA-ES
this should be done as rarely as possible. For selection, it is
not necessary to rank all µ + λ individuals. It is sufficient
to determine the λ worst. In addition, only if there is a
need to pick m ≤ λ individuals from the same level of non-
dominance, say from ndoml(A) with k = | ndoml(A)| and
m < k, we need to determine k − m times the individual
with the least hypervolume contribution. Because in each of

these rounds the cardinality of the set we have to consider is
reduced by one, the contributing hypervolume (Eq. 2) needs

to be computed
Pk

i=k−m
i = 2mk−m2+2k−m

2
times. For the

special case of the steady-state MO-CMA-ES with λ = 1, we
therefore need to compute a contributing hypervolume for at
most µ+1 points, because we just have to determine a single
individual to discard. However, in the original MO-CMA-
ES additional contributing hypervolume computations are
required as discussed in the following section.

3. NEW NOTION OF SUCCESS FOR STEP

SIZE ADAPTATION
For the success rule based adaptation of the step sizes,

we need a notion of what is considered to be a successful
mutation. The choice of the success criterion is crucial for
the step size update procedure (see Eq. 7). It directly affects
the (smoothed) success rate associated with the individual
that in turn influences the update of the global step-size σi

as well as the update of the covariance matrix C i.
In general, a conservative notion of success results in a

low success rate and thereby in a decrease of the step sizes
σi. If the criterion is too conservative, the convergence rate
of the MO-CMA-ES slows down. In contrast, an optimistic
notion of success results in a higher success rate and larger
steps.

In the (1+1)-CMA-ES defining the notion of success is
unambiguous. A mutation has been successful if the parent
is replaced by the offspring. This can be expressed in two
ways. A mutation has been successful if (i) the offspring is
better than the parent, (ii) the offspring is selected. While
these criteria are equivalent in the (1+1)-CMA-ES, they lead
to different success indicators succQ in the MO-CMA-ES.

3.1 Parent-Based Notion of Success
In the original MO-CMA-ES, a mutation was considered

as being successful if the offspring is better than the parent.
This requires a direct comparison of an offspring individual

a
′(g+1)
i with its parent a

(g)
i w.r.t. the level of non-dominance

and the contribution rank. Thus, we have

succI

Q(g)

“

a
(g)
i , a

′(g+1)
i

”

=

(

1 if a
′(g+1)
i ≺ a

(g)
i

0 otherwise
. (8)

This direct comparison of parent and offspring may require
more contributing hypervolume computations than the en-
vironmental selection procedure (see Sec. 2.2) if we use ex-
actly the same ranking method as described in Sec. 2. If
parent and offspring are selected and have the same level
of non-dominance (which frequently happens in real-valued
multi-objective optimization after the first generations), ad-
ditional hypervolume computations are required to deter-
mine whether the parent or the offspring rank higher.

3.2 Population-Based Notion of Success
We propose a simpler, at least as intuitive notion of suc-

cess. An offspring individual a
′(g+1)
i is considered successful

if it is selected for the next parent population P (g+1) =
n

Q
(g)
≺:i

˛

˛1 ≤ i ≤ µ
o

:

succP

Q(g)

“

a
(g)
i , a

′(g+1)
i

”

=

(

1 if a
′(g+1)
i ∈ Q(g+1)

0 otherwise
. (9)



This criterion is strictly more optimistic than the parent-
based notion of success in the sense that

succI

Q(g)

“

a
(g)
i , a

′(g+1)
i

”

= 1⇒ succP

Q(g)

“

a
(g)
i , a

′(g+1)
i

”

= 1 ,

(10)
for all selected individuals requiring a step size update.

No additional (contributing) hypervolume computations
are needed in addition to those needed for selection as de-
scribed in Sec. 2.2. Especially for the steady state MO-
CMA-ES, this considerably decreases the computation time
for the strategy parameter update.

For the remainder of this work, the terms MO-CMA-ESI

and MO-CMA-ESP refer to the MO-CMA-ES relying on
the individual-based and population-based notion of success,
respectively.

4. EMPIRICAL EVALUATION
This section presents a performance evaluation of the re-

vised step size adaptation on a broad range of two- and
three-objective benchmark functions. We compare the (µ+λ)-
MO-CMA-ESP and the (µ+1)-MO-CMA-ESP to the results
of the original (µ+λ)-MO-CMA-ESI and the (µ+1)-MO-
CMA-ESI . The results of both algorithms are compared to
results of a “new” variant of the well-known NSGA-II [6].
Because it is well-known that the MO-CMA-ES in general
outperforms the standard NSGA-II (e.g., see [16]) for real-
valued optimization, we replaced the second-level sorting cri-
terion in the NSGA-II and use the contributing hypervolume
(as in the MO-CMA-ES) instead of the crowding distance.
The resulting algorithm is a non-steady-state version of the
SMS-EMOA [2]. All experiments have been conducted using
the Shark machine learning library [13].

4.1 Experimental Setup
We compare the algorithms on several classes of bench-

mark functions. The bi-criteria constrained benchmark func-
tions ZDT1–4 and ZDT6 (see [25]) and their rotated vari-
ants IHR1–4 and IHR6 (see [14]) have been chosen for the
performance evaluation. Additionally, the set of bi-objective
test problems has been augmented by the unconstrained and
rotated functions ELLI1, ELLI2, CIGTAB1 and CIGTAB2
(see [14]), with the distance of the optima of the single ob-
jectives set to the default value two. In the case of three
objectives, the seven constrained functions DTLZ1–7 (see
[7]) have been chosen.

We defined a new class of test functions based on ELLI1
(see [16]), which is scalable to an arbitrary number of ob-
jectives m ≤ n, for this study. Let O ∈ Rn×n be an or-
thogonal matrix, D ∈ Rn×n be a diagonal matrix. Each
candidate solution x ∈ Rn is transformed by v = DOx.
Moreover, a matrix M ∈ Rm×n defining the centers of the
m objectives is needed. The objective functions are then
given by fm(v) = 1

α2·n
·Pn

i=1(vi −Mmi)
2. Varying M pro-

duces different benchmark functions. Here, M ∈ Rm×n is

set to M ij = 0 if j > m, M ij =
q

d−1
d

if i = j, and

M ij = −1√
d·(d−1)

otherwise. Here, d ∈ R>0 and D ∈ Rn×n

is set to Dij = α
i−1
n−1 if i = j and to 0 otherwise. For this

study, the parameter α was set to 1000 and d was chosen
as 2. The m optima of the single objective functions are
placed on the unit sphere centered at the origin of Z such
that they have maximum distance (i.e., they form a hyper-

tetrahedron). The function is called GELLIm, where the
superscript m indicates the number of objectives.

The default search space dimension for constrained and
non-rotated benchmark functions has been chosen to be 30.
In case of rotated benchmark functions, the search space di-
mensions has been chosen to be 10. The number of parent
and offspring individuals has been set to µ = λ = 100. We
conducted 25 independent trials with 100000 fitness func-
tion evaluations each. We sampled the performance of the
algorithms after every 500th fitness function evaluation and
carried out the statistical evaluation after 25,000 and 50,000
fitness function evaluations.

4.2 Statistical Evaluation
We consider the unary hypervolume-indicator as perfor-

mance measure [26, 27]. We want to compare k = 5 algo-
rithms on a particular optimization problem f after g fitness
evaluations and we assume that we have conducted t trials.
We consider the non-dominated individuals of the union of
all k · t populations after g evaluations. These individuals
make up the reference set R. The upper bounds of the ref-
erence set of the respective fitness function translated by 1

serve as the reference point for the calculation of the unary
hypervolume-indicator.

Several ways to compare multiple direct search heuristics
on multiple objective functions have been proposed in the
literature [4, 9]. Such a statistical comparison is not straight-
forward, because one has to account for multiple testing. For
the overall evaluation of the algorithms, we follow the rec-
ommendation in [9] and use non-parametric statistical tests
in a step-wise procedure. For each fitness function, we rank
the algorithms and then compute the average ranks. Then,
we apply a (Friedman) test to check whether the ranks are
different from the mean rank. If so, we determine ad hoc
whether two algorithms differ by pairwise comparison (us-
ing Bergmann-Hommel’s dynamic procedure). We fixed a
significance level of p = 0.001. For a detailed description
of the test procedure we refer to the literature [8, 9, 10].
We rely on the open source software supplied by Garcıa and
Herrera [9] in our evaluation. In addition, we compare the
results on the individual benchmark functions using a stan-
dard two-sided Wilcoxon rank sum test (p < 0.001). All
results highlighted in the following sections are statistically
significant, if not stated otherwise.

4.3 Results
The results of the performance evaluation after 25,000 and

50,000 fitness function evaluations are presented in Tables 1
and 2. In the overall comparison, the (µ+λ)-MO-CMA-ESP

and the (µ+1)-MO-CMA-ESP performed significantly bet-
ter than the (µ+λ)-MO-CMA-ESI , (µ+1)-MO-CMA-ESI

and the NSGA-II across the set of benchmark functions.
The steady-state MO-CMA-ES with the new step-size up-
date is the best of the five algorithms.

When looking at the single benchmark functions, the new
(µ+λ)-MO-CMA-ESP and the new (µ+1)-MO-CMA-ESP

performed always better than their counterparts with the
original step size adaptation (in one single case the difference
is not significant at the level p < 0.001). Further, the MO-
CMA-ES outperformed NSGA-II across the set of bench-
mark functions, except for ZDT4, IHR4, and DTLZ1. The
latter three functions are multi-modal and it is well-known
that the elitist variant of the (MO-)CMA-ES suffers from
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Figure 1: Evolution of the absolute hypervolume (left) and of the corresponding global step size (right) for the fitness function
ELLI2 over the number of objective function evaluations. All plots refer to the medians over 25 trials.

convergence into suboptimal local optima on multi-modal
fitness landscapes (see [14]). The new step size adaptation
attenuates this problem. The enhanced performance can be
attributed to the larger global step sizes realized by the new
variant (see Fig. 1 and Fig. 2) which in turn prevents both
algorithms from getting stuck in local optima early. Nev-
ertheless, the NSGA-II still outperforms all MO-CMA-ES
variants on these fitness functions.

The good performance of both the (µ+λ)-MO-CMA-ESP

as well as its steady-state variant (µ+1)-MO-CMA-ESP show
that the new notion of success clearly improves the conver-
gence properties of the algorithm.

5. CONCLUSIONS
We presented a new step size adaptation procedure for the

MO-CMA-ES that improves the convergence speed and at
the same time reduces the risk of convergence into subopti-
mal local optima. Additionally, the new update scheme low-
ers the computational complexity of both the generational
MO-CMA-ES as well as its steady-state variant consider-
ably by reducing the number of required computations of
the contributing hypervolume. Our experiments showed the
significantly improved performance of the new approach.

As baseline for the empirical evaluation, we considered
a new variant of the NSGA-II relying on the hypervolume
indicator as second-level sorting criterion. This compari-
son demonstrated that the superior performance of the MO-
CMA-ES is not only due to the selection procedure but that
the powerful strategy parameter adaptation in the CMA-ES
plays a major role. For the first time, it was shown that
the MO-CMA-ES outperforms the NSGA-II also in the case
of more than two objectives (see Fig. 3). In summary, we
strongly recommend the new update rule for the MO-CMA-
ES.

In future work, additional notions of success will be con-
sidered. For instance, one could check whether the offspring
individual is at least at the same level of non-dominance as
the parent individual. Further, we will study the impact of
the new step size update procedure on the performance of
the MO-CMA-ES with recombination of strategy parame-
ters presented in [22].
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Figure 2: Evolution of the absolute hypervolume (left) and of the global step size (right) for the fitness function IHR4.
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(µ+λ)-MO-CMA-ESI (µ+λ)-MO-CMA-ESP (µ+1)-MO-CMA-ESI (µ+1)-MO-CMA-ESP NSGA-II

Two-objective functions

ZDT1 6.04312V 6.08654I,III,V 6.06543I,V 6.08921I,II,III,V 6.04301

ZDT2 4.33030V 4.33181I,III,V 4.33092I,V 4.33201I,II,III,V 4.31906

ZDT3 3.89724V 3.89845I,III,V 3.89755I,V 4.89991I,II,III,V 3.89696

ZDT4 5.7355682III 6.9222784I,III,IV 5.0322781 5.33372III 7.92227I,II,III,IV

ZDT6 9.14021V 9.14039I,III,V 9.14029I,V 9.14052I,II,III,V 8.99023

IHR1 10.00087V 10.00951I,III,V 10.00100I,V 10.00999I,II,III,V 9.35870

IHR2 21.35308V 22.46712I,III,V 22.00009I,V 22.55552I,II,III,V 19.26734

IHR3 11.01029V 11.94161I,III,V 11.50321I,V 11.99028I,II,III,V 10.90063

IHR4 9.63114III,IV 12.00649I,III,IV 7.40903 8.93219III 16.29601I,II,III,IV

IHR6 7.49222V 8.30291I,III,V 7.51206I,V 8.44444I,II,III,V 7.04526

ELLI1 2.28712V 2.29654I,III,V 2.28990I,V 2.30657I,II,III,V 2.23001

ELLI2 2.90507V 2.94182I,III,V 2.91999V 2.96430I,II,III,V 2.84432

CIGTAB1 3.92059V 3.94653I,III,V 3.93485I,V 4.13942I,II,III,V 3.91111

CIGTAB2 7.09623V 7.09914I,III,V 7.09745I,V 7.10005I,II,III,V 6.82424

Three-objective functions

DTLZ1 210.09418III,IV 231.77529I,III,IV 190.11114 198.77843III 362.99741I,II,III,IV

DTLZ2 1.45493V 1.51007I,III,V 1.45590I,V 1.52587I,II,III,V 1.44501

DTLZ3 3.46292V 3.57601I,III,V 3.48666I,V 3.61829I,II,III,V 3.41438

DTLZ4 3.75548V 3.87132I,III,V 3.80002I,V 3.91733I,II,III,V 3.71349

DTLZ5 1.74993V 1.81004I,III,V 1.78524I,V 1.86991I,II,III,V 1.73421

DTLZ6 18.17184V 18.35190I,III,V 18.32435I,V 18.45000I,II,III,V 18.04588

DTLZ7 6.25983V 6.29887I,III,V 6.26779I,V 6.33241I,II,III,V 6.22765

GELLI3 5.34226V 5.82398I,III,V 5.42099I,V 6.02909I,II,III,V 5.04991

Table 1: Performance comparison of the (µ+λ)-MO-CMA-ESI , (µ+λ)-MO-CMA-ESP , (µ+1)-MO-CMA-ESI , (µ+1)-MO-
CMA-ESP , and NSGA-II using the hypervolume indicator as second-level sorting criterion. The table shows the median of
25 trials after 25,000 generations of the hypervolume-indicator (the higher the better). The superscripts I,II,III,IV and V
indicate whether the respective algorithm performs significantly better than the (µ+λ)-MO-CMA-ESI , (µ+λ)-MO-CMA-ESP ,
(µ+1)-MO-CMA-ESI , (µ+1)-MO-CMA-ESP , and NSGA-II, respectively (two-sided Wilcoxon rank sum test, p < 0.001). The
best value in each row is marked bold.
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