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The multi-objective covariance matrix adaptation evolution strategy (MO-CMA-ES) is an evolutionary algorithm for continuous vector-valued optimization. It combines indicator-based selection based on the contributing hypervolume with the efficient strategy parameter adaptation of the elitist covariance matrix adaptation evolution strategy (CMA-ES).

Step sizes (i.e., mutation strengths) are adapted on individual-level using an improved implementation of the 1/5-th success rule. In the original MO-CMA-ES, a mutation is regarded as successful if the offspring ranks better than its parent in the elitist, rank-based selection procedure. In contrast, we propose to regard a mutation as successful if the offspring is selected into the next parental population. This criterion is easier to implement and reduces the computational complexity of the MO-CMA-ES, in particular of its steady-state variant. The new step size adaptation improves the performance of the MO-CMA-ES as shown empirically using a large set of benchmark functions. The new update scheme in general leads to larger step sizes and thereby counteracts premature convergence. The experiments comprise the first evaluation of the MO-CMA-ES for problems with more than two objectives.

INTRODUCTION

The multi-objective covariance matrix adaptation evolution strategy (MO-CMA-ES, [START_REF] Igel | Covariance matrix adaptation for multi-objective optimization[END_REF][START_REF] Igel | Steady-state selection and efficient covariance matrix update in the multi-objective CMA-ES[END_REF][START_REF] Suttorp | Efficient covariance matrix update for variable metric evolution strategies[END_REF]) is an extension of the CMA-ES [START_REF] Hansen | Completely derandomized self-adaptation in evolution strategies[END_REF][START_REF] Hansen | Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES)[END_REF] for real-valued multi-objective optimization. It combines the mutation and strategy adaptation of the (1+1)-CMA-ES [START_REF] Igel | Covariance matrix adaptation for multi-objective optimization[END_REF][START_REF] Igel | A computational efficient covariance matrix update and a (1+1)-CMA for evolution strategies[END_REF][START_REF] Suttorp | Efficient covariance matrix update for variable metric evolution strategies[END_REF] with a multi-objective selection procedure based on non-dominated sorting [START_REF] Deb | A fast and elitist multiobjective genetic algorithm: NSGA-II[END_REF] and the contributing hypervolume [START_REF] Beume | SMS-EMOA: Multiobjective selection based on dominated hypervolume[END_REF] acting on a population of individuals.

In the MO-CMA-ES, step sizes (i.e., mutation strengths) are adapted on individual-level. The step size update procedure originates in the well-known 1/5-th rule originally presented by [START_REF] Rechenberg | Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution[END_REF] and extended by [START_REF] Kern | Learning probability distributions in continuous evolutionary algorithms -a comparative review[END_REF]. If the success rate, that is, the fraction of successful mutations, is high, the step size is increased, otherwise it is decreased. In the original MO-CMA-ES, a mutation is regarded as successful if the resulting offspring is better than its parent. In this study, we propose to replace this criterion and to consider a mutation as being successful if the offspring becomes a member of the next parent population. We argue that this notion of success is easier to implement, computationally less demanding, and improves the performance of the MO-CMA-ES.

In the next section, we briefly review the MO-CMA-ES. In Sec. 3, we discuss our new notion of success for the step size adaptation. Then, we empirically evaluate the resulting algorithms. In this evaluation, the MO-CMA-ES is for the first time benchmarked on functions with more than two objectives. As a baseline, we consider a new variant of the NSGA-II, in which the crowding distance is replaced by the contributing hypervolume for sorting individuals at the same level of non-dominance.

THE MO-CMA-ES

In the following, we briefly outline the MO-CMA-ES according to [START_REF] Igel | Covariance matrix adaptation for multi-objective optimization[END_REF][START_REF] Igel | Steady-state selection and efficient covariance matrix update in the multi-objective CMA-ES[END_REF][START_REF] Suttorp | Efficient covariance matrix update for variable metric evolution strategies[END_REF], see Algorithm 1. For a detailed description and a performance evaluation on bi-objective benchmark functions we refer to [START_REF] Igel | Covariance matrix adaptation for multi-objective optimization[END_REF][START_REF] Voß | Scalarization versus indicator-based selection in multi-objective CMA evolution strategies[END_REF]. We consider objective functions f : R n → R m , x → (f1(x), . . . , fm(x)) T . In the MO-CMA-ES, a candidate solution a (g) i in generation

g is a tuple h x (g) i , p(g) succ,i , σ (g) i , p (g) i,c , C (g) i i , where x (g) i ∈ R n is the current search point, p(g) succ,i ∈ [0, 1] is the smoothed suc- cess probability, σ (g) i ∈ R + 0 is the global step size, p (g) 
i,c ∈ R n is the cumulative evolution path, C (g) i ∈ R n×n is the covariance matrix of the search distribution. For an individual a encoding search point x, we write f (a) for f (x) with a slight abuse of notation.

We first describe the general ranking procedure and summarize the other parts of the MO-CMA-ES. The MO-CMA-ES relies on the non-dominated sorting selection scheme [START_REF] Deb | A fast and elitist multiobjective genetic algorithm: NSGA-II[END_REF]. As in the SMS-EMOA [START_REF] Beume | SMS-EMOA: Multiobjective selection based on dominated hypervolume[END_REF], the hypervolume-indicator serves as second-level sorting criterion to rank individuals at the same level of non-dominance. Let A be a population, and let a, a ′ be two individuals in A. Let the non-dominated solutions in A be denoted by ndom(A) = {a ∈ A ˛∄a ′ ∈ A : a ′ ≺ a}, where ≺ denotes the Pareto-dominance relation. The elements in ndom(A) are assigned a level of non-dominance of 1. The other ranks of non-dominance are defined recursively by considering the set A without the solutions with lower ranks [START_REF] Deb | A fast and elitist multiobjective genetic algorithm: NSGA-II[END_REF]. Formally, let dom0(A) = A, dom l (A) = dom l-1 (A) \ ndom l (A), and ndom l (A) = ndom(dom l-1 (A)) for l ≥ 1. For a ∈ A we define the level of non-dominance rank(a, A) to be i iff a ∈ ndomi(A).

The hypervolume measure or S-metric was introduced in the domain of evolutionary multi-objective optimization (MOO) in [START_REF] Zitzler | Multiobjective optimization using evolutionary algorithms -a comparative case study[END_REF]. It is defined as

S f ref (A) = Λ [ a∈A h f1(a), f ref 1 i × • • • × h fm(a), f ref m i ! , (1) 
with f ref ∈ R m referring to an appropriately chosen reference point and Λ(•) being the Lebesgue measure. The contributing hypervolume of a point a ∈ A ′ = ndom(A) is given by

∆S (a, A ′ ) = S f ref (A ′ ) -S f ref (A ′ \ {a}) . (2) 
Now we define the contribution rank cont(a, A ′ ) of a. This is again done recursively. The element, say a, with the smallest contributing hypervolume is assigned contribution rank 1.

The next rank is assigned by considering A ′ \ {a} etc. More precisely, let c0(A ′ ) = argmin a∈A ′ ∆S (a, A ′ ) and

ci(A ′ ) = c0 A ′ \ i-1 [ j=0 ˘cj(A ′ ) ¯! (3) 
for i > 0. For a ∈ A ′ we define the contribution rank cont(a, A ′ ) to be i + 1 iff a = ci(A ′ ). In the ranking procedure ties are broken at random. We refer to the points {a | a = argmin a∈A fi(a), i = 1, . . . , m} as boundary elements of A. The reference point f ref is chosen in each iteration such that an individual with fitness f ref would be dominated by all individuals in the current population and such that all boundary elements get the highest contribution ranks (i.e., the boundary elements are always selected). Such a reference point always exists, is easy to find and its exact choice does not matter for the MO-CMA-ES as long as the boundary elements get the highest ranks. Finally, the following relation between individuals a, a ′ ∈ A is defined:

a ≺A a ′ ⇔ rank(a, A) < rank(a ′ , A)∨ ˆrank(a, A) = rank(a ′ , A)∧ cont(a, ndom(A)) > cont(a ′ , ndom(A)) ˜(4)
The success indicator succ

Q (g) " a (g) i , a ′(g+1) i " in Algorithm 1
evaluates to one if the mutation that has created a ′(g+1) i is considered to be successful and to zero otherwise, see Sec. [START_REF] Beume | Faster S-metric calculation by considering dominated hypervolume as Klee's measure problem[END_REF].

In each generation, λ offspring individuals are sampled (lines 3-7). If λ does not equal µ (e.g., in case of the steady-

Algorithm 1: (µ +λ)-MO-CMA-ES 1 g ← 0, initialize parent population Q (0) ; 2 repeat 3 for k = 1, . . . , λ do 4a i k ← U " 1, | ndom " Q (g) " | " ; 4b i k ← k; 5 a ′(g+1) k ← a (g) i k ; 6 x ′ (g+1) k ∼ x (g) i k + σ (g) i k N " 0, C (g) i k " ; 7 Q (g) ← Q (g) ∪ n a ′(g+1) k o ; 8 for k = 1, . . . , λ do 9 p′ (g+1) succ,k ← (1 -cp) p′ (g+1) succ,k + cp succ Q (g) " a (g) i k , a ′(g+1) k " ; 10 σ ′(g+1) k ← σ ′(g+1) k exp " 1 d p′ (g+1) succ,k -p target succ 1-p target succ « ; 11 if p′ (g+1) succ,k < p thresh then 12 p ′ (g+1) c,k ← (1 -cc) p ′ (g+1) c,k + p cc(2 -cc) x ′ (g+1) k -x (g) i k σ (g) i k ; 13 C ′ (g+1) k ← (1 -ccov) C ′ (g+1) k + ccovp ′ (g+1) c,k p ′ (g+1) c,k T ; 14 else 15 p ′ (g+1) c,k ← (1 -cc) p ′ (g+1) c,k ; 16 C ′ (g+1) k ← (1 -ccov) C ′ (g+1) k + ccov " p ′ (g+1) c,k p ′ (g+1) c,k T + cc (2 -cc) C ′ (g+1) k " ; 17 p(g) i k ← (1 -cp)p (g) i k + cp succ Q (g) " a (g) i k , a ′(g+1) k " ; 18 σ (g) i k ← σ (g) i k exp " 1 d p(g) succ,i k -p target succ 1-p target succ « ; 19 g ← g + 1; 20 Q (g) ← n Q (g-1) ≺:i ˛1 ≤ i ≤ µ o ;
until stopping criterion is met ;

state MO-CMA-ES), the parent is chosen uniformly at random from the set of non-dominated individuals ndom Here, Q (g) ≺:i denotes the ith best individual in Q (g) ranked by non-dominated sorting and the contributing hypervolume according to (Eq. 4).

" Q (g) " ( line 
When in this study the MO-CMA-ES is applied to a bench-mark problem f with box constraints, we consider a penalized fitness function

f penalty (x) = f (feasible(x)) + α x -feasible(x)) 2 2 ,
(5) where feasible(x) returns the closest feasible point to x w.r.t. the L1-norm.

The (external) strategy parameters are the population size, initial global step size, target success probability p target succ , step size damping d, success rate averaging parameter cp, cumulation time horizon parameter cc, and covariance matrix learning rate ccov. Default values as given in [START_REF] Igel | Covariance matrix adaptation for multi-objective optimization[END_REF] and used in this paper are d = 1 + n/2, p target succ = (5 +

p 1/2) -1 , cp = p target succ /(2 + p target succ ), cc = 2/(n + 2), ccov = 2/(n 2 + 6)
, and p thresh = 0.44. In the constraint handling we set α = 10 -6 . The initial global step sizes σ (0) i are set dependent on the problem (e.g., in the case of box constraints, see below, with

x u i -x l i = x u j -x l j for 1 ≤ i, j ≤ n to 0.6 • (x u 1 -x l 1 
)).

Step Size Update Procedure

The focus of this study is the step size adaptation, which is described in more detail in the following. After sampling the new candidate solutions, the step size of parent a is updated based on the smoothed success rate (different notions of success are discussed in Sec. 3)

psucc = (1 -cp) psucc + cp succQ `a, a ′ ´, (6) 
with a learning rate cp (0 < cp ≤ 1) according to

σ = σ • exp " 1 d p succ -p target succ 1 -p target succ « . (7) 
The update rule is rooted in the 1/5-success-rule proposed by [START_REF] Rechenberg | Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution[END_REF] and is an extension from the rule proposed by [START_REF] Kern | Learning probability distributions in continuous evolutionary algorithms -a comparative review[END_REF]. It implements the well-known heuristic that the step size should be increased if the success rate (i.e., the fraction of offspring better than the parent) is high, and the step size should be decreased if the success rate is low. The rule is reflected in the argument of the exponential function. For psucc > p target succ the argument is greater than zero and the step size increases; for psucc < p target succ the argument is smaller than zero and the step size decreases; for psucc = p target succ the argument becomes zero and no change of σ takes place.

The argument to the exponential function is always smaller than 1/d and larger than -1/d if p target succ < 0.5 (a necessary assumption). Therefore, the damping parameter d controls the rate of the step size adaptation. Using psucc instead of succ

Q (g) " a (g) i , a ′(g+1) i "
primarily smooths the single step size changes.

Hypervolume Computations

Computing the contributing hypervolume (see Eq. 2) is computationally demanding [START_REF] Zitzler | Hypervolume metric calculation[END_REF][START_REF] While | A new analysis of the LebMeasure algorithm for calculating hypervolume[END_REF][START_REF] Beume | Faster S-metric calculation by considering dominated hypervolume as Klee's measure problem[END_REF][START_REF] Beume | S-metric calculation by considering dominated hypervolume as Klee's measure problem[END_REF]. In fact, calculating the contributing hypervolume is #P-hard (see [START_REF] Bringmann | Approximating the least hypervolume contributor: NP-Hard in General, But Fast in Practice[END_REF]), where #P is the analog of NP for counting problems (see [START_REF] Valiant | )-MO-CMA-ES I (µ+1)-MO-CMA-ES P NSGA-II Two-objective functions ZDT[END_REF]).

Thus, in an efficient implementation of the MO-CMA-ES this should be done as rarely as possible. For selection, it is not necessary to rank all µ + λ individuals. It is sufficient to determine the λ worst. In addition, only if there is a need to pick m ≤ λ individuals from the same level of nondominance, say from ndom l (A) with k = | ndom l (A)| and m < k, we need to determine km times the individual with the least hypervolume contribution. Because in each of these rounds the cardinality of the set we have to consider is reduced by one, the contributing hypervolume (Eq. 2) needs to be computed

P k i=k-m i = 2mk-m 2 +2k-m 2
times. For the special case of the steady-state MO-CMA-ES with λ = 1, we therefore need to compute a contributing hypervolume for at most µ+1 points, because we just have to determine a single individual to discard. However, in the original MO-CMA-ES additional contributing hypervolume computations are required as discussed in the following section.

NEW NOTION OF SUCCESS FOR STEP SIZE ADAPTATION

For the success rule based adaptation of the step sizes, we need a notion of what is considered to be a successful mutation. The choice of the success criterion is crucial for the step size update procedure (see Eq. 7). It directly affects the (smoothed) success rate associated with the individual that in turn influences the update of the global step-size σi as well as the update of the covariance matrix Ci.

In general, a conservative notion of success results in a low success rate and thereby in a decrease of the step sizes σi. If the criterion is too conservative, the convergence rate of the MO-CMA-ES slows down. In contrast, an optimistic notion of success results in a higher success rate and larger steps.

In the (1+1)-CMA-ES defining the notion of success is unambiguous. A mutation has been successful if the parent is replaced by the offspring. This can be expressed in two ways. A mutation has been successful if (i) the offspring is better than the parent, (ii) the offspring is selected. While these criteria are equivalent in the (1+1)-CMA-ES, they lead to different success indicators succQ in the MO-CMA-ES.

Parent-Based Notion of Success

In the original MO-CMA-ES, a mutation was considered as being successful if the offspring is better than the parent. This requires a direct comparison of an offspring individual a ′(g+1) i with its parent a (g) i w.r.t. the level of non-dominance and the contribution rank. Thus, we have

succ I Q (g) " a (g) i , a ′(g+1) i " = ( 1 if a ′(g+1) i ≺ a (g) i 0 otherwise . (8) 
This direct comparison of parent and offspring may require more contributing hypervolume computations than the environmental selection procedure (see Sec. 2.2) if we use exactly the same ranking method as described in Sec. 2. If parent and offspring are selected and have the same level of non-dominance (which frequently happens in real-valued multi-objective optimization after the first generations), additional hypervolume computations are required to determine whether the parent or the offspring rank higher.

Population-Based Notion of Success

We propose a simpler, at least as intuitive notion of success. An offspring individual a ′(g+1) i is considered successful if it is selected for the next parent population

P (g+1) = n Q (g) ≺:i ˛1 ≤ i ≤ µ o : succ P Q (g) " a (g) i , a ′(g+1) i " = ( 1 if a ′(g+1) i ∈ Q (g+1) 0 otherwise . ( 9 
)
This criterion is strictly more optimistic than the parentbased notion of success in the sense that

succ I Q (g) " a (g) i , a ′(g+1) i " = 1 ⇒ succ P Q (g) " a (g) i , a ′(g+1) i " = 1 , (10 
) for all selected individuals requiring a step size update.

No additional (contributing) hypervolume computations are needed in addition to those needed for selection as described in Sec. 2.2. Especially for the steady state MO-CMA-ES, this considerably decreases the computation time for the strategy parameter update.

For the remainder of this work, the terms MO-CMA-ES I and MO-CMA-ES P refer to the MO-CMA-ES relying on the individual-based and population-based notion of success, respectively.

EMPIRICAL EVALUATION

This section presents a performance evaluation of the revised step size adaptation on a broad range of two-and three-objective benchmark functions. We compare the (µ+λ)-MO-CMA-ES P and the (µ+1)-MO-CMA-ES P to the results of the original (µ+λ)-MO-CMA-ES I and the (µ+1)-MO-CMA-ES I . The results of both algorithms are compared to results of a "new" variant of the well-known NSGA-II [START_REF] Deb | A fast and elitist multiobjective genetic algorithm: NSGA-II[END_REF]. Because it is well-known that the MO-CMA-ES in general outperforms the standard NSGA-II (e.g., see [START_REF] Igel | Steady-state selection and efficient covariance matrix update in the multi-objective CMA-ES[END_REF]) for realvalued optimization, we replaced the second-level sorting criterion in the NSGA-II and use the contributing hypervolume (as in the MO-CMA-ES) instead of the crowding distance. The resulting algorithm is a non-steady-state version of the SMS-EMOA [START_REF] Beume | SMS-EMOA: Multiobjective selection based on dominated hypervolume[END_REF]. All experiments have been conducted using the Shark machine learning library [13].

Experimental Setup

We compare the algorithms on several classes of benchmark functions. The bi-criteria constrained benchmark functions ZDT1-4 and ZDT6 (see [START_REF] Zitzler | Comparison of multiobjective evolutionary algorithms: Empirical results[END_REF]) and their rotated variants IHR1-4 and IHR6 (see [START_REF] Igel | Covariance matrix adaptation for multi-objective optimization[END_REF]) have been chosen for the performance evaluation. Additionally, the set of bi-objective test problems has been augmented by the unconstrained and rotated functions ELLI1, ELLI2, CIGTAB1 and CIGTAB2 (see [START_REF] Igel | Covariance matrix adaptation for multi-objective optimization[END_REF]), with the distance of the optima of the single objectives set to the default value two. In the case of three objectives, the seven constrained functions DTLZ1-7 (see [START_REF] Deb | Scalable multi-objective optimization test problems[END_REF]) have been chosen.

We defined a new class of test functions based on ELLI1 (see [START_REF] Igel | Steady-state selection and efficient covariance matrix update in the multi-objective CMA-ES[END_REF]), which is scalable to an arbitrary number of objectives m ≤ n, for this study. Let O ∈ R n×n be an orthogonal matrix, D ∈ R n×n be a diagonal matrix. Each candidate solution x ∈ R n is transformed by v = DOx. Moreover, a matrix M ∈ R m×n defining the centers of the m objectives is needed. The objective functions are then given by fm

(v) = 1 α 2 •n • P n i=1 (vi -Mmi) 2 . Varying M pro- duces different benchmark functions. Here, M ∈ R m×n is set to M ij = 0 if j > m, M ij = q d-1 d if i = j, and 
M ij = -1 √ d•(d-1)
otherwise. Here,

d ∈ R >0 and D ∈ R n×n is set to Dij = α i-1
n-1 if i = j and to 0 otherwise. For this study, the parameter α was set to 1000 and d was chosen as 2. The m optima of the single objective functions are placed on the unit sphere centered at the origin of Z such that they have maximum distance (i.e., they form a hyper-tetrahedron). The function is called GELLI m , where the superscript m indicates the number of objectives.

The default search space dimension for constrained and non-rotated benchmark functions has been chosen to be 30. In case of rotated benchmark functions, the search space dimensions has been chosen to be 10. The number of parent and offspring individuals has been set to µ = λ = 100. We conducted 25 independent trials with 100000 fitness function evaluations each. We sampled the performance of the algorithms after every 500th fitness function evaluation and carried out the statistical evaluation after 25,000 and 50,000 fitness function evaluations.

Statistical Evaluation

We consider the unary hypervolume-indicator as performance measure [START_REF] Zitzler | Multiobjective optimization using evolutionary algorithms -a comparative case study[END_REF][START_REF] Zitzler | Performance assessment of multiobjective optimizers: An analysis and review[END_REF]. We want to compare k = 5 algorithms on a particular optimization problem f after g fitness evaluations and we assume that we have conducted t trials. We consider the non-dominated individuals of the union of all k • t populations after g evaluations. These individuals make up the reference set R. The upper bounds of the reference set of the respective fitness function translated by 1 serve as the reference point for the calculation of the unary hypervolume-indicator.

Several ways to compare multiple direct search heuristics on multiple objective functions have been proposed in the literature [4,[START_REF] Garcıa | An extension on "statistical comparisons of classifiers over multiple data sets" for all pairwise comparisons[END_REF]. Such a statistical comparison is not straightforward, because one has to account for multiple testing. For the overall evaluation of the algorithms, we follow the recommendation in [START_REF] Garcıa | An extension on "statistical comparisons of classifiers over multiple data sets" for all pairwise comparisons[END_REF] and use non-parametric statistical tests in a step-wise procedure. For each fitness function, we rank the algorithms and then compute the average ranks. Then, we apply a (Friedman) test to check whether the ranks are different from the mean rank. If so, we determine ad hoc whether two algorithms differ by pairwise comparison (using Bergmann-Hommel's dynamic procedure). We fixed a significance level of p = 0.001. For a detailed description of the test procedure we refer to the literature [START_REF] Demšar | Statistical comparisons of classifiers over multiple data sets[END_REF][START_REF] Garcıa | An extension on "statistical comparisons of classifiers over multiple data sets" for all pairwise comparisons[END_REF][START_REF] Garcıa | A study on the use of non-parametric tests for analyzing the evolutionary algorithms' behaviour: A case study on the CEC'2005 special session on real parameter optimization[END_REF]. We rely on the open source software supplied by Garcıa and Herrera [START_REF] Garcıa | An extension on "statistical comparisons of classifiers over multiple data sets" for all pairwise comparisons[END_REF] in our evaluation. In addition, we compare the results on the individual benchmark functions using a standard two-sided Wilcoxon rank sum test (p < 0.001). All results highlighted in the following sections are statistically significant, if not stated otherwise.

Results

The results of the performance evaluation after 25,000 and 50,000 fitness function evaluations are presented in Tables 1 and2. In the overall comparison, the (µ+λ)-MO-CMA-ES P and the (µ+1)-MO-CMA-ES P performed significantly better than the (µ+λ)-MO-CMA-ES I , (µ+1)-MO-CMA-ES I and the NSGA-II across the set of benchmark functions. The steady-state MO-CMA-ES with the new step-size update is the best of the five algorithms.

When looking at the single benchmark functions, the new (µ+λ)-MO-CMA-ES P and the new (µ+1)-MO-CMA-ES P performed always better than their counterparts with the original step size adaptation (in one single case the difference is not significant at the level p < 0.001). Further, the MO-CMA-ES outperformed NSGA-II across the set of benchmark functions, except for ZDT4, IHR4, and DTLZ1. The latter three functions are multi-modal and it is well-known that the elitist variant of the (MO-)CMA-ES suffers from convergence into suboptimal local optima on multi-modal fitness landscapes (see [START_REF] Igel | Covariance matrix adaptation for multi-objective optimization[END_REF]). The new step size adaptation attenuates this problem. The enhanced performance can be attributed to the larger global step sizes realized by the new variant (see Fig. 1 and Fig. 2) which in turn prevents both algorithms from getting stuck in local optima early. Nevertheless, the NSGA-II still outperforms all MO-CMA-ES variants on these fitness functions. The good performance of both the (µ+λ)-MO-CMA-ES P as well as its steady-state variant (µ+1)-MO-CMA-ES P show that the new notion of success clearly improves the convergence properties of the algorithm.

CONCLUSIONS

We presented a new step size adaptation procedure for the MO-CMA-ES that improves the convergence speed and at the same time reduces the risk of convergence into suboptimal local optima. Additionally, the new update scheme lowers the computational complexity of both the generational MO-CMA-ES as well as its steady-state variant considerably by reducing the number of required computations of the contributing hypervolume. Our experiments showed the significantly improved performance of the new approach.

As baseline for the empirical evaluation, we considered a new variant of the NSGA-II relying on the hypervolume indicator as second-level sorting criterion. This comparison demonstrated that the superior performance of the MO-CMA-ES is not only due to the selection procedure but that the powerful strategy parameter adaptation in the CMA-ES plays a major role. For the first time, it was shown that the MO-CMA-ES outperforms the NSGA-II also in the case of more than two objectives (see Fig. 3). In summary, we strongly recommend the new update rule for the MO-CMA-ES.

In future work, additional notions of success will be considered. For instance, one could check whether the offspring individual is at least at the same level of non-dominance as the parent individual. Further, we will study the impact of the new step size update procedure on the performance of the MO-CMA-ES with recombination of strategy parameters presented in [START_REF] Voß | Recombination for learning strategy parameters in the MO-CMA-ES[END_REF]. 

  4a). Otherwise, one offspring individual is created from every parent individual (line 4b). Thereafter, the strategy parameters of parent and offspring individuals are adapted (lines 9-18). The decision whether a new candidate solution is better than its parent is made in the context of the population Q (g) of parent and offspring individuals subject to the indicator-based selection strategy implemented in the algorithm. The step sizes and the covariance matrix of the offspring individuals are updated (lines 9-16). Subsequently, the step sizes σ (g) i k of the parent individuals a (g) i k are adapted (line 17 and 18). Finally, the new parent population is selected from the set of parent and offspring individuals according to the indicator-based selection scheme (line 20).

Figure 1 :

 1 Figure 1: Evolution of the absolute hypervolume (left) and of the corresponding global step size (right) for the fitness function ELLI2 over the number of objective function evaluations. All plots refer to the medians over 25 trials.

Figure 2 :

 2 Figure 2: Evolution of the absolute hypervolume (left) and of the global step size (right) for the fitness function IHR4.

Figure 3 :

 3 Figure 3: Evolution of the absolute hypervolume for the fitness functions DTLZ2, DTLZ3, DTLZ6, and DTLZ7 having three objectives.
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