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ABSTRACT

We propose a novel variant of the (1 + 1)-CMA-ES that
updates the distribution of mutation vectors based on both
successful and unsuccessful trial steps. The computational
costs of the adaptation procedure are quadratic in the di-
mensionality of the problem, and the algorithm retains all
invariance properties. Its performance on a set of standard
test functions is compared with that of the original strategy
that updates the distribution of mutation vectors in response
to successful steps only. The new variant is not observed to
be more than marginally slower on any function, and it is
up to two times faster on some of the test problems.

Categories and Subject Descriptors

G.1.6 [Optimization]: Unconstrained Optimization; I.2.8
[Problem Solving, Control Methods, and Search];
I.2.6 [Learning]: Parameter Learning

General Terms

Algorithms, Performance

Keywords

Stochastic optimisation, variable metric algorithm, evolu-
tion strategy, covariance matrix adaptation

1. INTRODUCTION
On ill-conditioned problems covariance matrix adaptation

can accelerate the rate of convergence of evolution strate-
gies by orders of magnitude. For example, successful co-
variance matrix adaptation can enable strategies to gener-
ate candidate solutions predominantly in the direction of
narrow valleys. The covariance matrix adaptation evolu-
tion strategy (CMA-ES) developed by Hansen and Oster-
meier [6] learns an appropriate covariance matrix from suc-
cessful steps that the algorithm has taken. It exhibits de-
sirable invariance properties that make it suitable for solv-
ing non-separable optimisation problems. Restart variants

c© ACM, 2010. This is the authors’ version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version will be published in Proceedings of the 12th Annual Con-
ference on Genetic and Evolutionary Computation.
GECCO’10, July 7–11, 2010, Portland, Oregon, USA.

of the CMA-ES, such as that by Auger and Hansen [3],
have dominated other algorithms in benchmarking exercises
at the 2005 IEEE Congress on Evolutionary Computation
(CEC)1 as well as at the 2009 Genetic and Evolutionary
Computation Conference (GECCO)2.

The (1 + 1)-CMA-ES is a recent variant of the CMA-ES
that has been introduced by Igel et al. [7] and developed
further by Suttorp et al. [11]. It differs from previous CMA-
ES variants in being elitist, and Igel et al. [7] find that it
is about 1.5 times faster than the (µ/µ, λ)-CMA-ES on uni-
modal functions3. A particularly interesting feature of the
(1+1)-CMA-ES is that it operates on the Cholesky factors of
the covariance matrix, removing the need for computation-
ally expensive eigenvalue or Cholesky decompositions. As a
result, it is easy to implement and potentially particularly
useful in scenarios where the costs of fitness evaluations are
such that covariance matrix decompositions would dominate
the computational costs of the algorithm.

The CMA-ES adapts the covariance matrix of the distri-
bution of mutation vectors based on successful steps. The
underlying idea is to increase the variance of the distribution
in directions that have proven successful in the recent past.
Old information present in the covariance matrix decays pas-
sively. Jastrebski and Arnold [8] propose what they refer to
as active covariance matrix adaptation for the (µ/µ, λ)-ES.
Active covariance matrix adaptation increases variances in
successful directions as well as actively reducing variances in
particularly unsuccessful ones. In experiments on standard
benchmark functions they find that the strategy that em-
ploys active covariance matrix adaptation consistently out-
performs the standard (µ/µ, λ)-CMA-ES. The advantage of
the strategy that employs active adaptation is particularly
pronounced on functions with an eigenvalue spectrum of the
Hessian that is dominated by a small number of relatively
large values.

In this paper we introduce active covariance matrix adap-
tation for the (1 + 1)-CMA-ES. The algorithm maintains
all invariance properties of the CMA-ES, and its computa-
tional cost per time step (excluding fitness evaluations) is
quadratic in the dimensionality of the search space. The
remainder of the paper is organised as follows: Section 2
outlines the (1 + 1)-CMA-ES as described in [11]. Sec-
tion 3 introduces active covariance matrix adaptation for

1http://www3.ntu.edu.sg/home/EPNSugan/index_files/
CEC-05/CEC05.htm
2http://coco.gforge.inria.fr/doku.php?id=bbob-2009
3See Beyer and Schwefel [5] for an introduction to evolution
strategy nomenclature.



the (1 + 1)-CMA-ES. Section 4 compares the performances
of the algorithms with and without active covariance ma-
trix adaptation on sets of standard test functions. Section 5
concludes with a discussion of the results and of future work.

2. (1+1)-CMA-ES
Applied to a minimisation problem with objective func-

tion f : R
n → R, CMA-ES sample offspring candidate solu-

tions from a distribution with covariance matrix σ2C, where
C ∈ R

n×n and σ ∈ R. Matrix C is usually referred to as
the covariance matrix, scalar σ as the global step size. The
covariance matrix is adapted by means of updates of the
form

C← (1− c+
cov)C + c+

covss
T (1)

where ‘←’ denotes the assignment operator, s ∈ R
n is an

exponentially fading record of recent steps referred to as the
evolution or search path, and c+

cov > 0 is a constant that
determines the time scale on which old information present
in the covariance matrix fades out. The global step size is
adapted separately. The (1 + 1)-CMA-ES in particular em-
ploys a variant of Rechenberg’s 1/5th-rule for that purpose.

In order to generate samples from a normal distribution
with covariance matrix C, a Cholesky decomposition C =
AAT is computed and mutation vectors are generated as
Az, where z ∈ R

n consists of n independent, standard nor-
mally distributed components. The computational cost of
the matrix decomposition is in Θ(n3) and thus significant for
high-dimensional problems. Hansen and Ostermeier [6] sug-
gest decomposing the covariance matrix only every n/k time
steps for some constant k, and to use outdated Cholesky fac-
tors in between. Ros and Hansen [10] propose a variant of
the CMA-ES that constrains matrix C to be diagonal, re-
ducing the task of computing a Cholesky decomposition to
that of taking the square roots of the diagonal elements, but
resulting in a loss of invariance with regard to rotations of
the coordinate system.

The (1 + 1)-CMA-ES avoids computationally expensive
matrix decompositions altogether. Instead of operating on
the covariance matrix C, it operates directly on the Cholesky
factor A and its inverse Ainv = A−1. Specifically, Suttorp
et al. [11] let w = Ainvs and define

a =
p

1− c+
cov (2)

and

b =

p

1− c+
cov

‖w‖2

0

@

s

1 +
c+
cov

1− c+
cov

‖w‖2 − 1

1

A . (3)

They then show that if C = AAT and Ainv = A−1, updates

A← aA + b [Aw]wT (4)

and

Ainv ← 1

a
Ainv − b

a2 + ab‖w‖2 w
h

wTAinv

i

(5)

maintain those relationships while performing the covari-
ance matrix update in Eq. (1). Notice that with the order
of the computations performed as suggested by the square
brackets, the update requires Θ(n2) time.

The state of the (1+1)-CMA-ES consists of parental can-
didate solution x ∈ R

n, search path s ∈ R
n, global step

size σ ∈ R
+, success probability estimate Psucc ∈ R, and

Cholesky factor A ∈ R
n×n and its inverse Ainv. In every

iteration, those quantities are updated in three steps:

1. Generate offspring candidate solution y = x + σAz,
where z is a vector with n independent, standard nor-
mally distributed components.

2. If f(y) ≤ f(x), then do the following:

(a) Let

x← y.

(b) Update the success probability estimate accord-
ing to

Psucc ← (1− cP )Psucc + cP

where cP is a constant with 0 < cP < 1.

(c) Update the search path according to

s← (1− c)s +
p

c(2− c)Az.

(d) Let w = Ainvs and update A and Ainv according
to Eqs. (4) and (5) with the coefficients computed
using Eqs. (2) and (3).

Otherwise, update the success probability estimate ac-
cording to

Psucc ← (1− cP )Psucc

3. Update the global step size according to

σ ← σ exp

„

1

d

Psucc − Ptarget

1− Ptarget

«

where d > 0 is a damping constant and target success
probability Ptarget equals approximately one fifth.

Settings for all constants can be found in [11].4

3. ACTIVECOVARIANCEMATRIXADAP-

TATION
Equation (1) describes a rank-one update to the covari-

ance matrix that increases variances in directions of previ-
ously successful steps accumulated in the search path. Ac-
tive covariance matrix adaptation additionally performs a
rank-one update of the form

C← (1 + c−cov)C− c−cov(Az)(Az)T (6)

for constant c−cov > 0 if a candidate solution y = x + σAz
is particularly unsuccessful. Like the update in Eq. (1), the

4The algorithm described in [11] differs from the one given
here in that it stalls the update of the search path if
the success probability estimate Psucc exceeds a threshold
Pthresh = 0.44. Specifically, in that case, the update in 2.(c)
is replaced with s← (1− c)s. Additionally, in order to com-
pensate for the influence of the shortened search path, the
coefficients in Eqs. (2) and (3) are replaced with a =

√
1− d

and b =
√

1− d(
q

1 + c+
cov‖w‖2/(1− d)− 1)/‖w‖2, respec-

tively, where d = c+
cov(1 + c(2 − c)). While that feature is

useful in situations where the global step size is much smaller
than optimal, its influence on the performance of the algo-
rithm is minor in most cases. We have omitted it from the
description of the algorithm for clarity, but we have imple-
mented it for the experimental evaluation in Section 4.



update in Eq. (6) is unbiased in that the expected value
of the covariance matrix remains unchanged under random
selection (i.e., if z is standard normally distributed). The
update has the effect of reducing the variance of the distri-
bution of mutation vectors in the direction of particularly
unsuccessful steps.

In the case of the (µ/µ, λ)-ES considered in [8] “especially
unsuccessful” is defined as being among the worst of the
offspring generated in the current time step. For the (1+1)-
ES the offspring population is of size one and an alterna-
tive definition is needed. We store the objective function
values of recent parental candidate solutions and consider
candidate solution y to be “especially unsuccessful” if its
objective function value is inferior to that of its kth-order
ancestor (where the first-order ancestor is the parent, the
second-order ancestor the grandparent, etc.). Specifically,
we use k = 5. That value can empirically be observed to
often result in the probability of a candidate solution be-
ing labelled especially unsuccessful being approximately one
fifth. As the relationship between that probability and k is
monotonic, adaptive schemes for k are easily conceivable if
desired.

It remains to provide an update of the Cholesky factor A
and its inverse that implicitly results in the covariance ma-
trix update in Eq. (6). Such an update can be derived im-
mediately using the following theorem:

Theorem 1. Let C ∈ R
n×n be a symmetric, positive def-

inite matrix with Cholesky factorisation C = AAT, and let

C′ = αC + βvvT

where v ∈ R
n, v 6= 0, α ∈ R

+, and β ∈ R. Letting

w = A−1v, provided that α + β‖w‖2 > 0, matrix C′ can be

written as C′ = A′A′T with

A′ =
√

αA +

√
α

‖w‖2

 
r

1 +
β

α
‖w‖2 − 1

!

AwwT.

Furthermore,

A′−1
=

1√
α

A−1

− 1√
α‖w‖2

 

1− 1
p

1 + β‖w‖2/α

!

wwTA−1

holds in that case.

Proof. For β > 0 the theorem is proven in [11]. The
proof relies on the identity

I + uuT =
“

I + ςuuT
”“

I + ςuuT
”

where I is the n× n identity matrix and ς = (
p

1 + ‖u‖2 −
1)/‖u‖2 for u 6= 0 and ς = 0 otherwise. It is easily verified
(by multiplying out the right hand side) that for 0 < ‖u‖ ≤ 1
the identity

I− uuT =
“

I + ςuuT
”“

I + ςuuT
”

holds, where ς = (
p

1− ‖u‖2−1)/‖u‖2. With this, showing
that Theorem 1 holds for β < 0 is entirely analogous to the
proof of Theorems 1 and 2 in [11]. That the theorem holds
for β = 0 is obvious.

Table 1: Parameter settings.

d = 1 +
n

2
c =

2

n + 2
cP =

1

12
Ptarget =

2

11

c+
cov =

2

n2 + 6
c−cov =

0.4

n1.6 + 1

Thus, from Theorem 1, the covariance matrix update in
Eq. (6) can be accomplished implicitly by letting

a =
p

1 + c−cov (7)

and

b =

p

1 + c−cov
‖z‖2

0

@

s

1− c−cov

1 + c−cov
‖z‖2 − 1

1

A (8)

and using Eqs. (4) and (5) to update the Cholesky factor
and its inverse. The update is admissible only if

1− c−cov
1 + c−cov

‖z‖2 > 0 (9)

as otherwise positive definiteness of the covariance matrix
would be lost. Moreover, iterations where the value on the
left hand side of the inequality is close to zero may result in
unstable behaviour as the covariance matrix would change
rapidly. In order to prevent these problems, in iterations
where long mutation vectors z lead to the left hand side of
the inequality taking on a value of less than 0.5 we cap the
value of c−cov at 1/(2‖z‖2 − 1) when computing the values of
the coefficients in Eqs. (7) and (8).

Altogether, the (1 + 1)-CMA-ES with active covariance
matrix adaptation differs from the algorithm given in Sec-
tion 2 only in that the following step is added:

4. If y is inferior to its fifth-order ancestor, then update A
and Ainv according to Eqs. (4) and (5) with the coeffi-
cients computed according to Eqs. (7) and (8) and c−cov
clamped at 1/(2‖z‖2 − 1) if 1 < c−cov(2‖z‖2 − 1).5

The values of the constants used in the algorithm are sum-
marised in Tab. 1. The settings for d, c, cP , c+

cov, and Ptarget

are identical to the default values in [11]. The setting for
c−cov has been obtained by running experiments on test func-
tions of search space dimensionalities ranging from n = 2 to
n = 40, in each instance choosing a suitable value, and fit-
ting a regression curve through the resulting data points. It
represents a compromise between larger values, which would
allow faster adaptation on some functions, such as the discus
function discussed below, and the desire not to lose perfor-
mance on other functions where active covariance matrix
adaptation is not beneficial and even detrimental with too
large a coefficient, such as the sphere and cigar functions.

4. EXPERIMENTAL EVALUATION
In order to systematically evaluate the benefits of active

covariance matrix adaptation for the (1 + 1)-CMA-ES we
compare it with the corresponding strategy that does not

5Like the update of the search path in Section 2, the up-
date of the Cholesky factors is stalled if the current success
probability estimate Psucc exceeds Pthresh.



Table 2: Test functions.

sphere fsphere(x)=
Pn

i=1
x2

i

ellipsoid fellipsoid(x)=
Pn

i=1
s

i−1

n−1 x2
i

cigar fcigar(x)= x2
1 +

Pn

i=2
sx2

i

discus fdiscus(x)= sx2
1 +

Pn

i=2
x2

i

cigar-discus fcigdis(x)= sx2
1 +

Pn−1

i=2
s

1

2 x2
i + x2

n

two-axes ftwo-axes(x)=
P⌊ϑn⌋

i=1
sx2

i +
Pn

i=⌊ϑn⌋+1
x2

i

diff. powers fdiffpow(x)=
Pn

i=1
|xi|2+10

i−1

n−1

Rosenbrock
fRosen(x)=

Pn−1

i=1

“

100
`

x2
i − xi+1

´2

+ (xi − 1)2
”

use active covariance matrix adaptation. Section 4.1 de-
scribes results observed on a set of well-understood, convex-
quadratic functions that are frequently used to evaluate the
performance of real-valued evolutionary algorithms. Sec-
tion 4.2 considers non-quadratic test functions.

4.1 Convex-Quadratic Functions
The first six of the test functions in Tab. 2 are convex-

quadratic and have been employed previously for example
in [6]. In all cases, the scaling factor s is set to 106, result-
ing in mostly ill-conditioned problems. Notice that while
the functions are separable, this is not a limitation as the
(1+1)-CMA-ES is invariant with regard to rigid transforma-
tions of the coordinate system. Applying random rotations
would result in non-separable functions without affecting the
results.

All runs are initialised with parental candidate solution x
drawn from an n-dimensional standard normal distribution
centred at the origin. The initial global step size σ is set
to 0.1, the covariance matrix is set to the identity matrix,
and the search path is initialised to the zero vector. All runs
are terminated once a candidate solution with an objective
function value of fstop = 10−10 or better has been generated.

The behaviour of CMA-ES on convex-quadratic functions
is comparatively well understood. The optimal covariance
matrix equals (a scalar multiple of) the inverse of the Hes-
sian matrix, which is constant throughout the search space.
Given enough time, CMA-ES learn a covariance matrix close
to the optimal one and then proceed as fast as they would on
the sphere function. With fstop as small as considered here,
it is largely the amount of time required to learn an approx-
imation to the inverse Hessian that determines the number
of time steps required to satisfy the termination condition
for moderate and high dimensional problems.

To compare the performance of the strategy that uses ac-
tive covariance matrix adaptation with the one that does
not, we perform kn runs with each of the algorithms for
every n-dimensional test function. The number of runs kn

ranges from 10,000 for n = 2 down to 100 for n = 40. The
number of time steps required to terminate has a greater
coefficient of variation in lower-dimensional search spaces,
necessitating the larger number of runs. We divide the me-
dian number of function evaluations required in runs of the
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Figure 1: Typical runs of the (1 + 1)-CMA-ES on a
ten-dimensional discus function without (top) and
with (bottom) active covariance matrix adaptation.

strategy employing active covariance matrix adaptation by
the median number of evaluations used by the original strat-
egy that does not use active covariance matrix adaptation
and refer to the result as the median runtime ratio. Me-
dian runtime ratio values of less than 1.0 indicate that ac-
tive covariance matrix adaptation is beneficial, while values
exceeding 1.0 indicate that it slows down the strategy.

Figure 1 illustrates the behaviour of the (1+1)-CMA-ES in
typical runs on the discus function with n = 10. Shown are
the objective function value of the search point, the global
step size σ, and the square roots of the eigenvalues of the co-
variance matrix C (labelled as“axis scales”), multiplied with
104 for clarity. Notice that the latter are included for illus-
trative purposes and would not normally be computed by the
(1 + 1)-CMA-ES as their computation requires Θ(n3) time.
The discus function is characterised by one of the eigenval-
ues of its Hessian matrix being significantly larger than all
of the remaining ones. The optimal covariance matrix thus
has one eigenvalue significantly smaller than the others. The
axis scales in Fig. 1 suggest that a covariance matrix close
to the optimal one is achieved toward the end of the runs as
nine eigenvalues have a similar magnitude while the remain-
ing one is smaller by a factor of about 106 = s. Comparing
the two subfigures, active covariance matrix adaptation al-
lows reducing the magnitude of the single eigenvalue faster
than the passive decay mechanism in the original strategy
does. The speed-up resulting from active covariance matrix
adaptation is almost one third in this case. However, due
to the nature of its eigenvalue spectrum the discus function
is a function for which active covariance matrix adaptation
can be expected to be especially beneficial.



Figure 2 shows the number of time steps required to reach
fstop for all convex-quadratic test functions and search space
dimensionalities ranging from n = 2 (top) to n = 40 (bot-
tom). For each function, the left hand bars represent median
values for the original (1 + 1)-CMA-ES, the right hand bars
those for the strategy using active covariance matrix adapta-
tion. The whiskers mark the 10th and 90th percentiles. The
numbers given in parentheses in the figure are the respective
median runtime ratio values.

For n = 2, active covariance matrix adaptation is benefi-
cial for all of the functions. The median speed-up is 5% for
the sphere function and 13% for all of the other functions
(which are identical for n = 2). However, with increasing
search space dimensionality the picture changes, and dif-
ferent behaviours can be observed for different groups of
functions:

• For the sphere and cigar functions, active covariance
matrix adaptation is either of little benefit for larger
values of n, or it even results in a slight slow-down of
the strategy. However, in the worst case the loss in
performance is only about 3%.

• On ftwo-axes (here with ϑ = 0.5) and on the ellipsoid
function the benefits of active covariance matrix adap-
tation appear to diminish with increasing n. In no
instance do the savings in the median number of steps
exceed 13%, and for ftwo-axes the speed-up turns into
a slight slow-down for n = 40.

• Active covariance matrix adaptation results in signif-
icant benefits across all search space dimensionalities
on fcigdis and, as expected, on fdiscus where a speed-
up by up to 46% can be observed. Experiments in
higher-dimensional search spaces show that on the dis-
cus function the performance gap between the strat-
egy that uses active covariance matrix adaptation and
the one that does not continues to widen. For both
fdiscus and fcigdis, active covariance matrix adaptation
allows rapidly reducing the eigenvalue of the covari-
ance matrix that corresponds to the direction where
large variances are detrimental and lead to unsuccess-
ful candidate solutions.

The behaviour of active covariance matrix adaptation on
ftwo-axes is investigated further in Fig. 3, where the parame-
ter ϑ that determines the percentage of directions that have
a large eigenvalue associated with them is varied. This class
of functions has been considered by Arnold [1] for strategies
relying on isotropically distributed mutation vectors. For
ϑ = 1/n, ftwo-axes is the discus function. As ϑ increases, the
dimensionality of the valley spanned by the eigenvectors as-
sociated with small eigenvalues decreases. For ϑ = (n−1)/n,
ftwo-axes is the cigar function, and at ϑ = 1 the sphere func-
tion is reached. It can be seen that the benefits resulting
from the use of active covariance matrix adaptation decrease
gradually as the dimensionality of the valley spanned by the
eigenvectors associated with small eigenvalues increases.

4.2 Non-Quadratic Functions
The convex-quadratic functions considered thus far are

useful for their uniform characteristics across search space
dimensionalities as well as for being well understood. How-
ever, clearly, they do not capture all aspects of general opti-
misation problems. We consider several non-quadratic test
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Figure 2: Number of time steps without (left) and
with active covariance matrix adaptation (right).



0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0.0 0.2 0.4 0.6 0.8 1.0

m
ed

ia
n
 r

u
n
ti

m
e 

ra
ti

o

parameter ϑ

n=2

n=10

n=40

Figure 3: Median runtime ratios resulting from
the use of active covariance matrix adaptation for
ftwo-axes with varying ϑ.

functions from the set compiled by Moré, Garbow, and Hill-
strom [9] that require continued adaptation of the covariance
matrix throughout the run of the strategy. Those functions
are of the form

f(x) =

m
X

i=1

f2
i (x)

with details gathered in Tab. 3. The first six functions
are low-dimensional; the remaining three are of variable di-
mensionality. The Moré, Garbow, and Hillstrom test set is
most commonly used to evaluate mathematical optimisation
strategies. A complication arises when using them as test
functions for evolutionary algorithms. The starting points
in [9] are chosen such that a gradient based algorithm will
follow the “right” valley to ultimately arrive at the glob-
ally optimal solution. Evolutionary algorithms are more ex-
ploratory in nature and occasionally end up in local minima
different from the global ones.6 Our choice of a subset of the
test functions in [9] was motivated by the wish to exclude
functions where the CMA-ES frequently reaches stationary
points that are not globally optimal. Among the functions
not excluded by that criterion, we have constrained ourselves
to those with an optimal function value of 0.0 in order not to
have to adapt our termination criterion, and we have pre-
ferred functions that have concise representations and do
not depend on further parameters. No attempt has been
made to filter the test set based on the performance of the
optimisation strategies.

In addition to the non-quadratic test functions from [9],
we also consider the different powers function and the gen-
eralised Rosenbrock function from Tab. 1. Both have been
used extensively in performance evaluations of real-valued
evolutionary algorithms. For the generalised Rosenbrock
function, the existence of a local optimum different from
the global one for n ≥ 4 is well documented. As global op-
timisation is beyond the scope of this paper, when a run is
found to converge to that local optimum it is aborted and
repeated. This usually happens in fewer than 50% of runs.
For all of the functions, the initialisation conditions and ter-
mination criterion are the same as in Section 4.1, except that
for the test functions from [9] the initial search point is as

6See http://www.uni-graz.at/imawww/kuntsevich/
solvopt/results/moreset.html for several local optima
that have been identified.

Table 3: Test function details.

Powell badly scaled function: (n = m = 2, xinit = (0, 1))

f1(x) = 104x1x2 − 1

f2(x) = exp(−x1) + exp(−x2)− 1.0001

Brown badly scaled function: (n = 2, m = 3, xinit = (1, 1))

f1(x) = x1 − 106

f2(x) = x2 − 2 · 10−6

f3(x) = x1x2 − 2

Beale function: (n = 2, m = 3, xinit = (1, 1))

f1(x) = 1.5− x1(1− x2)

f2(x) = 2.25− x1(1− x2
2)

f3(x) = 2.625 − x1(1− x3
2)

helical valley function: (n = m = 3, xinit = (−1, 0, 0))

f1(x) =

(

10(x3 − 10 arctan(x2/x1)/(2π)) if x1 > 0

10(x3 − 10 arctan(x2/x1)/(2π)− 5) otherwise

f2(x) = 10((x2
1 + x2

2)
0.5 − 1)

f3(x) = x3

Powell singular function: (n = m = 4, xinit = (3,−1, 0, 1))

f1(x) = x1 + 10x2

f2(x) = 50.5(x3 − x4)

f3(x) = (x2 − 2x3)
2

f4(x) = 100.5(x1 − x4)
2

Wood function: (n = 4, m = 6, xinit = (−3,−1,−3,−1))

f1(x) = 10(x2 − x2
1)

f2(x) = 1− x1

f3(x) = 900.5(x4 − x2
3)

f4(x) = 1− x3

f5(x) = 100.5(x2 + x4 − 2)

f6(x) = 10−0.5(x2 − x4)

variably dimensioned function: (m = n + 2, xinit = (ξj)
where ξj = 1− j/n)

fi(x) = xi − 1 for i = 1, . . . , n

fn+1(x) =

n
X

j=1

j(xj − 1)

fn+2(x) =

 

n
X

j=1

j(xj − 1)

!2

Brown almost-linear func.: (m = n, xinit = (0.5, . . . , 0.5))

fi(x) = xi +

n
X

j=1

xj − n− 1 for i = 1, . . . , n− 1

fn(x) =

 

n
Y

j=1

xj

!

− 1

discrete boundary value function: (m = n, xinit = (ξj)
where ξj = tj(tj − 1), tj = jh, and h = 1/(n + 1))

fi(x) = 2xi − xi−1 − xi+1 + h2(xi + ti + 1)3/2

where x0 = xn+1 = 0
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Figure 4: Number of time steps without (left) and
with active covariance matrix adaptation (right).

indicated in Tab. 3 rather than being drawn from a normal
distribution.

Figure 4 shows the number of function evaluations along
with median runtime ratio values resulting from the use of
active covariance matrix adaptation for the first six of the
test functions from Tab. 3. The format of the graph is the
same as in Fig. 2. The dimensionality of the functions ranges
from n = 2 to n = 4. Median runtime ratio values are be-
tween 9% and 16% and thus in line with the values observed
in Section 4.1 for convex-quadratic functions of similar di-
mensionalities. In all cases active covariance matrix adap-
tation is beneficial.

Figure 5 shows the corresponding results for the remaining
three test functions from [9] as well as for fdiffpow and fRosen

for search spaces dimensionalities ranging from n = 2 to n =
40. Again, the picture is not out of line with the results
observed on convex-quadratic functions in Section 4.1. On
the discrete boundary value function, as on the sphere and
cigar functions, the speed-up resulting from the use of active
covariance matrix is negligible. On the remaining functions,
significant speed-ups that appear to increase with increasing
search space dimensionality and some of which even surpass
those on the discus function can be observed. In no case
does active covariance matrix adaptation result in a loss of
performance.

5. DISCUSSION AND CONCLUSIONS
In this paper we have introduced active covariance matrix

adaptation for the (1+1)-CMA-ES. The algorithm retains all
invariance properties of the original (1+1)-CMA-ES as well
as its ability to avoid computationally expensive matrix de-
compositions. Whether active covariance matrix adaptation
results in a performance advantage depends on the nature of
the objective function. Significant benefits can be observed
on convex-quadratic functions that are characterised by a
small number of eigenvalues of their Hessian matrices that
are significantly larger than the remaining ones. The eigen-
vectors associated with those eigenvalues span a set of direc-
tions in which objective function values vary rapidly. Active
covariance matrix adaptation enables the evolution strategy
to quickly reduce the variance of the mutation vectors in
those directions and can result in a significant speed-up. On
convex-quadratic functions without that characteristic, per-
formance advantages are either much more limited, or a loss
in performance not exceeding 3% can be observed. Experi-
ments on non-quadratic test functions from the set of Moré,
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Figure 5: Number of time steps without (left) and
with active covariance matrix adaptation (right).



Garbow, and Hillstrom have resulted in similar observations,
with speed-up factors ranging from zero for some functions
to savings up to about 50% for others.

Several opportunities may exist for achieving further im-
proved performance of the algorithm. Normalising the es-
pecially unsuccessful vectors in Eq. (6) would eliminate the
problem of long mutation vectors contributing over-propor-
tionally to negative covariance matrix updates due to their
length rather than their direction. A further minor tweak
might be to make the value of c−cov dependent on the number
of its immediate ancestors that it is inferior to.

Considering the objectives of speed, simplicity, and ro-
bustness, the (1+1)-CMA-ES with active covariance matrix
adaptation is not dominated by any evolutionary algorithm.
By extension of the observations in [7], it replaces the origi-
nal (1+1)-CMA-ES as the fastest evolution strategy for uni-
modal optimisation problems. Its simplicity and robustness
result from the ability to proceed without matrix decom-
positions and its invariance properties. There are several
scenarios where the (1 + 1)-CMA-ES with active covariance
matrix adaptation presents itself as a useful candidate opti-
misation algorithm:

• For unimodal and smooth functions, (µ/µ, λ)-CMA-
ES have been observed by Auger et al. [4] to out-
perform an implementation of the BFGS algorithm
for severely ill-conditioned problems, where the lat-
ter strategy suffers from numerical issues. The (1 +
1)-CMA-ES outperforms population-based evolution
strategies in this scenario, and its ability to proceed
without matrix decompositions makes it particularly
useful if the search space dimensionality is high and
objective function evaluations are relatively cheap.

• As evolutionary algorithms make no attempt to com-
pute gradient vectors, they may be useful for non-
smooth optimisation. A systematic comparison with
algorithms for non-smooth optimisation, such as pat-
tern search strategies, remains to be done.

• Severely noisy problems are better optimised using
population based strategies that benefit from using
larger step lengths, resulting in the ability to implicitly
filter the objective function. However, work by Arnold
and Beyer [2] has shown the potential benefits of over-
valuation in elitist strategies, and the (1+1)-CMA-ES
may be an appropriate algorithm for problems with
low levels of noise.

• Very rugged functions with many local optima may re-
semble situations with large amounts of noise present
and are thus usually better solved using population
based algorithms. However, the relatively fast conver-
gence of the (1 + 1)-CMA-ES may put it at an advan-
tage in scenarios where there are relatively few local
optima, due to the ability to perform a greater number
of restarts.

Experimental research for each of these scenarios will be the
subject of future work.

ACKNOWLEDGEMENTS

This research was supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC) and the
Canada Foundation for Innovation (CFI).

6. REFERENCES
[1] D. V. Arnold. On the use of evolution strategies for

optimising certain positive definite quadratic forms. In
Genetic and Evolutionary Computation Conference —

GECCO 2007, pages 634–641. ACM Press, 2007.

[2] D. V. Arnold and H.-G. Beyer. Local performance of
the (1 + 1)-ES in a noisy environment. IEEE

Transactions on Evolutionary Computation,
6(1):30–41, 2002.

[3] A. Auger and N. Hansen. A restart CMA evolution
strategy with increasing population size. In IEEE

Congress on Evolutionary Computation — CEC 2005,
pages 1769–1776. IEEE Press, 2005.

[4] A. Auger, N. Hansen, J. M. Perez Zerpa, R. Ros, and
M. Schoenauer. Experimental comparisons of
derivative free optimization algorithms. In
J. Vahrenhold, editor, Proc. of the 8th International

Symposium on Experimental Algorithms, pages 3–15.
Springer Verlag, 2009.

[5] H.-G. Beyer and H.-P. Schwefel. Evolution strategies
— A comprehensive introduction. Natural Computing,
1(1):3–52, 2002.

[6] N. Hansen and A. Ostermeier. Completely
derandomized self-adaptation in evolution strategies.
Evolutionary Computation, 9(2):159–195, 2001.

[7] C. Igel, T. Suttorp, and N. Hansen. A computational
efficient covariance matrix update and a (1+1)-CMA
for evolution strategies. In Genetic and Evolutionary

Computation Conference — GECCO 2006, pages
453–460. ACM Press, 2006.

[8] G. A. Jastrebski and D. V. Arnold. Improving
evolution strategies through active covariance matrix
adaptation. In IEEE World Congress on

Computational Intelligence — WCCI 2006, pages
9719–9726. IEEE Press, 2006.
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