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PARTIAL COLLAPSING AND THE SPECTRUM OF THE

HODGE-DE RHAM OPERATOR

COLETTE ANNÉ AND JUNYA TAKAHASHI

Abstract. The goal of the present paper is to calculate the limit spectrum of

the Hodge-de Rham operator under the perturbation of collapsing one part of a

manifold obtained by gluing together two manifolds with the same boundary. It

appears to take place in the general problem of blowing-up conical singularities as

introduced in Mazzeo [Maz06] and Rowlett [Row06, Row08].

Résumé. Nous calculons la limite du spectre de l’opérateur de Hodge-de Rham

sur les formes différentielles dans le cas d’éffondrement d’une partie d’une variété

construite par recollement de deux varits bord isomtrique. Ce résultat apporte

un nouvel éclairage aux questions de blowing up conical singularities introduites

par Mazzeo [Maz06] et Rowlett [Row06, Row08].

1. Introduction.

This work takes place in the general context of the spectral studies of singular

perturbations of the metrics, as a manner to know what are the topological or met-

rical meanings carried by the spectrum of geometric operators. We can mention in

this direction, without exhaustivity, studies on the adiabatic limits ([MM90],[Ru00]),

on collapsing ([F87], [Lo02a, Lo02b]), on resolution blowups of conical singularities

([Maz06],[Row06, Row08]) and on shrinking handles ([AC95, ACP09]).

The present study can be concidered as a generalization of the results of [AT09],

where we studied the limit of the spectrum of the Hodge-de Rham (or the Hodge-

Laplace) operator under collapsing of one part of a connected sum.

In our previous work, we restricted the submanifold Σ, used to glue the two parts,

to be a sphere. In fact, this problem is quite related to resolution blowups of conical

singularities: the point is to measure the influence of the topology of the part which

disappears and of the conical singularity created at the limit of the ‘big part’. If

we look at the situation from the ‘small part’, we understand the importance of the

quasi-asymptotically conical space obtained from rescalling the small part and gluing

an infinite cone, see the definition in (1).

Date: September 2, 2011

2000 Mathematics Subject Classification. Primary 58J50; Secondary 35P15, 53C23, 58J32. Key

Words and Phrases. Laplacian, Hodge-de Rham operator, differential forms, eigenvalue, collapsing

of Riemannian manifolds, manifold with conical singularity, Atiyah-Patodi-Singer type boundary

condition.
1
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ε→ 0

Σ

Figure 1. partial collapsing of Mε

When Σ = Sn, the conical singularity is quite simple, and there is no semi-

bounded states, called extended solutions in the sequel, on the quasi-asymptotically

conical space, our result presented here takes care of this new possibilities and

gives a general answer to the problem studied by Mazzeo and Rowlett. Indeed, in

[Maz06, Row06, Row08], it is suppposed that the spectrum of the operator on the

quasi-asymptotically conical space does not meat 0. Our study relax this hypothesis.

It is done only with the Hodge-de Rham operator, but can easily be generalized.

Let us fix some notations.

1.1. Set up. Let M1 and M2 be two connected manifolds with the same boundary

Σ, a compact manifold of dimension n ≥ 2. We denote by m = n+1 the dimension

of M1 and M2.

We endow Σ with a fixed metric h.

Let M 1 be the manifold with conical singularity obtained from M1 by gluing M1

to a cone C = [0, 1) × Σ ∋ (r, y): there exists on M 1 = M1 ∪ C a metric ḡ1 which

writes, on the smooth part r > 0 of the cone, as dr2 + r2h.

We choose on M2 a metric g2 which is ‘trumpet like’, i.e. M2 is isomorphic near

the boundary to [0, 1/2)×Σ with the conical metric which writes ds2 + (1− s)2h, if

s is the coordinate defining the boundary by s = 0.

For any ε, 0 < ε < 1, we define

Cε = {(r, y) ∈ C | r > ε} and M1(ε) =M1 ∪ Cε.
The goal of the following calculus is to determine the limit spectrum of the Hodge-de

Rham operator (d+d∗)2 acting on the differential forms of the Riemannian manifold

Mε =M1(ε) ∪ε.Σ ε.M2

obtained by gluing together (M1(ε), g1) and (M2, ε
2g2).We remark that, by construc-

tion, these two manifolds have isometric boundary and that the metric gε obtained

on Mε is smooth.

Remark 1. The common boundary Σ of dimension n has some topological obstruc-

tions. In fact, since Σ is the boundary of oriented compact manifold M1, Σ is

oriented cobordant to zero. So, by Thom’s cobordism theory, all the Stiefel-Whitney
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and all the Pontrjagin numbers vanish (cf. C. T. C. Wall [Wa60] or [MS74], §18,
p.217). Futhermore, this condition is also sufficient, that is, the inverse does hold.

Especially, it is impossible to take Σ4k as the complex projective spaces CP2k, (k ≥ 1),

because the Pontrjagin number pk(CP
2k) 6= 0.

1.2. Results. We can describe the limit spectrum as follows: it has two parts. One

comes from the big part, namely M̄1, and is exprimed by the spectrum of a good

extension of the Hodge-de Rham operator on this manifold with conical singularities.

This extension is self-adjoint and comes from an extension of the Gauß-Bonnet

operators d + d∗. All these extensions are classified by subspaces W of the total

eigenspace corresponding to eigenvalues within (−1/2, 1/2) of an operator A acting

on the boundary Σ, this point is developed below in Section 2.2. The other part

comes from the collapsing part, namely M2, where the limit Gauß-Bonnet operator

is taken with boundary conditions of the Atiyah-Patodi-Singer type. This point is

developed below in Section 2.3. This operator, denoted D2 in the sequel, can also

be seen on the quasi-asymptotically conical space M̃2 already mentionned, namely

M̃2 =M2 ∪
(
[1,∞)× Σ

)
. (1)

with the metric dr2+ r2h on the conical part. Only the eigenvalue zero is concerned

with this part. In fact, the manifoldsMε has small eigenvalues, in the difference with

[AT09], and the multiplicity of 0 at the limit corresponds to the total eigenspace

of these small, or null eigenvalues. Thus, our main theorem, which asserts the

convergence of the spectrum, has two components.

Theorem A. If the limit value λ 6= 0, then it belongs to the positive spectrum of

the Hodge-de Rham operator ∆1,W on M1, with

W =
⊕

|γ|< 1
2

Ker(A− γ).

Theorem B. The multiplicity of 0 in the limit spectrum is given by the sum

dimKer∆1,W + dimKerD2 + i1/2,

where i1/2 denotes the dimension of the vector space I1/2, see (4), of extented so-

lutions ω on M̃2 introduced by Carron [C01a], admitting on restriction to r = 1 a

non-trivial component in Ker(A− 1
2
).

1.3. Comments. We choose a simple metric to make explicits computations. This

fact is not a restriction, as already explained in [AT09], because of the result of Dodz-

iuk [D82] which assures uniform control of the eigenvalues of geometric operators

with regard to variations of the metric.

Examples are given in the last section of the present paper.

2. Gauß-Bonnet operator.

On a Riemannian manifold, the Gauß-Bonnet operator is defined as the operator

D = d + d∗ acting on differential forms. It is symmetric and can have few closed
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extensions on manifolds with boundary or with conical singularities. We review

these extensions in the cases involved in our study.

2.1. Gauß-Bonnet operator on Mε. We recall that, on Mε, a Gauß-Bonnet op-

erator Dε, Sobolev spaces and also a Hodge-de Rham operator ∆ε can be defined

as a general construction on any manifold X = X1 ∪X2, which is the union of two

Riemannian manifolds with isometric boundaries (the details are given in [AC95]):

if D1 and D2 are the Gauß-Bonnet “d+d∗” operators acting on the differential forms

of each part, the quadratric form

q(ϕ) =

∫

X1

|D1(ϕ↾X1)|2 dµX1 +

∫

X2

|D2(ϕ↾X2)|2 dµX2

is well-defined and closed on the domain

D(q) = {ϕ = (ϕ1, ϕ2) ∈ H1(ΛT ∗X1)×H1(ΛT ∗X2), |ϕ1 ↾∂X1

L2= ϕ2 ↾∂X2}
and on this space the total Gauß-Bonnet operator D(ϕ) = (D1(ϕ1), D2(ϕ2)) is

defined and self-adjoint. For this definition, we have, in particular, to identify

(ΛT ∗X1) ↾∂X1 and (ΛT ∗X2) ↾∂X2 . This can be done by decomposing the forms

in tangential and normal part (with inner normal), the equality above means then

that the tangential parts are equal and the normal part opposite. This definition

generalizes the definition in the smooth case.

The Hodge-de Rham operator (d + d∗)2 of X is then defined as the operator

obtained by the polarization of the quadratic form q. This gives compatibility

conditions between ϕ1 and ϕ2 on the commun boundary. We do not give details on

these facts, because our manifold is smooth. But we shall use this presentation for

the quadratic form.

2.2. Gauß-Bonnet operator onM1. LetD1,min be the closure of the Gauß-Bonnet

operator defined on the smooth forms with compact support in the smooth part

M1(0). On the cone, we write any such form ϕ1 of degree p as:

ϕ1 = dr ∧ r−(n/2−p+1)β1,ε + r−(n/2−p)α1,ε

and define σ1 = (β1, α1) = U(ϕ1). The operator has, on the cone C, the expression

UD1U
∗ =

(
0 1

−1 0

)(
∂r +

1

r
A
)

with A =



n

2
− P −D0

−D0 P − n

2


 ,

where P is the operator of degree which multiplies by p per a p-form, and D0 is the

Gauß-Bonnet operator on the manifold (Σ, h).

While the Hodge-de Rham operator has, in these coordinates, the expression

U∆1U
∗ = −∂2r +

1

r2
A(A+ 1). (2)

The closed extensions of the operator D1 = d + d∗ on the manifold with conical

singularities M 1 has been studied in [BS88] and [Le97]. They are classified by the

spectrum of its Mellin symbol, which is here the operator with parameter A+ z.
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Spectrum of A. — The spectrum of A was calculated in Brüning and Seeley [BS88],

p.703. By their result, the spectrum of A is given by the values




±(p− n
2
) with multiplicity dimHp(Σ) and

±1
2
±
√
µ2 +

(
n−1
2

− p
)2
,

(3)

where p is any integer, 0 ≤ p ≤ n and µ2 runs over the spectrum of the Hodge-de

Rham operator on (Σ, h) acting on the coexact p-forms.

Indeed, looking at the Gauß-Bonnet operator acting on even forms, they identify

even forms on the cone with the sections (ϕ0, . . . , ϕn) of the total bundle T ∗(Σ) by

ϕ0+ϕ1 ∧ dr+ϕ2+ϕ3 ∧ dr+ . . . . These sections can as well represent odd forms on

the cone by ϕ0 ∧ dr+ ϕ1 + ϕ2 ∧ dr+ ϕ3 + . . . . With these identifications, they have

to study the spectrum of the following operator acting on sections of ΛT ∗(Σ)

S0 =




c0 d∗0 0 · · · 0

d0 c1 d∗0
. . .

...

0 d0
. . .

. . . 0
...

. . .
. . . cn−1 d∗0

0 · · · 0 d0 cn



,

if cp = (−1)p+1(p− n
2
).With the same identification, if we introduce the operator S̃0

having the same formula but with on the diagonal the terms c̃p = (−1)p(p−n
2
) = −cp,

the operator A can be written as

A = −
(
S0 ⊕ S̃0

)
.

The expression of the spectrum of A is then a direct consequence of the computations

of [BS88].

Closed extensions of D1. — If spec(A) ∩ (−1
2
, 1
2
) = ∅, then D1,max = D1,min. In

particular, D1 is essentially self-adjoint on the space of smooth forms with compact

support away from the conical singularities.

Otherwise, the quotient Dom(D1,max)/Dom(D1,min) is isomorphic to

B :=
⊕

|γ|< 1
2

Ker(A− γ).

More precisely, by Lemma 3.2 of [BS88], there is a surjective linear map

L : Dom(D1,max) → B

with KerL = Dom(D1,min). Furthermore, we have the estimate

‖u(t)− t−AL(ϕ)‖2L2(Σ) ≤ C(ϕ) |t log t|
for ϕ ∈ Dom(D1,max) and u = U(ϕ).

Now, for any subspace W ⊂ B, we can associate the operator D1,W with the

domain Dom(D1,W ) := L−1(W ). As a result of [BS88], all closed extensions of D1,min

are obtained by this way. Remark that each D1,W defines a self-adjoint extension
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∆1,W = (D1,W )∗ ◦D1,W of the Hodge-de Rham operator, and, as a result, we have

(D1,W )∗ = D1,I(W⊥), where

I =

(
0 id

− id 0

)
, i.e. I(β, α) = (α,−β).

This extension is associated to the quadratic form ϕ 7→ ‖Dϕ‖2L2 with the domain

Dom(D1,W ).

Finally, we recall the results of Lesch [Le97]. The operatorsD1,W , and in particular

D1,min and D1,max, are elliptic and satisfy the singular estimate (SE), see page 54

of [Le97], so by Proposition 1.4.6 and the compacity of M1 they satisfy the Rellich

property: the inclusion of Dom(D1,W ) into L2(M 1) is compact.

2.3. Gauß-Bonnet operator on M2. We know, by the works of Carron [C01a,

C01b], following Attiyah-Patodi-Singer [APS75], that the operator D2 admits a

closed extension D2 with the domain defined by the global boundary condition

Π≤1/2 ◦ U = 0,

if ΠI is the spectral projector of A relative to the interval I, and ≤ 1/2 denotes

the interval (−∞, 1/2]. Moreover, this extension is elliptic in the sense that the H1-

norm of elements of the domain is controlled by the norm of the graph. Indeed this

boundary condition is related to a problem on a complete unbounded manifold as

follows:

Let M̃2 denote the large manifold obtained from M2 by gluing a conical cylinder

C1,∞ = [1,∞) × Σ with metric dr2 + r2h and D̃2 its Gauß-Bonnet operator. A

differential form on M2 admits a harmonic L2 extension on M̃2 precisely, when the

restriction on the boundary satisfies Π≤1/2 ◦ U = 0.

Indeed, from the harmonicity, these L2-forms must satisfy (∂r+
1
r
A)σ = 0 or, if we

decompose the form associated with the eigenspaces of A as σ =
∑

γ∈Spec(A) σ
γ , then

the equation imposes that for all γ ∈ Spec(A) there exists σγ
0 ∈ Ker(A − γ) such

that σγ = r−γσγ
0 . This expression is in L2(C1,∞) if and only if γ > 1/2 or σγ

0 = 0.

It will be convenient to introduce the hamonic L2 extension operator

P2 : Π> 1
2

(
H1/2(Σ)

)
→ L2(ΛT ∗C1,∞)

σ =
∑

γ∈Spec(A)

γ> 1
2

σγ 7→ P2(σ) = U∗
( ∑

γ∈Spec(A)

γ> 1
2

r−γσγ

)
.

This limit problem is of the category non-parabolic at infinity in the terminology of

Carron, see particularly Theorem 2.2 of [C01a] and Proposition 5.1 of [C01b], then

as a consequence of Theorem 0.4 of [C01a], we know that the kernel of D2 is of finite

dimension and that the graph norm of the operator controls the H1-norm (Theorem

2.1 of [C01a]).

Proposition 2. There exists a constant C > 0 such that for each differential form

ϕ ∈ H1(ΛT ∗M2) satisfying the boundary condition Π≤1/2 ◦ U(ϕ) = 0, then

‖ϕ‖2H1(M2)
≤ C

{
‖ϕ‖2L2(M2)

+ ‖D2ϕ‖2L2(M2)

}
.
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As a consequence, the kernel of D2, which is isomorphic to Ker D̃2, is of finite

dimension and can be sent in the total space
∑

pH
p(M2) of the absolute cohomology.

A proof of this proposition can be obtain by the same way as Proposition 5 in

[AT09].

Recall that Carron defined, for this type of operators, behind the L2 solutions of

D̃2(ϕ) = 0 which corresponds to the solutions of the elliptic operator of Proposition

2, extended solutions which are included in the bigger space W which is defined as

the closure of the space of smooth p-forms with compact support Ωp
0(M̃2) for the

norm

‖ϕ‖2W := ‖ϕ‖2L2(M2)
+ ‖D2ϕ‖2L2(M̃2)

.

A Hardy-type inequality describes the growth at infinity of an extended solution.

Lemma 3. For a function v ∈ C∞
0 (e,∞) and a real number λ, we have

• if λ 6= −1

2
, (λ+

1

2
)2
∫ ∞

e

v2

r2
dr ≤

∫ ∞

e

1

r2λ
∣∣∂r(rλv)

∣∣2 dr,

• if λ = −1

2
,

∫ ∞

e

v2

|r log r|2 dr ≤ 4

∫ ∞

e

r|∂r(r−1/2v)|2 dr.

We remark now that, for ϕ ∈ Ωp
0(M̃2) with support in the infinite cone Ce,∞, we

can write

‖D2ϕ‖2L2(M̃2)
=

∑

λ∈Spec(A)

∫ ∞

e

∥∥(∂r +
λ

r
)σλ
∥∥2
L2(Σ)

dr

=
∑

λ∈Spec(A)

∫ ∞

e

1

r2λ

∥∥∂r(rλσλ)
∥∥2
L2(Σ)

dr.

Thus, by application of Lemma 3, we see that a solution of D̃2, which must be

σλ(r) = r−λσλ(1) on the infinite cone, satisfies the condition of Lemma 3 for

λ = −1/2: if v = r1/2v0 for r large then the integral

∫
v2

|r log r|2 log(log r) dr is

convergent, and if we require that
1

r
ϕ is in L2 then for any λ < −1

2

σλ(1) = 0,

while the L2 solutions correspond to the condition σλ(1) = 0 for any λ ≤ 1
2
. As a

consequence, the extended solutions which are not L2 correspond to boundary terms

with conponents in the total eigenspace related with eigenvalues of A in the interval

[−1/2, 1/2]. In the case studied in [AT09], there was not such eigenvalues and we

had not to take care of extended solutions.

To be more precise, we must introduce the operator (see 2.a in [C01b])

T : Hk+1/2(Σ) → Hk−1/2(Σ)

σ 7→ D2(E(σ))↾Σ,
where E(σ) is the solution of the Poisson problem

(D2)
2(E(σ)) = 0 on M2 and E(σ)↾Σ= σ on ∂M2.
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Carron proved that this operator is continuous for k ≥ 0. The L2 solutions cor-

respond to boundary values in Ker(T ) ∩ Im(Π>1/2), while extended solutions corre-

spond to the space Ker(T ) ∩ Im(Π≥−1/2). Let us denote by

I1/2 :=
(
Ker(T ) ∩ Im(Π≥1/2)

)/(
Ker(T ) ∩ Im(Π>1/2)

)
(4)

the subspace of extented solutions with non-trivial component on Ker(A− 1/2).

Proof of Lemma 3. Let v ∈ C∞
0 ((e,∞)), with one integration by part and application

of Cauchy-Schwarz inequality we obtain, for λ 6= −1/2

∫
v2

r2
=

∫
1

r2λ+2
(rλv)2dr =

∫ ( −1

(2λ+ 1)r2λ+1

)′
(rλv)2dr

=

∫ ( 1

(2λ+ 1)r2λ+1

)
2(rλv)∂r(r

λv)dr =

∫
2

(2λ+ 1)

v

r

(
r−λ∂r(r

λv
)
dr

≤ 2

|2λ+ 1|

√∫
v2

r2

√∫ (
r−λ∂r(rλv

)2
dr

which gives directly the first result of the lemma.

The second one is obtained in the same way:
∫

v2

r2 log2 r
dr =

∫ ( v√
r

)2 1

r log2 r
dr =

∫ ( v√
r

)2
(
−1

log r
)′dr

=

∫
1

log r

2v√
r
∂r(

v√
r
)dr =

∫
2v

r log r

(√
r∂r(

v√
r
)
)
dr

≤ 2

√∫
v2

r2 log2 r
dr

√∫ (√
r∂r(

v√
r
)
)2
dr

�

3. A priori estimates.

A good method to evaluate what the limit problem should be is to suppose a

priori that we have a normalized family ϕε of eigenforms on Mε of degree p for the

Hodge-de Rham operator:

∆εϕε = λεϕε with lim
ε→0

λε = λ < +∞

and to try to obtain all the consequences for the limit. Of course, for the moment

we are not sure that this family exists but the min-max techniques will assure this,

and it will be the subject of the next section.

3.1. Notations. As in [ACP09], we use the following change of variables : with

ϕ1,ε := ϕε ↾M1(ε) and ϕ2,ε := εm/2−pϕε ↾M2(1) .

We write on the cone

ϕ1,ε = dr ∧ r−(n/2−p+1)β1,ε + r−(n/2−p)α1,ε

and define σ1 = (β1, α1) = U(ϕ1).
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On the other part, it is more convenient to define r = 1 − s for s ∈ [0, 1/2] and

write ϕ2,ε = (dr ∧ r−(n/2−p+1)β2,ε + r−(n/2−p)α2,ε) near the boundary. Then we can

define, for r ∈ [1/2, 1] (the boundary of M2(1) corresponds to r = 1)

σ2(r) = (β2(r), α2(r)) = U(ϕ2)(r).

The L2-norm, for a form supported on M1 in the cone Cε,1, has the expression

‖ϕ‖2L2(Mε)
=

∫

M1

|σ1|2dµg1 +

∫

M2

|ϕ2|2dµg2

and the quadratic form on our study is

q(ϕ) =

∫

Mε

|(d+ d∗)ϕ|2gε dµgε

=

∫

M1(ε)

|UD1U
∗(σ1)|2 dµg1 +

1

ε2

∫

M2(1)

|D2(ϕ2)|2 dµg2.

(5)

The compatibility condition is, for the quadratic form, ε1/2α1(ε) = α2(1) and

ε1/2β1(ε) = β2(1) or

σ2(1) = ε1/2σ1(ε). (6)

The compatibility condition for the Hodge-de Rham operator, of first order, is ob-

tained by expressing that Dϕ ∼ (UD1U
∗σ1,

1
ε
UD2U

∗σ2) belongs to the domain of

D. In terms of σ, it gives

σ′
2(1) = ε3/2σ′

1(ε). (7)

To understand the limit problem, we proceed to several estimates.

3.2. On the regular part of M1. Let ξ1 be a cut-off function on M1 around the

conical singularity:

ξ1(r) =

{
1 if 0 ≤ r ≤ 1/2,

0 if 1 ≤ r.
(8)

Lemma 4. For our given family ϕε satisfying ∆ϕε = λεϕε with λε bounded, the

family {(1− ξ1).ϕ1,ε}ε>0 is bounded in H1(M1).

Then it remains to study ξ1.ϕ1,ε which can be expressed with the polar coordinates.

We remark that the quadratic form of these forms is uniformly bounded.

• Expression of the quadratic form. For any ϕ such that the componant ϕ1 is

supported in the cone C1,ε, one has, with σ1 = U(ϕ1) and by the same calculus as

in [ACP09] :

∫

Cε,1
|D1ϕ|2 dµgε =

∫ 1

ε

∥∥∥∥
(
∂r +

1

r
A
)
σ1

∥∥∥∥
2

L2(Σ)

dr

=

∫ 1

ε

[
‖σ′

1‖2L2(Σ) +
2

r

(
σ′
1, Aσ1

)
L2(Σ)

+
1

r2
‖Aσ1‖2L2(Σ)

]
dr.
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3.3. Estimates of the boundary term. The expression above can be decomposed

with respect to the eigenspaces of A; in the following calculus, we suppose that

σ1(1) = 0:
∫ 1

ε

[
‖σ′

1‖2L2(Σ) +
2

r
(σ′

1, Aσ1)L2(Σ) +
1

r2
‖Aσ1‖2L2(Σ)

]
dr

=

∫ 1

ε

[
‖σ′

1‖2L2(Σ) + ∂r

(1
r
(σ1, Aσ1)L2(Σ)

)
+

1

r2

{
(σ1, Aσr)L2(Σ) + ‖Aσ1‖2L2(Σ)

}]
dr

=

∫ 1

ε

[
‖σ′

1‖2L2(Σ) +
1

r2
(σ1, (A+ A2)σ1)L2(Σ)

]
dr − 1

ε
(σ1(ε), Aσ1(ε))L2(Σ).

This shows that the quadratic form controls the boundary term, if the operator A is

negative but (A+A2) is non-negative. This last condition is satisfied exactly on the

orthogonal complement of the spectral space corresponding to the interval (−1, 0).

By applying ξ1.ϕ1,ε to this fact, we obtain the following lemma:

Lemma 5. Let Π≤−1 be the spectral projection of the operator A relative to the

interval (−∞,−1]. There exists a constant C > 0 such that, for any ε > 0

‖Π≤−1 ◦ U(ϕ1,ε(ε))‖H1/2(Σ) ≤ C
√
ε.

In view of Proposition 2, we want also a control of the components of σ1 along

the eigenvalues of A in (−1, 1/2]. The number of these components are finite and

we can work term by term. So we write, on Cε,1,

σ1(r) =
∑

γ∈Spec(A)

σ1
γ(r) with Aσ1

γ(r) = γσ1
γ(r)

and we suppose again σ1(1) = 0. From the equation (∂r + A/r)σγ
1 = r−γ∂r(r

γσγ
1 )

and the Cauchy-Schwarz inequality, it follows that

‖εγσγ
1 (ε)‖2L2(Σ) =

{∫ 1

ε

‖∂r(rγσγ
1 )‖L2(Σ) dr

}2

≤
{∫ 1

ε

∥∥∥rγ · (∂r +
1

r
A)σγ

1 (r)
∥∥∥
L2(Σ)

dr

}2

≤
∫ 1

ε

r2γdr ·
∫ 1

ε

∥∥∥∂r(σγ
1 ) +

γ

r
(σγ

1 )
∥∥∥
2

L2(Σ)
dr.

Thus, if the quadratic form is bounded, there exists a constant C > 0 such that

‖σγ
1 (ε)‖2L2(Σ) ≤




Cε−2γ 1− ε2γ+1

2γ + 1
if γ 6= −1

2

Cε| log ε| if γ = −1
2
.

(9)

This gives

Lemma 6. Let ΠI be the spectral projector of the operator A relative to the interval

I. There exist constants α,C > 0 such that, for any ε > 0

‖Π(−1,0) ◦ U(ϕ1,ε(ε))‖H1/2(Σ) ≤ Cεα.
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If 0 < α < 1/2, then (−α) is bigger than any negative eigenvalue of A. The

estimate above gives also

Lemma 7. With the same notation, there exist constants β, C > 0 such that, for

any ε > 0

‖Π[0,1/2) ◦ U(ϕ2,ε(1))‖H1/2(Σ) ≤ Cεβ.

Here, (1/2 − β) is the biggest non-negative eigenvalue of A strictly smaller than

1/2 (if there is no such eigenvalue, we put β = 1/2).

Finally, we study σ
1/2
1 for our family of forms (the parameter ε is omited in the

notation). It satisfies, for ε < r < 1/2, the equation

(
− ∂2r +

3

4r2

)
σ
1/2
1 = λεσ

1/2
1 .

The solutions of this equation have expression in term of the Bessel functions: there

exist entire functions F, G with F (0) = G(0) = 1 and differential forms in Ker(A−
1/2) cε, dε such that

σ
1/2
1 (r) = cεr

3/2F (λεr
2) + dε

(
r−1/2G(λεr

2) +
2

π
log(r)r3/2F (λεr

2)
)
. (10)

The fact that the L2-norm is bounded gives that c2ε+| log ε|d2ε is bounded and finally,

reporting this estimate in the expression above, that

‖σ1/2
1 (ε)‖H1/2(Σ) = O

( 1

ε| log ε|
)
.

This gives on the other part

Lemma 8. There exists a constant C > 0 such that, for any ε > 0

‖Π{1/2} ◦ U(ϕ2,ε)(1)‖H1/2(Σ) ≤ C
1√

| log ε|
.

4. Proof of the spectral convergence.

The previous estimates show that Π≤1/2 ◦U(ϕ2,ε)(1) goes to zero with ε and that

the limit would satisfy the good APS-boundary conditions ; on the other hand,

there is no restriction for the boundary term of U(ϕ1,ε)(ε) and finally the control on

Π{1/2} ◦ U(ϕ2,ε)(1) does not permit to admit that this term will disappear.

It suggests that we have to introduce for the limit problem, as the Hilbert space

H∞ := L2(M 1)⊕Ker D̃2 ⊕ I1/2 (11)

with the space I1/2 defined in (4), and as limit operator ∆1,W ⊕ 0 ⊕ 0 with W

defined in Theorem A. Let us denote by λN (N ≥ 1) its spectrum and also let us

λN(ε) (N ≥ 1) be the total spectrum of the Hodge-de Rham operator on Mε.
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4.1. Upper bound : lim sup λN(ε) ≤ λN . With the min-max formula, which says

that

λN(ε) = inf
E⊂dom(Dε)

dimE=N

{
sup
ϕ∈E

‖ϕ‖=1

∫

Mε

|Dεϕ|2 dµgε

}
,

we have to describe how transplanting eigenforms of the limit problem on Mε.

We describe this transplantation term by term. For the first term, we use the

same ideas as in [ACP09].

Any eigenform ϕ of ∆1,W can be written, as any element of dom(D1,max),

ϕ = ϕ0 + ϕ̄,

ϕ0 ∈ dom(D1,min) and U(ϕ̄) =





0 for r ≥ 1,∑

γ∈(− 1
2
, 1
2
)∩Spec(A)

dγr
−γσγ for r ≤ 1

2

with σγ ∈ Ker(A− γ) and dγ ∈ R. (This fact is a consequence of the expression of

the Bessel functions, it is the same calculus as in (19).) By the definition of D1,min,

ϕ0 can be approached, with the operator norm, by a sequence of smooth forms with

compact support in M1(0). On the other hand, ϕ̄ is a finite sum, it is sufficient to

prolongate each r−γσγ on M2, the good candidate is

ψγ = U∗(χ.ε1/2−γr−γσγ)

for χ a cut-off function supported on (1/2, 3/2) and equal to 1 on a neighbourhood

of 1 (for instance, χ = 1− ξ1).

Indeed we have

‖ψγ‖L2(M2) + ‖D2(ψγ)‖L2(M2) = O(ε1/2−γ).

For the two last ones, we shrink the infinite cone onM1 and cut with the function

ξ1, already defined in (8).

Let us define

Pε : Π> 1
2

(
H1/2(Σ)

)
→ H1(Cε,1) (12)

σ =
∑

γ∈Spec(A)

γ> 1
2

σγ 7→ Pε(σ) = U∗
( ∑

γ∈Spec(A)

γ> 1
2

εγ−1/2r−γσγ

)
.

We remark that Pε(σ) is the transplanted onM1 of P2(σ) then there exists a constant

C > 0 such that

‖P2(σ)‖2L2(C1,1/ε) = ‖Pε(σ)‖2L2(Cε,1) ≤ C
∑

‖σγ‖2L2(Σ) = C‖Π> 1
2
σ2(1)‖2L2(Σ) (13)

and also that, if ψ2 ∈ Dom(D2), then
(
ξ1Pε(U(ψ2 ↾Σ)), ψ2

)
defines an element of

H1(Mε).

Finally, if Ker(A − 1/2) is not empty, for each σ̄1/2 ∈ Ker(A − 1/2) such that

there exists ψ2 with D2(ψ2) = 0 on M2 and boundary value σ̄1/2 modulo ImΠ>1/2,

one can construct a pseudomode as follows:

ψε := | log ε|−1/2
(
ξ1.
(
r−1/2U∗(σ̄1/2) + Pε(U(ψ2 ↾Σ −σ̄1/2)

)
, ψ2

)
(14)
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The L2 norm of this element is bounded from above and below, and

lim
ε→0

‖ψε‖L2(Mε) = ‖σ̄1/2‖L2(Σ).

Moreover, it satisfies q(ψε) = O(| log ε|−1) giving then a ‘small eigenvalue’, as

well as the elements of kerD2 and of Ker∆W . [nb. It is remarkable that the

same construction, for an extended solution with corresponding boundary value in

Ker(A − γ), γ ∈ (−1/2, 1/2) does not give a quasimode: indeed if ψ2 is such a

solution, the transplanted element will be,

ψε =
(
ξ1.
(
r−γU∗(σ̄γ) + ε(1/2−γ)Pε(U(ψ2 ↾Σ)− σ̄γ)

)
, ε(1/2−γ)ψ2

)

for which q(ψε) does not converge to 0 as ε.]

To conclude the estimate of upper bound, we have only to verify that this trans-

planted forms have a Rayleigh-Ritz quotient comparable to the initial one and that

the orthogonality is fast concerved by transplantation.

4.2. Lower bound : lim inf λN(ε) ≥ λN . We first proceed for one indice. We

know, by the paragraph 4.1, that for each N, the family {λN(ε)}ε>0 is bounded, set

λ := lim inf
ε→0

λN (ε).

There exists a sequence εm, m ∈ N such that lim
m→∞

λN(εm) = λ. We shall apply the

previous calculus to this family.

4.2.1. On the side of M2. Let χ be a cut-off function such that

χ(r) :=

{
0 if r ≤ 3

4
,

1 if 7
8
≤ r < 1

and σ2,εm = U(ϕ2,εm). We construct the family

ψ2,εm := ϕ2,εm − U∗
(
Π≤ 1

2
(χσ2,εm)

)
,

which belongs to the domain of D2, and then, by the ellipticity of this operator

Claim 1. The family ψ2,εm is bounded in H1(M2), and as a consequence Π> 1
2
σ2(1)

is bounded in H1/2(Σ).

Moreover, its proximity with ϕ2,εm is controled:

Claim 2. They satisfy

(1) lim
εm→0

‖ψ2,εm − ϕ2,εm‖L2 = 0,

(2) ‖D2(ψ2,εm − ϕ2,εm)‖L2(M2) = O(
√
εm). (15)

Indeed

‖ψ2,εm − ϕ2,εm‖2 ≤
∫ 1

3
4

‖Π≤ 1
2
σ2(r)‖2L2 dr

=

∫ 1

3
4

{
‖Π≤−1σ2(r)‖2L2(Σ) + ‖Π(−1, 1

2
]σ2(r)‖2L2(Σ)

}
dr.

(16)
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The first term is controled as follows: because of the expression (5) of the quadratic

form, we know that
∫

Cεm,1

‖(∂r +
A

r
)Π≤−1σ1‖2L2(Σ) dr +

1

εm2

∫ 1

R

‖(∂r +
A

r
)Π≤−1σ2‖2L2(Σ) dr

is bounded, independently on R ≥ 3/4. Then, let Λ be a bound. Developping and

making an integration by parts gives, for any κ2
∫ 1

R

‖(∂r +
A

r
)κ2‖2 dr =

∫ 1

R

[
‖κ′2‖2 +

1

r2
〈κ2, (A+ A2)κ2〉

]
dr

+
(
κ2(1), Aκ2(1)

)
L2(Σ)

−
(
κ2(R), Aκ2(R)

)
L2(Σ)

.

(17)

We can make the same calculus on the cone Cεm,1 so the boundary term at R = 1

is absorbed. If we apply this control to κ2 = Π≤−1σ2 for which A(A+ 1) and (−A)
are non negative we obtain that

∫ 1

R

‖Π≤−1σ
′
2(t)‖2L2(Σ) dt+ ‖Π≤−1σ

′
2(R)‖2L2(Σ) = O(εm

2).

The second term in (16) is in fact the sum of few terms, we can control each of them

as follows: let γ be an eigenvalue of A contained in the interval (−1, 1
2
] and σ2

γ the

component of σ2 along this eigenspace. We know that
∫ 1

R
‖r−γ∂r(r

γσ2
γ)‖2L2(Σ) dr =

O(εm
2).

‖Rγσ2
γ(R)‖2L2(Σ) = −2

∫ 1

R

(∂r(r
γσ2

γ(t)), rγσ2
γ(t))L2(Σ) dt+ ‖σ2γ(1)‖2L2(Σ). (18)

But, as a consequence of Lemmas 5, 6 and 7, we have ‖σ2γ(1)‖2L2(Σ) = O(| log εm|−1),

on the other hand, by the Cauchy-Schwarz inequality, the fact that the L2-norm of

ϕεm is 1 and the fact just recalled we have

‖σ2γ(R)‖2L2(Σ) = O(1/| log(εm)|).

For the second part of the assertion, notice that

D2(ϕ2,εm − ψ2,εm) = D2U
∗
(
Π≤ 1

2
(χσ2,εm)

)

= χ′ · U∗Π≤ 1
2
(σ2,εm) + χ ·D2U

∗Π≤ 1
2
(σ2,εm)

and the norm of the first term is controled by
∫ 1

3/4
‖Π≤ 1

2
σ2(r)‖2L2(Σ)dr, which is

O(1/| log(εm)|) by the previous estimate, and the norm of the second term, by

‖D2ϕ2‖ which is O(εm), because qεm(ϕεm) is uniformly bounded (remark that D2

preserves the orthogonal decomposition following Π≤ 1
2
and Π> 1

2
on the cone).

Proposition 9. There exists a subfamily of the family {ϕ2,εm}m which converges,

as m→ ∞ to a bounded form ϕ2 on M2 which satisfies

ϕ2 ∈ domD2, ‖ϕ2‖ ≤ 1 and D2(ϕ2) = 0.
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Proof. Indeed, we know by Claim 1 that we can extract from the family ψ2,εm a

subfamily which converge in L2-norm and weakly in H1(M2), denote ϕ2 the limit.

We know by Claim 2 that the corresponding subfamily of ϕ2,εm has the same limit

and also that limm→∞ ‖D2ψ2,εm‖ = 0, because this is true for ϕ2,εm, the conclusion

follows. �

4.2.2. On the side of M1. We first recall the better prolongation of Π> 1
2
σ2(1) on

M1(εm) given by Pε in (12) so that if ψ2 ∈ DomD2 and with the same cut-off function

ξ1, which has value 1 for 0 ≤ r ≤ 1/2 and 0 for r ≥ 1,
(
ξ1Pεm(U(ψ2 ↾Σ)), ψ2

)
defines

an element of H1(Mεm). Let

ψ̃1,εm := ξ1Pεm(U(ψ2,εm ↾Σ)).

Corollary 10. By uniform continuity of Pεm , and the convergence property of the

last proposition

lim
m→∞

‖ψ̃1,εm − ξ1Pεm(U(ϕ2 ↾Σ))‖L2(M1) = 0.

On the other hand, ξ1Pεm(U(ϕ2 ↾Σ)) converges weakly to 0 on the open manifold

M1(0), more precisely, for any fixed η, 0 < η < 1

lim
m→∞

‖ξ1Pεm(U(ϕ2 ↾Σ))‖L2(M1(η)) = 0.

We now decompose ϕ1,εm near the singularity as follows: Let

ξ1ϕ1,εm = ξ1(ϕ
≤−1/2
1,εm + ϕ

(−1/2,1/2]
1,εm + ϕ

>1/2
1,εm )

according to the decomposition, on the cone, of σ1 along the eigenvalues of A re-

spectively less than −1/2, in (−1/2, 1/2] and larger than 1/2, respectively.

We remark first that ψ̃1 and ϕ
>1/2
1,εm have the same values on the boundary so

the difference ξ1ϕ
>1/2
1,εm − ψ̃1 can be viewed in H1(M1) by a prolongation by 0 on

the complementary of the cone, while the boundary value of ϕ
≤−1/2
1,εm is small. We

introduce for this term the cut-off function taken in [ACP09]

ξεm(r) =





1 if r ≥ 2
√
εm,

1

log(
√
εm)

log

(
2εm
r

)
if r ∈ [2εm, 2

√
εm],

0 if r ≤ 2εm.

Claim 3. limm→∞ ‖(1− ξεm)ξ1ϕ
≤−1/2
1,εm ‖L2(M1) = 0.

This is a consequence of the estimate of Lemma 5 and 6: we remark that by the

same argument we obtain also ‖ξ1ϕ≤−1/2
1,εm (r)‖H1/2(Σ) ≤ C

√
r so

‖(1− ξεm)ξ1ϕ
≤−1/2
1,εm ‖L2(M1) = O(εm

1/4).

Claim 4. If we write, with evident notations,

ϕ
(−1/2,1/2]
1,εm =

∑

γ∈(−1/2,1/2]

U∗σγ
1 (r) = ϕ

(−1/2,1/2)
1,εm + U∗σ

1/2
1 (r)
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σ
1/2
1 has the expression given in (10) and then can be decomposed on σ

1/2
1,εm = σ

1/2
0,εm +

σ̄
1/2
1,εm , where σ

1/2
0,εm = cεmr

3/2F (λεmr
2) belongs to dom(D1,min) and the family cεm is

bounded. We can extract subsequences such that ϕ
(−1/2,1/2)
1,εm and U∗(σ

1/2
0 ) converge

in L2-norm, while σ̄
1/2
1,εm is asymptotically equivalent to

σ̄
1/2
1,εm ∼ 1√

| log εm|
r−1/2σ̄1/2 for some σ̄1/2 ∈ ker(A− 1/2).

Thus, U∗σ1/2 converges on each M1(η) to the same limit as U∗(σ
1/2
0,εm), i.e. σ̄

1/2
1,εm

concentrate on the singularity .

Indeed, for each eigenvalue γ ∈ (−1/2, 1/2) of A the vector σγ(r) satisfies the

equation (−∂2r + γ(1 + γ)/r2)σγ = λεmσγ and it can be writen as

σγ(r) = cεmr
γ+1F (λεmr

2) + dεm

(
r−γG(λεmr

2)
)

(19)

if γ 6= 1/2, while the expression for γ = 1/2 has been given in (10). Then, ϕ
(−1/2,1/2)
1,εm

belongs in the domain of D1,max, so, as a consequence of the Rellich property, we

can extract subsequences which converge in L2. While, as already mentionned for

γ = 1/2 the expression c2εm + | log εm|d2εm is bounded so lim dεm = 0 and we can

extract from cεm and
√

| log εm|dεm convergent subsequences. We define then

σ̄
1/2
1 = lim

m→∞

√
| log εm|dεm. (20)

Proposition 11. The forms

ψ1,εm = (1− ξ1)ϕ1,εm + (ξ1ϕ
>1/2
1,εm − ψ̃1,εm) + ξεmξ1ϕ

≤−1/2
1,εm + ξ1U

∗(σ
1/2
0,εm)

belong to Dom(D1,min) and define a bounded family.

Proof. We will show that each term is bounded. For the last one, it was already

mentionned in Claim 4. For the first one it is already done in Lemma 4. For the

second one, we remark that

fεm := (∂r +
A

r
)(ξ1ϕ

>1/2
1,εm − ψ̃1,εm)

= ξ1(∂r +
A

r
)(ϕ

>1/2
1,εm ) + ∂r(ξ1)

(
ϕ
>1/2
1,εm − Pεm(ψ2,εm |Σ)

) (21)

is uniformly bounded in L2(M1), because of (13). This estimate (13) shows also that

the L2-norm of (ϕ
>1/2
1,εm − ψ̃1,εm) is bounded.

For the third one, we use the estimate due to the expression of the quadratic form.

Expriming that
∫
Cr,1 |D1(ξ1ϕ

≤−1/2)|2dµ is bounded by Λ gives that

(
σ
≤−1/2
1 (r), σ

≤−1/2
1 (r)

)
L2(Σ)

≤ Λr| log r| (22)

by the same argument as in Lemmas 5 and 6. Now

‖D1(ξεmξ1ϕ
≤−1/2
1,εm )‖ ≤ ‖ξεmD1(ξ1ϕ

≤−1/2
1,εm )‖+ ‖|dξεm| · ξ1ϕ≤−1/2

1,εm ‖
≤ ‖D1(ξ1ϕ

≤−1/2
1,εm )‖+ ‖|dξεm| · ξ1ϕ≤−1/2

1,εm ‖
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the first term is bounded and, with |A| ≥ 1/2 for this term, and the estimate (22),

we have

‖|dξεm|ξ1ϕ≤−1/2
1,εm ‖2 ≤ 4Λ

log2 εm

∫ √
εm

εm

log(r)

r
dr

≤ 3Λ

2
.

This completes the proof. �

In fact, the decomposition used here is almost orthogonal:

Lemma 12. There exists β > 0 such that

(ϕ
>1/2
1,εm − ψ̃1,εm , ψ̃1,εm)L2 = O(εm

β).

Proof of Lemma 12. — If we decompose the terms under the eigenspaces of A, we

see that only the eigenvalues in (1/2,+∞) are involved and, with fεm =
∑

γ>1/2 f
γ

and (ϕ
>1/2
1,εm − ψ̃1,εm) =

∑
γ>1/2 ϕ

γ
0 , the equation (21) and the fact that (ϕ

>1/2
1,εm −

ψ̃1,εm)(εm) = 0 give

ϕγ
0(r) = r−γ

∫ r

εm

ργf γ(ρ) dρ.

Then for each eigenvalue γ > 1/2 of A

(ϕγ
0 , ψ̃

γ
1,εm)L2(Cεm,1) = εm

γ−1/2

∫ 1

εm

r−2γ

∫ r

εm

ργ(σγ , f
γ(ρ))L2(Σ) dρ

= εm
γ−1/2

∫ 1

εm

r−2γ+1

2γ − 1
· rγ · (σγ , f γ(r))L2(Σ) dr

+
εm

γ−1/2

2γ − 1

∫ 1

εm

ργ(σγ , f
γ(ρ))L2(Σ) dρ.

Thus, if γ > 3/2 we have the majoration

|(ϕγ
0 , ψ̃

γ
1,εm)L2(Cεm,1)| ≤ εm

γ−1/2

∫ 1

εm

r−γ+1

2γ − 1
|(σγ , f γ(r))L2(Σ)| dr

+
εm

γ−1/2

(2γ − 1)
√
2γ + 1

‖σγ‖L2(Σ) · ‖f γ‖L2(Cεm,1)

≤ Cεm
γ−1/2‖σγ‖L2(Σ)

εm
(−2γ+3)/2

(2γ − 1)
√
2γ − 3

‖f γ‖L2(Cεm,1)

+
εm

γ−1/2

(2γ − 1)
√
2γ + 1

‖σγ‖L2(Σ) · ‖f γ‖L2(Cεm,1),

while, for γ = 3/2 the first term is O(εm
√

| log εm|) and for 1/2 < γ < 3/2, it is

O(εm
γ−1/2). In short, we have

|(ϕγ
0 , ψ̃

γ
1,εm)L2(Cεm,1)| ≤ Cεm

β‖σγ‖ · ‖f γ‖L2(Cεm,1),

if β > 0 satisfies γ ≥ β + 1/2 for all eigenvalue γ of A in ]1/2,+∞[. This estimate

gives the lemma.
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Corollary 13. There exists from ψ1,εm + ϕ
(−1/2,1/2)
1,εm a subfamily which converges in

L2 to a form ϕ1 which satisfies on the open manifoldM1(0) the equation ∆ϕ1 = λϕ1.

Moreover,

‖ϕ1‖2L2(M1)
+ ‖ϕ̃2‖2L2(M̃2)

+ ‖σ̄1/2‖2L2(Σ) = 1. (23)

If ϕ̃2 is the prolongation of ϕ2 by P2(ϕ2 ↾Σ) on M̃2, and

σ̄1/2 = lim
m→ infty

1√
| log εm|

dεm

with the expression of (10).

Proof. Indeed, the family ψ1,εm +ϕ
(−1/2,1/2)
1,εm is bounded in domD1,max, one can then

extract a subfamily which converges in L2 but we know that ψ̃1,εm converges to 0 in

any M1(η), the conclusion follows. We obtain also, with the help of Lemma 12 that

1−
{
‖ϕ1‖2 + ‖ϕ2‖2

}
= lim

{
‖ψ̃1,εm‖2 + ‖ξ1U∗(

1√
| log εm|

r−1/2σ̄1/2)‖2).

We remark that, by Corollary 10, ϕ2 = 0 implies limm→∞ ‖ψ̃1,εm‖L2 = 0.

In fact, one has by (13)

lim
m→∞

‖ψ̃1,εm‖ = ‖P2(ϕ2 ↾Σ)‖L2. (24)

Finally, one has

lim
m→∞

‖ξ1U∗(
1√

| log εm|
r−1/2σ̄1/2)‖L2(Mεm ) = ‖σ̄1/2‖L2(Σ). (25)

�

4.3. Lower bound, the end. Let us now {ϕ1(ε), . . . , ϕN(ε)} be an orthonormal

family of eigenforms of the Hodge-de Rham operator, asscociated to the eigenvalues

λ1(ε), . . . , λN(ε). We can make the same procedure of extraction for the all family.

This gives, in the limit domain, a family (ϕj
1, ϕ

j
2, σ̄

j
1/2)1≤j≤N . We already know by

Corollary 13 that each element has norm 1, if we show that they are orthogonal, we

are done, by applying the min-max formula to the limit problem (11).

Lemma 14. The limit family is orthonormal in H∞.

Proof. If we follow the procedure for one indice, up to terms converging to zero, we

had decomposed the eigenforms ϕj(ε) on M1 on three terms

Φj
ε = ψ1,ε + ϕ

(−1/2,1/2)
1,ε ,

Φ̃j
ε = ψ̃1,εm ,

Φ̄j
ε = U∗

( 1√
| log ε|

r−1/2σ̄j
1/2

)
.

Let a 6= b be two indices. If we apply Lemma 12 to any linear combination of ϕa(ε)

and ϕb(ε), we obtain that

lim
m→∞

{
(Φa

εm , Φ̃
b
εm)L2(M1(εm)) + (Φb

εm , Φ̃
a
εm)L2(M1(εm))

}
= 0.
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If we apply (24), we obtain

lim
m→∞

{
(Φ̃a

εm, Φ̃
b
εm)L2(Mεm ) + (ϕa

2,ε, ϕ
b
2,ε)L2(M2)

}
= (ϕ̃a

2, ϕ̃
b
2)L2(M̃2)

.

Then finally, from (ϕa(ε), ϕb(ε)) = 0, we conclude that

(ϕa
1, ϕ

b
1)L2(M1)

+ (ϕa
2, ϕ

b
2)L2(M̃2)

+ (σ̄a
1/2, σ̄b

1/2)L2(Σ) = 0.

�

Proposition 15. The multiplicity of 0 in the limit spectrum is given by the sum

dimKer∆1,W + dimKerD2 + i1/2,

where i1/2 denotes the dimension of the vector space I1/2, see (4), of extented solu-

tions ω on M̃2 introduced by Carron [C01a], corresponding to a boundary term on

restriction to r = 1 with non-trivial component in Ker(A− 1/2).

If the limit value λ 6= 0, then it belongs to the positive spectrum of the Hodge-de

Rham operator ∆1,W on M1, with

W =
⊕

|γ|< 1
2

Ker(A− γ).

Proof. The last process, with in particular (24) and (14), constructs in fact an

element in the limit Hilbert space

H∞ := L2(M1)⊕Ker D̃2 ⊕ I1/2

and this process is clearly isometric in the sense that if we have an orthonormal

family {ϕk,εm}, (1 ≤ k ≤ n), we obtain at the limit an orthonormal family, if H∞
is defined as an orthonormal space of the Hilbert spaces. And if we begin with

eigenforms of Dεm, we obtain at the limit eigenforms of ∆1,W ⊕ {0} ⊕ {0}. The last

calculus implies that lim inf λN (εm) ≥ λN . �

Remark 16. In order to understand this result, it is important to remember when

occures the eigenvalue 1/2 in the spectrum of A. By the expression (3), we find that

it occures exactly

• for n even, if 3/4 is an eigenvalue of the Hodge-de Rham operator ∆Σ acting

on the coexact forms of degree n/2 or n/2− 1 of the submanifold Σ.

• for n odd, if 0 is an eigenvalue of ∆Σ for the (n− 1)/2, (n+1)/2 forms, but

also if 1 is eigenvalue of the coexact forms of degree (n− 1)/2 on Σ.

A dilation of the metric on Σ permits to avoid positive eigenvalues, but if harmonic

forms of degree (n− 1)/2 or (n+ 1)/2 create half-bounded states, then small eigen-

values will always appear.

5. Harmonic forms and small eigenvalues.

It would be interesting to know how many small (but not zero) eigenvalues appear.

For this purpose, we can use the topological meaning of harmonic forms.
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5.1. Cohomology groups. The topology of Mε is independant of ε 6= 0 and can

be apprehended by the Mayer Vietoris sequence:

· · · → Hp(Mε)
res→ Hp(M1(ε))⊕Hp(M2)

dif→ Hp(Σ)
ext→ Hp+1(Mε) → · · · .

As already mentionned, the space KerD2 ⊕ I1/2 can be sent in H∗(M2). More

precisely, Hausel, Hunsicker and Mazzeo have proved in [HHM04] that the L2-

cohomology of M̃2 is isomorphic for the degree k < (n + 1)/2 to the relative co-

homology group Hk(M2,Σ) and for k > (n+1)/2 to the absolute cohomology group

Hk(M2), while for k = (n+1)/2 it is isomorphic to the image of H(n+1)/2(M2,Σ) in

H(n+1)/2(M2).

For M1 we can use the results of Cheeger. Following [Ch80] and [Ch83], we know

that the intersection cohomology groups of M 1 coincide with ker(D1,max ◦D1,min), if

Hn/2(Σ) = 0.

And we know also that

IHp(M1) =

{
Hp(M1(ε)) if p ≤ n

2
,

Hp
c (M1(ε)) if p ≥ n

2
+ 1

(26)

These results can be used for our study only if D1,max and D1,min coincide. This

appears if and only if A has no eigenvalues in the interval (−1/2, 1/2). As a conse-

quence of the expression of the eigenvalues of A, recalled in (3), this is the case if

and only if

• for n odd, the operator ∆Σ has no eigenvalues in (0, 1) on coexact (n−1)/2-

forms,

• for n even, the operator ∆Σ has no eigenvalues in (0, 3/4) on n/2 or (n/2)−1

coexact forms and Hn/2(Σ) = 0.

Thus, if D1,max = D1,min, and this implies that Hn/2(Σ) = 0 in the case where n

is even, then the map

Hn/2(Mε)
res→ Hn/2(M1(ε))⊕Hn/2(M2)

is surjective and then any small eigenvalue in this degree must come from an element

of kerD2 ⊕ I1/2 sent to 0 in Hn/2(M2). In this case also the map

Hn/2+1(Mε)
res→ Hn/2+1(M1(ε))⊕Hn/2+1(M2)

is injective so there may exist small eigenvalues in this degree.

5.2. Some examples. We exhibit a general procedure to construct new examples

as follows: Let Wi, i = 1, 2 be two compact Riemannian manifolds with boundary

Σi and dimension (ni + 1) such that n1 + n2 = n ≥ 2. We can apply our result to

M1 := W1 × Σ2 and M2 := Σ1 ×W2. The manifold Mε is always diffeomorphic to

M =M1 ∪M2.

For instance, let v2 be the volume form of (Σ2, h2). It defines a harmonic form

on M1 and this form will appear for the limit spectrum if, transplanted on M1, it

defines an element of the domain of the operator ∆1,W .
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In the writting introduced in Section 2.2, this element corresponds to β = 0 and

α = rn/2−n2v2 and the expression of A gives that

A(β, α) =
(
n2 −

n

2

)
(β, α).

If n
2
− n2 > 0, then (β, α) is in the domain of D1,max ◦D1,min and if n2 =

n
2
, it is in

the domain of ∆1,W for the eigenvalue 0 of A.

So, if we know thatHn2(M) = 0, or more generally that dimHn2(M) < dimHn2(Σ2)

in the case where Σ2 is not connected, this element will create a small eigenvalue on

Mε. This is the case, if Dk denotes the unit ball in Rk, for

W1 = Dn1+1, and W2 = Dn2+1 for n2 ≤ n1.

Then, M = Sn1+n2+1 and we obtain

Corollary 17. For any degree k and any ε > 0, there exists a metric on Sm such

that the Hodge-de Rham operator acting on k-forms admits an eigenvalue smaller

than ε. We can see that, for k < m
2
, it is in the spectrum of co-exact forms, and by

duality, for k ≥ m
2
in the spectrum of exact k-forms.

Indeed, the case k < m
2
is a direct application, as explained above. We see that

our pseudomode is coclosed. Thus, in the case when m is even, if ω is an eigenform

of degree (1
2
−1) with small eigenvalue, then dω is a closed eigenform with the same

eigenvalue and degree m
2
. Finally, the case k > m

2
is obtained by the Hodge duality.

We remark that, in the case k = 0 we recover Cheeger’ dumbbell, and also that this

result has been proved by Guerini in [Gu04] with another deformation, although he

did not give the convergence of the spectrum.

By the surgery of the precedent case, we obtain, for

W1 := S
n1 × (0, 1), and W2 := Dn2+1 for 0 ≤ n2 < n1, and n = n1 + n2 ≥ 2

that Σ1 = Sn1 ⊔Sn1 , Σ2 = Sn2 and M = Sn1 ×Sn2+1. The volume form v2 ∈ Hn2(Σ2)

defines again a harmonic form on M 1 and, since Hn2(Sn1 × Sn2+1) = 0, if n2 < n1,

then v2 defines a small eigenvalue on the n2-forms of Mε.

Thus, by duality, we obtain

Corollary 18. For any k, l ≥ 0 with 0 ≤ k − 1 < l and any ε > 0, there exists a

metric on Sl × Sk such that the Hodge-de Rham operator acting on (k − 1)-forms

and on (l + 1)-forms admits an eigenvalue smaller than ε.

This corollary is also a consequence of the previous one: we know that there

exists a metric on Sk whose Hodge-de Rham operator admits a small eigenvalue on

(k − 1)-forms, this property is maintained on Sl × Sk+1.

With the same construction, we can exchange the roles of M1 and M2: the two

volume forms of Sn1 ⊔ Sn1 create one n1-form with small but non-zero eigenvalue on

Sn1 × Sn2+1, if n1 ≤ (n2 + 1). By duality, we obtain an (n2 + 1)-form with small

eigenvalue. So, with new notations, we have obtained
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Corollary 19. For any k < l with k + l ≥ 3 and any ε > 0, there exists a metric

on S
l × S

k such that the Hodge-de Rham operator acting on l-forms and on k-forms

admits a positive eigenvalue smaller than ε.

More generally, by repeating the (k−1)-dimensional surgery by L-times, we obtain

the following:

Proposition 20 (Sha-Yang [SY91]). The connected sum of the L-copies of the

product spheres
L

♯
i=1

(Sk × S
l) can be decomposed as follows:

L

♯
i=1

(Sk × S
l) ∼=

(
S
k−1 ×

(
S
l+1 \

L∐

i=0

Dl+1
i

))⋃

∂

(
Dk ×

L∐

i=0

S
l
i

)
.

Remark 21. J-P. Sha and D-G. Yang [SY91] constructed a Riemannian metric of

positive Ricci curvature on this manifold. More generally, see also Wraith [Wr07].

As similar way using Proposition 20, we can obtain the small positive eigenvalues

on the connected sum of the L-copies of the product spheres
L

♯
i=1

(
Sk × Sl

)
.

All these examples use the spectrum of M 1. We can obtain also examples using

the L2-cohomology of M̃2. As already mentionned, it is proved by Hausel, Hunsicker

and Mazzeo in [HHM04] that the L2-cohomology of M̃2 is isomorphic for the degree

k < (n + 1)/2 to the relative cohomology group Hk(M2,Σ) and for k > (n + 1)/2

to the absolute cohomology group Hk(M2), while for k = (n+ 1)/2 it is isomorphic

to the image of H(n+1)/2(M2,Σ) in H
(n+1)/2(M2).

Suppose now that n = dimΣ is odd, we have the long exact sequence

· · · → Hk(M2,Σ) → Hk(M2) → Hk(Σ) → Hk+1(M2,Σ) → . . . .

For k = (n − 1)/2, the space Hk(M2,Σ) is isomorphic to the L2-cohomology of

M2, then if H(n−1)/2(Σ) is any not-trivial harmonic form on Σ of this degree. will

create an extended solution, corresponding to an eigenvector of A with eigenvalue

1/2.

References
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écrasement d’anses, Math. Ann. 303 no 3 (1995), 545–573.
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