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PARTIAL COLLAPSING AND THE SPECTRUM OF THE

HODGE LAPLACIAN

COLETTE ANNÉ AND JUNYA TAKAHASHI

Abstract. The goal of the present paper is to calculate the limit spectrum of
the Hodge-de Rham operator under the perturbation of collapsing one part of a
manifold obtained by gluing together two manifolds with the same boundary. It
appears to take place in the general problem of blowing up conical singularities
as introduced in [Maz06] and [Row06, Row08].
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1. introduction

This work takes place in the general context of the spectral studies of sin-
gular perturbations of the metrics, as a manner to know what are the topo-
logical or metrical meanings carried by the spectrum of geometric operators.
We can mention in this direction, without exhaustivity, studies on the adia-
batic limit ([MM90],[Rum00]), on collapsing ([F87], [Lo02a, Lo02b]), on resolu-
tion blowups of conical singularities ([Maz06],[Row06, Row08]) and on shrinking
handles ([AC95, ACP07]).

The present study can be concidered as a generalization of the results of [AT09]
where we studied the limit of the spectrum of the Hodge deRham operator under
collapsing of one part of a connected sum.

ε → 0

Σ

Figure 1. partial collapsing of Mε

In our previous work we restricted the submanifold Σ, used to glue the two
parts, to be a sphere. In fact this problem is quite related to resolution blowups
of conical singularities: the point is to measure the influence of the topology of
the part which disappear and of the conical singularity created at the limit of the
’big part’. If we look at the situation from the ’small part’ we understand the
importance of the quasi-asymptotically conical space obtained by rescalling the
small part and adding an infinite cone.

When Σ = S
n the conical singularity is quite simple, and there is no semi-

bounded states, called extended solutions in the sequel, on the quasi-asymptotically
conical space, our result presented here takes care of this new possibilities and
gives a general answer of the problem studied by Mazzeo and Rowlett. Indeed,
in [Maz06, Row06, Row08] it is suppposed that the spectrum of the operator on
the quasi-asymptotically conical space does not meat 0. Our study relax this
hypothesis. It is done only with the Hodge-de Rham operator but can easily be
generalised.

Let’s fix some notations.
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1.1. set up. LetM1 andM2 be two connected manifolds with the same boundary
Σ, a compact manifold of dimension n ≥ 2. We denote bym = n+1 the dimension
of M1 and M2.

We endow Σ with a fixed metric h.
Let M1 be the manifold with conical singularity obtained from M1 by adding

to M1 a cone C = [0, 1[×Σ ∋ (r, y): there exists on M1 = M1 ∪ C a metric ḡ1
which writes, on the smooth part r > 0 of the cone as dr2 + r2h.

We choose onM2 a metric g2 which is ’trumpet like’, ie. M2 is isomorphic near
the boundary to [0, 1/2[×Σ with the conical metric which writes ds2 + (1 − s)2h
if s is the coordinate defining the boundary by s = 0.

For any ε, 0 < ε < 1 we define

Cε = {(r, y) ∈ C, r > ε} and M1(ε) =M1 ∪ Cε.
The goal of the following calculus is to determine the limit spectrum of the Hodge-
de Rham operator acting on the differential forms of the riemannian manifold

Mε =M1(ε) ∪ε.Σ ε.M2

obtained by gluing together M1(ε) and (M2, ε
2g2). We remark that, by construc-

tion, these two manifolds have isometric boundary and that the metric gε obtained
on Mε is smooth.

Remark 1. The common boundary Σ of dimension n has some topological ob-
structions. In fact, since Σ is the boundary of oriented compact manifold M1 (or
M2), Σ is oriented cobordant to zero. So, by Thom’s cobordism theory, all of the
Stiefel-Whitney and the Pontrjagin numbers vanish (cf. C. T. C. Wall [W60] or
[MS74], §18, p.217). Futhermore, this condition is also sufficient, that is, the in-
verse does hold. Especially, it is impossible to take Σ2k as the complex projective
spaces CPk, (k ≥ 1).

1.2. results. We can describe the limit spectrum as follows: it has two parts one
comes from the big part, namely M1, and is exprimed by the spectrum of a good
extension of the Hodge Laplacian on this manifold with conical singularities, This
extension is self adjoint and comes from an extension of the Gauß-Bonnet oper-
ators. All these extensions are classified by subspaces W of the total eigenspace
corresponding to eigenvalues belonging to ] − 1/2, 1/2[ of an operator A acting
on the boundary Σ, this point is developed below in Section 2.2. The other part
comes from the collapsed part, namely M2, where the limit Gauß-Bonnet oper-
ator is taken with boundary conditions of Atiyah-Patodi-Singer type, this point
is developed below in Section 2.3. This operator, denoted D2 in the sequel, can

also be seen on the quasi-asymptotically conical space M̃2 already mentionned,
namely

M̃2 =M2 ∪
(
[1,∞[×Σ

)
.

with the metric dr2 + r2h on the conical part. Only the eigenvalue zero is con-
cerned with this part. In fact the manifolds Mε has small eigenvalues, in the
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difference with [AT09], and the multiplicity of 0 at the limit correspond to the
total eigenspace of these small, or null, eigenvalues. Thus, our main theorem,
which asserts the convergence of the spectrum, has two components.

Proposition A. If the limit value λ 6= 0 then it belongs to the positive spectrum
of the Hodge-de Rham operator ∆1,W on M1, with

W =
⊕

γ∈]− 1
2
, 1
2
[

Ker(A− γ).

Proposition B. The multiplicity of 0 in the limit spectrum is given by the sum

dimker∆1,W + dimkerD2 + i1/2

where i1/2 denote the dimension of the vector space I1/2, see (4), of extented solu-

tions ω on M̃2 introduced by Carron [C01], such that Aω = (1/2)ω on restriction
to r = 1.

1.3. comments. We choose a simple metric to make explicits computations.
This fact is not a restriction, as already explained in [AT09], because of the result
of Dodziuk [D82] which assure uniform control of the eigenvalues of geometric
operators with regard to variations of the metric.

1.4. examples. We exhibit some examples which bear small positive eigenvalues
of the Hodge Laplacian action on p-forms.

Let Wi (i = 1, 2) be a connected oriented compact manifold of dimension ni

with boundary Σi (i = 1, 2), respectively. Then, we define a closed manifold M
as

M := W1 × Σ2 ∪Σ1×Σ2 Σ1 ×W2 =M1 ∪Σ M2, (1)

where M1 := W1 × Σ2, M2 := Σ1 ×W2 and Σ := Σ1 × Σ2.
This example is considered as a higher dimensional analogue of a simple graph

manifold M3 of dimension 3:

M3 := Σ∗
1 × S1 ∪T 2 S1 × Σ∗

2,

where Σ∗
i (i = 1, 2) is a Riemann surface removed a disk respectively.

1.4.1. Blowup of complex surfaces. — We recall here an example exibited in
[AT09]: a blow-up at a one point of the complex projective surface CP

2. This

manifold is diffeomorphic to CP
2♯CP2, where CP

2 is a reversed orientation of
CP

2.
Then, by our main theorem, there exists a Riemannian metric gε on CP

2♯CP2

whose positive eigenvalues are close to those of CP2, as desired.
Next, we consider the blowup of a closed complex surface (M,J) of real di-

mension 4, where J is a complex structure.
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If we blowup (M,J) at one point p ∈M , then the resulting manifold M̂ is also

compact complex surface which is diffeomorphic toM♯CP2, that is, the connected

sum of M and CP
2. Note that M∗ is not biholomorphic to M♯CP

2
.

Take any Riemannian metric g1 on M which is flat around a point p. Then,
from Theorem C of [AT09], we can construct a family of C∞ metrics gε on

M̂ ∼= M♯CP2 such that the spectrum of the blowup manifold (M̂, gε) is as closed
as that of the original manifold (M, g1).

In particular, all the positive spectrum of (M̂, gε) converge to those of (M1, g1),

as ε → 0. This is one expression of blow-down from (M̂, gε) to (M, g1). Indeed,

the collapsing part CP
2 containing an exceptional (−1)-curve CP

1 shrinks to a
point.

Note that Perel’man [P97] constructed a sequence of closed Riemannnian man-
ifolds with positive Ricci curvature whose second Betti number is as large as
desired. This example, roughly speaking, glued complex projective surfaces CP2

more and more, so the limit space is glued by infinity many complexe projective
spaces which is no longer a manifold.

2. Gauß-Bonnet operator

On a riemannian manifold, the Gauß-Bonnet operator is defined as the operator
D = d+ d∗ acting on differential forms. It is symmetric and can have few closed
extensions on manifolds with boundary or with conical singularities. We review
these extensions on the cases involved in our study.

2.1. Gauß-Bonnet operator on Mε. We recall that, on Mε, a Gauß-Bonnet
operator Dε, Sobolev spaces and also a Hodge-de Rham operator ∆ε can be
defined by a general construction on any manifold X = X1 ∪ X2, which is the
union of two riemannian manifolds with isometric boundaries (the details are
given in [AC95]): if D1 and D2 are the Gauß-Bonnet “d+d∗” operators acting on
the differential forms of each part, the quadratric form q(ϕ) =

∫
X1

|D1(ϕ|X1
)|2 +∫

X2
|D2(ϕ|X2)|2 is well defined and closed on the domain

D(q) = {ϕ = (ϕ1, ϕ2) ∈ H1(ΛT ∗X1)×H1(ΛT ∗X2), (ϕ1)|∂X1

L2= (ϕ2)|∂X2
}

and on this space the total Gauß-Bonnet operator D(ϕ) = (D1(ϕ1), D2(ϕ2)) is
defined and selfadjoint. For this definition, we have, in particular, to identify
(ΛT ∗X1)|∂X1 and (ΛT ∗X2)|∂X2. This can be done by decomposing the forms in
tangential and normal part (with inner normal), the equality above means then
that the tangential parts are equal and the normal part opposite. This definition
generalizes the definition in the smooth case.

The Hodge-de Rham operator (d + d∗)2 of X is then defined as the operator
obtained by the polarization of the quadratic form q. This gives compatibility
conditions between ϕ1 and ϕ2 on the commun boundary. We don’t give details
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on these facts because our manifold is smooth. But we shall use this presentation
for the quadratic form.

2.2. Gauß-Bonnet operator on M1. Let D1,min be the closure of the Gauß-
Bonnet operator defined on the smooth forms with compact support in the
smooth part M1(0). For any such form ϕ1 we write on the cone

ϕ1 = dr ∧ r−(n/2−p+1)β1,ε + r−(n/2−p)α1,ε

and define σ1 = (β1, α1) = U(ϕ1). The operator has, on the cone, the expression

UD1U
∗ =

(
0 1
−1 0

)(
∂r +

1

r
A
)

with A =



n

2
− P −D0

−D0 P − n

2




where P is the operator of degree which multiplies by p a p-form, and D0 is the
Gauß-Bonnet operator on the manifold Σ.

While the Hodge-de Rham operator has, in these coordinates, the expression

U∆1U
∗ = −∂2r +

1

r2
A(A + 1). (2)

The closed extensions of the operator D1 = d+d∗ on the manifold with conical
singularities M1 has been studied in [BS88] and [L97] They are classified by the
spectrum of its Mellin symbol, which is here the operator with parameter A+ z.

Spectrum of A. — The spectrum of A was calculated in Brüning and Seeley
[BS88], p.703. By their result, it holds that the spectrum of A is given by the
values

γ = ±1

2
±
√
µ2 +

(n− 1

2
− p

)2

, (3)

where µ2 runs over the spectrum of the Hodge-de Rham operator on (Σ, h) acting
on the coclosed p-forms.

Indeed, looking at the Gauß-Bonnet operator acting on even forms, they iden-
tify even forms on the cone with the sections (ϕ0, . . . , ϕn) of the total bundle
T ∗(Σ) by ϕ0 + ϕ1 ∧ dr+ ϕ2 + ϕ3 ∧ dr+ . . . . These sections can as well represent
odd forms on the cone by ϕ0 ∧ dr + ϕ1 + ϕ2 ∧ dr + ϕ3 + . . . . With these iden-
tifications, they have to study the spectrum of the following operator acting on
sections of ΛT ∗(Σ)

S0 =




c0 d∗0 0 · · · 0

d0 c1 d∗0
. . .

...

0 d0
. . .

. . . 0
...

. . .
. . . cn−1 d∗0

0 · · · 0 d0 cn



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if cp = (−1)p+1(p− n
2
).With the same identification, if we introduce the operator

S̃0 having the same formula but with on the diagonal the terms c̃p = (−1)p(p −
n
2
) = −cp, the operator A can be written

A = −(S0 ⊕ S̃0).

The expression of the spectrum of A in then a direct consequence of the compu-
tations of [BS88].

Closed extensions of D1. — If spec(A)∩ ]−1
2
, 1
2
[ is empty then D1,max = D1,min.

In particular, D1 is essentially selfadjoint on the space of smooth forms with
compact support away from the conical singularities.

Otherwise, the quotient dom(D1,max)/ dom(D1,min) is isomorphic to

B :=
⊕

γ∈]− 1
2
, 1
2
[

Ker(A− γ).

More precisely, by Lemma 3.2 of [BS88], there is a surjective linear map

L : dom(D1,max) → B

with kerL = dom(D1,min). Furthermore, we have the estimate

‖u(t)− t−AL(ϕ)‖L2(Σ) ≤ C(ϕ)|t log t|1/2

for ϕ ∈ dom(D1,max) and u = U(ϕ).
Now, to any subspaceW ⊂ B, we can associate the operatorD1,W with domain

dom(D1,W ) := L−1(W ). As a result of [BS88], all closed extensions of D1,min are
obtained by this way. Remark that each D1,W defines a selfadjoint extension
∆1,W = (D1,W )∗ ◦D1,W of the Hodge-de Rham operator, and, as a result, we have
(D1,W )∗ = D1,I(W⊥), where

I =

(
0 id

− id 0

)
, ie., I(β, α) = (α,−β).

This extension is associated to the quadratic form ϕ 7→ ‖Dϕ‖2 with domain
dom(D1,W ).

Finally we recall the results of Lesch [L97]. The operators D1,W , and in par-
ticular D1,min and D1,max, are elliptic and satisfy the singular estimate (SE), see
page 54 of [L97], so by proposition 1.4.6 and the compacity of M1 they satisfy
the Rellich property: the inclusion of dom(D1,W ) in L2 is compact.

2.3. Gauß-Bonnet operator on M2. We know by the works of Carron [C01],
following Attiyah-Patodi-Singer [APS75], that the operator D2 admits a closed
extension D2 with domain defined by a global boundary condition

Π≤1/2 ◦ U = 0

if ΠI is the spectral projector of A relative to the interval I, and ≤ 1/2 represents
the interval ]−∞, 1/2]. Moreover this extension is elliptic in the sens that the H1
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norm of elements of the domain is controled by the norm of the graph. Indeed this
boundary condition is related to a problem on a complete non bounded manifold
as follows:

Let M̃2 denote the large manifold obtained fromM2 by gluing a conical cylinder

C1,∞ = [1,∞[×Σ with metric dr2 + r2h and D̃2 its Gauß-Bonnet operator. A

differential form on M2 admits an harmonic L2-extension on M̃2 precisely when
the restriction on the boundary satisfies Π≤1/2 ◦ U = 0.

Indeed, these L2 forms must satisfy (∂r +
1
r
A)σ = 0 or, if we decompose the

form along the eigenspaces of A as σ =
∑

γ∈Spec(A) σ
γ then the equation imposes

∀γ ∈ Spec(A), ∃σγ
0 ∈ ker(A − γ) such that σγ = r−γσγ

0 . This expression is in
L2(C1,∞) if and only if γ > 1/2 or σγ

0 = 0.
It will be convenient to introduce the operator

P2 : Π> 1
2

(
H1/2(Σ)

)
→ L2(ΛT

∗C1,∞)

σ =
∑

γ∈Spec(A),γ> 1
2

σγ 7→ P2(σ) = U∗
( ∑

γ∈Spec(A),γ> 1
2

r−γσγ

)
.

This limit problem is of the category non parabolic at infinity in the terminology
of Carron [C01], see particularly the theorem 2.1 there, then as a consequence of
theorem 0.4 of the same paper we know that its kernel is finite dimensional.

Proposition 2. There exists a constant C > 0 such that for each differential
form ϕ ∈ H1(ΛT ∗M2) satisfying Π≤1/2 ◦ U(ϕ) = 0, then

‖ϕ‖H1 ≤ C(‖ϕ‖L2 + ‖D2(ϕ)‖L2).

As a consequence, the kernel of D2, which is isomorphic to ker D̃2, is of finite
dimension and can be sent in the total space

∑
pH

p(M2) of absolute cohomology.

A proof of this proposition can be obtain by the same way as proposition 5 in
[AT09].

Recall that Carron proved that a Dirac type operator on a manifold euclidean

at infinity is non parabolic at infinity and it is still true for a manifold like M̃2, as a
consequence of Theorem 2.2 of [C01]. For this type of operators Carron defined L2

solutions which are in correspondance with the solutions of the elliptic operator
of the proposition 2, he defined also extended solutions which belong to the bigger

space W which is defined as the closure of C∞
0 (M̃2) for the norm

‖ϕ‖2W = ‖ϕ‖2L2(M2)
+ ‖Dϕ‖2

L2(M̃2)
.

An inequality of Hardy’s type describe the growth at infinity of an extended
solution.

Lemma 3. Let v ∈ C∞
0 (]e,∞[) and λ a real, then

if λ 6= −1/2 (λ+ 1
2
)2
∫

v2

r2
dr ≤

∫
1

r2λ
(∂r(r

λv))2dr

if λ = −1/2
∫

v2

(r log r)2 log log r
dr ≤

∫
r(∂r(r

−1/2v))2dr.
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We remark now that, for ϕ ∈ C∞
0 (M̃2) with support on the infinite cone r > e

we can write

‖D2ϕ‖2 =
∑

λ∈Spec(A)

∫
|(∂r +

λ

r
σλ)|2 =

∑

λ∈Spec(A)

∫
1

r2λ
|∂r(rλ)σλ|2dr.

Thus, by application of the lemma, we see that a solution of D̃2, which must be
σλ(r) = r−λσλ(1) on the infinite cone, and such that 1

r
ϕ is L2 satisfies

∀λ ≤ −1

2
, σλ(1) = 0

while the L2 solutions corresponds to the condition σλ(1) = 0 ∀λ ≤ 1
2
. As a

consequence, the extended solutions which are not L2 correspond to boundary
terms belonging to the total eigenspace related with eigenvalues of A in the
interval ]−1/2, 1/2]. In the case studied in [AT09] there was not such eigenvalues
and we had not to take care of extended solutions.

Let denote, for γ ∈]− 1/2, 1/2] by

Iγ = {ϕ, D̃2ϕ = 0, ϕ(r = 1) ∈ ker(A− γ)} (4)

the total space of extented solutions corresponding to the value γ of the spectrum
of A.

proof of the lemma 3. Let u ∈ C∞
0 (]e,∞[) and ρ a positive function on the interval

]e,∞[. We calculate
∫

1

r2λ
(∂r(r

λρu))2dr =
∫

1

r2λ

(
ρ′rλu+ ρ∂r(r

λu)
)2

dr =

∫ (
(ρ′u)2 +

ρ2

r2λ
(∂r(r

λu))2 +
ρρ′

r2λ
∂r((r

λu)2)
)
dr

integrating by part the last term, we obtain
∫

1

r2λ
(∂r(r

λρu))2dr =

∫ ( ρ2
r2λ

(∂r(r
λu))2 − (ρρ′′ − 2λ

ρρ′

r
)u2

)
dr

≥
∫ (2λρ′ − rρ′′

rρ
(ρu)2dr

)

We obtain finally the first result of the lemma by putting ρ(r) = rλ+1/2 and
v = ρu.

The second one is obtained in the same way with λ = −1/2 and the choice of
ρ = log log r. �
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3. a priori estimates

A good method to evaluate what the limit problem should be is to suppose a
priori that we have a normed family ϕε of eigenforms on Mε of degree p for the
Hodge-de Rham operator:

∆εϕε = λεϕε with lim
ε→0

λε = λ < +∞

and to try to obtain all the consequences for the limit. Of course for the moment
we are not sure that this family exists but the mini-max technics will assure this,
and it will be the subject of the next section.

3.1. notations. As in [ACP07] we use the following change of variables : with

ϕε|M1(ε) = ϕ1,ε and ϕε|M2(1) = εp−m/2ϕ2,ε

we write on the cone

ϕ1,ε = dr ∧ r−(n/2−p+1)β1,ε + r−(n/2−p)α1,ε

and define σ1 = (β1, α1) = U(ϕ1).
On the other part, it is more convenient to define r = 1 − s for s ∈ [0, 1/2]

and write ϕ2,ε = (dr ∧ r−(n/2−p+1)β2,ε + r−(n/2−p)α2,ε) near the boundary. Then
we can define, for r ∈ [1/2, 1] (the boundary of M2(1) corresponds to r = 1)

σ2(r) = (β2(r), α2(r)) = U(ϕ2).

The L2 norm, for a form supported on M1 in the cone Cε,1, has the expression

‖ϕ‖2 =
∫

M1

|σ1|2dr ∧ dvolΣ +

∫

M2

|ϕ2|2dvolM2

and the quadratic form on study is

q(ϕ) =

∫

Mε

|(d+ d∗)ϕ|2 =
∫

M1(ε)

|UD1U
∗(σ1)|2 +

1

ε2

∫

M2(1)

|D2(ϕ2)|2 (5)

The compatibility condition is, for the quadratic form, ε1/2α1(ε) = α2(1) and
ε1/2β1 = β2(1) or

σ2(1) = ε1/2σ1(ε). (6)

The compatibility condition for the Hodge-de Rham operator, of first order, is
obtained by expressing that Dϕ ∼ (UD1U

∗σ1,
1
ε
UD2U

∗σ2) belongs to the domain
of D. In terms of σ it gives

σ′
2(1) = ε3/2σ′

1(ε). (7)

To understand the limit problem we proceed to several estimates.
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3.2. on the regular part of M1. Let ξ1 be a cut-off function on M1 around the
conical singularity:

0 ≤ r ≤ 1/2 ⇒ ξ1(r) = 1 and r ≥ 1 ⇒ ξ1(r) = 0. (8)

Lemma 4. For our given family ϕε satisfying ∆(ϕε) = λεϕε with λε bounded,
the family (1− ξ1).ϕ1,ε is bounded in H1(M1).

Then it remains to study ξ1.ϕ1,ε which can be expressed with the polar coordi-
nates. We remark that the quadratic form of these forms is uniformly bounded.

• Expression of the quadratic form. For any ϕ such that the componant ϕ1 is
supported in the cone C1,ε, one has, with σ1 = Uϕ1 and by the same calculus as
in [ACP07] :

∫

Cε,1
|D1ϕ|2dvolgε =

∫ 1

ε

∣∣∣∣
(
∂r +

1

r
A
)
σ1

∣∣∣∣
2

dr

=

∫ 1

ε

[
|σ′

1|2 +
2

r
〈σ′

1, Aσ1〉 +
1

r2
|Aσ1|2

]
dr

3.3. estimates of the boundary term. The expression above can be decom-
posed with respect to the eigenspaces of A; in the following calculus, we suppose
that σ1(1) = 0:

∫ 1

ε

[
|σ′

1|2 +
2

r
〈σ′

1, Aσ1〉 +
1

r2
|Aσ1|2

]
dr =

=

∫ 1

ε

[
|σ′

1|2 + ∂r

(1
r
〈σ1, Aσ1〉

)
+

1

r2
(
〈σ1, Aσr〉 + |Aσ1|2

) ]
dr

=

∫ 1

ε

[
|σ′

1|2 +
1

r2
〈σ1, (A+ A2)σ1〉

]
dr − 1

ε

〈
σ1(ε), Aσ1(ε)

〉
.

This shows that a control of the quadratic form gives a control of the bound-
ary term if the operator A is negative but (A + A2) is non negative. This last
condition is satisfied exactly on the orthogonal complement of the spectral space
corresponding to the interval ] − 1, 0[. Applied to ξ1.ϕ1,ε it gives the following
lemma

Lemma 5. Let Π≤−1 be the spectral projector of the operator A relative to the
interval ]−∞,−1]. There exists a constant C > 0 such that, for any ε > 0

‖Π≤−1 ◦ U(ϕ1,ε(ε))‖H1/2(Σ) ≤ C
√
ε.

In view of Proposition 2, we want also a control of the components of σ1 along
the eigenvalues of A in ]− 1, 1/2], these components are in finite number and we
can work term by term. So we write, on Cε,1,

σ1(r) =
∑

γ∈specA
σ1

γ(r), Aσ1
γ(r) = γσ1

γ(r)
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and we suppose again σ1(1) = 0. We have
(
∂r +

1

r
A
)
σγ
1 = r−γ∂r(r

γσ) (9)

(εγσγ
1 (ε))

2 =
( ∫ 1

ε

∂r(r
γσγ

1 )
)2

≤
∫ 1

ε

r2γ
∫ 1

ε

|∂r(σγ
1 ) +

γ

r
(σγ

1 )|2 (10)

then, if the quadratic form is bounded, there exists a constant C > 0 such that

(σγ
1 (ε))

2 ≤
{
Cε−2γ 1−ε2γ+1

2γ+1
if γ 6= −1/2

Cε| log ε| if γ = −1/2.
(11)

This gives

Lemma 6. Let ΠI be the spectral projector of the operator A relative to the
interval I. There exist constants α,C > 0 such that, for any ε > 0

‖Π]−1,0[ ◦ U(ϕ1,ε(ε))‖H1/2(Σ) ≤ Cεα.

If 0 < α < 1/2 is such that −α is bigger than any negative eigenvalue of A.
The estimate above gives also

Lemma 7. With the same notation, there exist constants β, C > 0 such that, for
any ε > 0

‖Π[0,1/2[ ◦ U(ϕ2,ε(1))‖H1/2(Σ) ≤ Cεβ.

If 1/2− β is the biggest non negative eigenvalue of A strictly smaller than 1/2
(if there is no such eigenvalue we put β = 1/2).

Finally we study σ
1/2
1 for our family of forms (the parameter ε is omited in the

notation). It satisfies, for ε < r < 1/2, the equation

(−∂2r +
3

4r2
)σ

1/2
1 = λεσ

1/2
1 .

The solutions of this equation have expression in term of Bessel functions: there
exist entire functions F, G with F (0) = G(0) = 1 and differential forms in
ker(A− 1/2) cε, dε such that

σ
1/2
1 (r) = cεr

3/2F (λεr
2) + dε

(
r−1/2G(λεr

2) +
2

π
log(r)r3/2F (λεr

2)
)
. (12)

The fact that the L2 norm is bounded gives that c2ε + | log ε|d2ε is bounded and
finally, reporting this estimate in the expression above, that

‖σ1/2
1 (ε)‖H1/2(Σ) = O

(
(ε| log ε|)−1/2

)
.

This gives on the other part

Lemma 8. There exists a constant C > 0 such that, for any ε > 0

‖Π{1/2} ◦ U(ϕ2,ε)(1)‖H1/2(Σ) ≤ C
1√

| log ε|
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4. proof of the spectral convergence

The previous estimates shows that Π≤1/2 ◦ U(ϕ2,ε)(1) goes to zero with ε and
that the limit would satisfy the good APS-boundary conditions ; on the other
hand there is no restriction for the boundary term of U(ϕ1,ε)(ε) and finally the
control on Π{1/2} ◦U(ϕ2,ε)(1) does not permit to admit that this term will disap-
pear.

Its suggests that we have to introduce for the limit problem, as Hilbert space

H∞ = L2(M1)⊕ ker D̃2 ⊕ ker(A− 1

2
). (13)

with the limit operator ∆1,W ⊕0⊕0 withW defined as in Proposition A. acting
on this space. Let’s denote by λN , N ≥ 1 its spectrum and also let’s λN(ε), N ≥ 1
be the total spectrum of the Hodge Laplacian on Mε.

4.1. upper bound : lim supλN(ε) ≤ λN . With the minimax formula, which
says that

λN(ε) = Inf
E⊂dom(Dε)

dimE=N

(
Sup
ϕ∈E

‖ϕ‖=1

∫

Mε

|Dεϕ|2
)

we have to describe how transplanting eigenforms of the limit problem on Mε.
We describe this transplantation term by term. For the first we use the same

ideas as in [ACP07].
Any eigenform ϕ of ∆1,W can be written, as any element of dom(D1,max),

ϕ = ϕ0 + ϕ̄

ϕ0 ∈ dom(D1,min) and U(ϕ̄) =

{
0 for r ≥ 1∑

γ∈]−1/2,1/2[∩ spec(A) dγr
−γσγ for r ≤ 1

2

with σγ ∈ Ker(A−γ) and dγ ∈ R. (This fact is a consequence of the expression of
the Bessel functions, it is the same calculus as in (21).) By definition of D1,min, ϕ0

can be approached, with the operator norm, by a sequence of smooth forms with
compact support in M1(0). On the other hand, ϕ̄ is a finite sum, it is sufficient
to prolongate each r−γσγ on M2, the good candidate is

ψγ = U∗(χ.ε1/2−γr−γσγ)

for χ a cut-off function supported on ]1/2, 3/2[ and equal to 1 on a neighbourhood
of 1 (for instance χ = 1− ξ1).

Indeed one has

‖ψγ‖L2(M2) + ‖D2(ψγ)‖L2(M2) = O(ε1/2−γ).

For the two last ones, we shrink the infinite cone on M1 and cut with the
function ξ1, already defined in (8).
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Let’s define

Pε : Π> 1
2

(
H1/2(Σ)

)
→ H1(Cε,1) (14)

σ =
∑

γ∈Spec(A),γ> 1
2

σγ 7→ Pε(σ) = U∗
( ∑

γ∈Spec(A),γ> 1
2

εγ−1/2r−γσγ

)
.

We remark that Pε(σ) is the transplanted on M1 of P2(σ) then there exists a
constant C such that

‖P2(σ)‖2L2(C1,1/ε) = ‖Pε(σ)‖2L2(Cε,1) ≤ C
∑

|σγ |2 = C‖Π> 1
2
σ2(1)‖2L2(Σ) (15)

and also that, if ψ2 ∈ DomD2, then
(
ξ1Pε(U(ψ2)|Σ), ψ2

)
defines an element of

H1(Mε).
Finally, if ker(A−1/2) is not empty, for each σ̄1/2 ∈ ker(A−1/2) non zero one

can construct a pseudomode as follows

ψε = (ξ1.(|logε|r)−1/2U∗(σ̄1/2), |logε|−1/2ψ2) (16)

where ψ2 is the element of kerD2 on M2 with boundary value σ̄1/2. The L2 norm
of this element is bounded from above and below, and

lim
ε→0

‖ψε‖L2(Mε) = ‖σ̄1/2‖L2(Σ).

Moreover it satisfies q(ψε) = O(|logε|−1) giving then a ’small eigenvalue’, as
well as the elements of kerD2 and of ker∆W .

To conclude it suffises to verify that this transplanted forms have a Rayleigh-
Ritz quotient comparable to the initial one and that the orthogonality is fast
concerved by transplantation.

4.2. lower bound : lim inf λN(ε) ≥ λN . We first proceed for one indice. We
know, by the paragraph 4.1, that for each N, the family (λN (ε), ε > 0) is bounded,
let

λ = lim inf λN(ε).

There exists a sequence εm, m ∈ N such that limm→∞ λN(εm) = λ. We shall
apply the previous calculus to this family.

4.2.1. on the side of M2. Let χ be a cut-off function supported in [3/4, 1[ equal
to 1 on [7/8, 1[ and σ2,εm = U(ϕ2,εm). We construct the family

ψ2,εm = ϕ2,εm − U∗
(
Π≤ 1

2
(χσ2,εm)

)

which belongs to the domain of D2,and then, by ellipticity of this operator
claim 1. The family ψ2,εm is bounded in H1(M2), and as a consequence

Π> 1
2
σ2(1) is bounded in H1/2(Σ).

Moreover, its proximity with ϕ2,εm is controled:
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claim 2. They satisfy limεm→0 ‖ψ2,εm − ϕ2,εm‖ = 0 and

lim
εm→0

‖D2(ψ2,εm − ϕ2,εm)‖ = O(
√
εm). (17)

Indeed

‖ψ2,εm − ϕ2,εm‖2 ≤
∫ 1

3/4

|Π≤ 1
2
σ2(r)|2dr =

∫ 1

3/4

(
|Π≤−1σ2(r)|2 + |Π]−1, 1

2
]σ2(r)|2

)
dr.

(18)
The first term is controled as follows: because of the expression (5) of the qua-
dratic form, we know that

∫

Cεm,1

|(∂r +
A

r
)Π≤−1σ1|2 +

1

εm2

∫ 1

R

|(∂r +
A

r
)Π≤−1σ2|2

is bounded, independently on R ≥ 3/4, let Λ be a bound. Developping and
making an integration by parts gives, for any κ2

∫ 1

R

|(∂r +
A

r
)κ2|2 =

∫ 1

R

[
|κ′2|2 +

1

r2
〈κ2, (A+ A2)κ2〉

]
dr +

〈
κ2(1), Aκ2(1)

〉
−
〈
κ2(R), Aκ2(R)

〉
. (19)

We can make the same calculus on the cone Cεm,1 so the boundary term at R = 1
is absorbed. If we apply this control to κ2 = Π≤−1σ2 for which A(A + 1) and
(−A) are non negative we obtain that

∫ 1

R

|Π≤−1σ
′
2(t)|2 + ‖Π≤−1σ

′
2(R)‖2 = O(εm

2).

The second term in (18) is in fact the sum of few terms, we can control
each of them as follows. let γ be an eigenvalue of A contained in the inter-
val ] − 1, 1

2
] and σ2

γ the component of σ2 along this eigenspace. We know that∫ 1

R
|r−γ∂r(r

γσ2
γ)|2 = O(εm

2).

|Rγσ2
γ(R)|2 = −2

∫ 1

R

〈∂r(rγσ2γ(t)), rγσ2γ(t)〉dt+ |σ2γ(1)|2 (20)

But, as a consequence of lemma 5, 6 and 7, one has ‖σ2γ(1)‖2 = O(1/| log(εm)|),
on the other hand, using the inequality of Cauchy-Schwarz, the fact that the L2-
norm of ϕεm is 1 and the fact just recalled we have that

|σ2γ(R)|2 = O(1/| log(εm)|).
For the second part of the assertion, notice that

D2(ϕ2,εm −ψ2,εm) = D2U
∗
(
Π≤ 1

2
(χσ2,εm)

)
= χ′U∗Π≤ 1

2
(σ2,εm) +χD2U

∗Π≤ 1
2
(σ2,εm)
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and the norm of the first term is controled by
∫ 1

3/4
|Π≤ 1

2
σ2(r)|2dr which is

O(1/| log(εm)|) by the previous estimate, and the norm of the second term, by
‖D2(ϕ2)‖ which is O(εm) because qεm(ϕεm) is uniformly bounded (remark that
D2 preserves the orthogonal decomposition following Π≤ 1

2
and Π> 1

2
on the cone).

Proposition 9. There exists a subfamily of the family ϕ2,εm which converges, as
m→ ∞ to a bounded form ϕ2 on M2 which satisfies

ϕ2 ∈ domD2, ‖ϕ2‖ ≤ 1 and D2(ϕ2) = 0.

Proof. Indeed, we know by the claim 1 that we can extract from the family ψ2,εm

a subfamily which converge in L2-norm and weakly in H1(M2), denote ϕ2 the
limit. We know by the claim 2 that the corresponding subfamily of ϕ2,εm has the
same limit and also that limm→∞ ‖D2(ψ2,εm)‖ = 0 because this is true for ϕ2,εm,
the conclusion follows. �

4.2.2. on the side of M1. We first recall the better prolongation of Π> 1
2
σ2(1) on

M1(εm) given by Pε in (14) so that if ψ2 ∈ DomD2 and with the same cut-off func-

tion ξ1, which has value 1 for 0 ≤ r ≤ 1/2 and 0 for r ≥ 1,
(
ξ1Pεm(U(ψ2)|Σ), ψ2

)

defines an element of H1(Mεm). Let

ψ̃1,εm := ξ1Pεm(U(ψ2,εm)|Σ).

Corollary 10. By uniform continuity of Pεm, and the convergence property of
the last proposition

lim
m→∞

‖ψ̃1,εm − ξ1Pεm(U(ϕ2)|Σ)‖L2(M1) = 0.

On the other hand ξ1Pεm(U(ϕ2)|Σ) converge weakly to 0 on the open manifold
M1(0), more precisely, for any fixed η, 0 < η < 1

lim
m→∞

‖ξ1Pεm(U(ϕ2)|Σ)‖L2(M1(η)) = 0.

We now decompose ϕ1,εm near the singularity as follows. Let

ξ1ϕ1,εm = ξ1(ϕ
≤−1/2
1,εm + ϕ

]−1/2,1/2]
1,εm + ϕ

>1/2
1,εm )

according to the decomposition, on the cone, of σ1 along the eigenvalues of A
respectively less than −1/2, in ]− 1/2, 1/2] and larger than 1/2.

We remark first that ψ̃1 and ϕ
>1/2
1,εm have the same values on the boundary so

the difference ξ1ϕ
>1/2
1,εm − ψ̃1 can be viewed in H1(M1) by a prolongation by 0 on

the complementary of the cone, while the boundary value of ϕ
≤−1/2
1,εm is small. We

introduce for this term the cut-off function taken in [ACP07]

ξεm(r) =





1 if r ≥ 2
√
εm,

log(2εm)− log r

log(
√
εm)

if r ∈ [2εm, 2
√
εm],

0 if r ≤ 2εm.
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claim 3. limm→∞ ‖(1− ξεm)ξ1ϕ
≤−1/2
1,εm ‖L2 = 0.

This is a consequence of the estimate of the Lemma 5 and 6: we remark that

by the same argument we obtain also ‖ξ1ϕ≤−1/2
1,εm (r)‖H1/2(Σ) ≤ Cr1/2 so

‖(1− ξεm)ξ1ϕ
≤−1/2
1,εm ‖L2 = O(εm

1/4).

claim 4. If we write, with evident notations,

ϕ
]−1/2,1/2]
1,εm =

∑

γ∈]−1/2,1/2]

U∗σγ
1 (r) = ϕ

]−1/2,1/2[
1,εm + U∗σ

1/2
1 (r)

σ
1/2
1 has the expression given in (12) and then can be decomposed on σ

1/2
1,εm =

σ
1/2
0,εm+σ̄

1/2
1,εm where σ

1/2
0,εm = cεmr

3/2F (λεmr
2) belongs to dom(D1,min) and the family

cεm is bounded. One can extract subsequences such that ϕ
]−1/2,1/2[
1,εm and U∗(σ

1/2
0 )

converge in L2-norm while σ̄
1/2
1,εm is asymptotically equivalent to

σ̄
1/2
1,εm ∼ 1√

| log εm|
r−1/2σ̄1/2 for some σ̄1/2 ∈ ker(A− 1/2).

Thuse U∗σ1/2 converge on each M1(η) to the same limit as U∗(σ
1/2
0,εm), ie. σ̄

1/2
1,εm

concentrate on the singularity .
Indeed, for each eigenvalue γ ∈] − 1/2, 1/2[ of A the vector σγ(r) satisfies the

equation (−∂2r + γ(1+γ)
r2

)σγ = λεmσγ and it can be writen as

σγ(r) = cεmr
γ+1F (λεmr

2) + dεm

(
r−γG(λεmr

2)
)

(21)

if γ 6= 1/2, while the expression for γ = 1/2 has been given in (12). Then,

ϕ
]−1/2,1/2[
1,εm belongs in the domain of D1,max, so, as a consequence of the Rellich

property, we can extract subsequences which converge in L2. While, as already
mentionned for γ = 1/2 the expression c2εm+|logεm|d2εm is bounded so lim dεm = 0

and we can extract from cεm ,
√
|logεm|dεm convergent subsequences. We define

then

σ̄
1/2
1 = lim

m→∞

√
|logεm|dεm. (22)

Proposition 11. The forms ψ1,εm = (1−ξ1)ϕ1,εm+(ξ1ϕ
>1/2
1,εm −ψ̃1,εm)+ξεmξ1ϕ

≤−1/2
1,εm +

ξ1U
∗(σ

1/2
0,εm) belong to dom(D1,min) and define a bounded family.

Proof. We will show that each term is bounded. For the last one, it was already
mentionned in claim 4. For the first one it is already done in Lemma 4. For the
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second one, we remark that

fεm := (∂r +
A

r
)(ξ1ϕ

>1/2
1,εm − ψ̃1,εm) =

ξ1(∂r +
A

r
)(ϕ

>1/2
1,εm ) + ∂r(ξ1)

(
ϕ
>1/2
1,εm − Pεm(ψ2,εm |Σ)

)
(23)

is uniformly bounded in L2(M1) because of (15). This estimate (15) shows also

that the L2-norm of (ϕ
>1/2
1,εm − ψ̃1,εm) is bounded.

For the third one we use the estimate due to the expression of the quadratic form.
Expriming that

∫
Cr,1 |D1(ξ1ϕ

≤−1/2)|2 is bounded by Λ gives that

〈
σ
≤−1/2
1 (r), σ

≤−1/2
1 (r)

〉
≤ Λr| log r| (24)

by the same argument as used for the lemma 5 and 6. Now

‖D1(ξεmξ1ϕ
≤−1/2
1,εm )‖ ≤ ‖ξεmD1(ξ1ϕ

≤−1/2
1,εm )‖+ ‖|dξεm|ξ1ϕ≤−1/2

1,εm ‖
≤ ‖D1(ξ1ϕ

≤−1/2
1,εm )‖+ ‖|dξεm|ξ1ϕ≤−1/2

1,εm ‖

the first term is bounded and, with |A| ≥ 1/2 for this term, and the estimate
(24), we have

‖|dξεm|ξ1ϕ≤−1/2
1,εm ‖2 ≤ 4Λ

log2 εm

∫ √
εm

εm

log(r)

r
dr

≤ 3Λ

2
.

This complete the proof. �

In fact the decomposition used here is almost orthogonal:

Lemma 12. There exists β > 0 such that

< (ϕ
>1/2
1,εm − ψ̃1,εm), ψ̃1,εm >= O(εm

β).

proof of lemma 12. — If we decompose the terms under the eigenspaces of A
we see that only the eigenvalues in ]1/2,+∞[ are involved and, with fεm =∑

γ>1/2 f
γ and (ϕ

>1/2
1,εm − ψ̃1,εm) =

∑
γ>1/2 ϕ

γ
0 , the equation (23) and the fact that

(ϕ
>1/2
1,εm − ψ̃1,εm)(εm) = 0 give

ϕγ
0(r) = r−γ

∫ r

εm

ργf γ(ρ)dρ.
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Then for each eigenvalue γ > 1/2 of A

< (ϕγ
0 , ψ̃

γ
1,εm > = εm

γ−1/2

∫ 1

εm

r−2γ

∫ r

εm

ργ < σγ , f
γ(ρ) >L2(Σ) dρ

= εm
γ−1/2

∫ 1

εm

r−2γ+1

2γ − 1
rγ < σγ , f

γ(r) >L2(Σ) dr+

εm
γ−1/2

2γ − 1

∫ 1

εm

ργ < σγ , f
γ(ρ) >L2(Σ) dρ

Thuse, if γ > 3/2 we have the majoration

| < (ϕγ
0 , ψ̃

γ
1,εm > | ≤ εm

γ−1/2

∫ 1

εm

r−γ+1

2γ − 1
| < σγ , f

γ(r) >L2(Sn) |dr+

εm
γ−1/2

(2γ − 1)
√
2γ + 1

‖σγ‖ ‖f γ‖L2(Cεm,1)

≤ Cεm
γ−1/2‖σγ‖

εm
(−2γ+3)/2

(2γ − 1)
√
2γ − 3

‖f γ‖L2(Cεm,1)+

εm
γ−1/2

(2γ − 1)
√
2γ + 1

‖σγ‖ ‖f γ‖L2(Cεm,1)

while, for γ = 3/2 the first term is O(εm
√
| log εm|) and for 1/2 < γ < 3/2 it is

O(εm
γ−1/2). In short, we have

| < (ϕγ
0 , ψ̃

γ
1,εm > | ≤ Cεm

β‖σγ‖ ‖f γ‖L2(Cεm,1)

if β > 0 satisfies γ ≥ β+1/2 for all eigenvalue γ of A in ]1/2,+∞[. This estimate
gives the lemma.

Corollary 13. There exists from ψ1,εm + ϕ
]−1/2,1/2[
1,εm a subfamily which converges

in L2 to a form ϕ1 which satisfies on the open manifold M1(0) the equation
∆ϕ1 = λϕ1. Moreover

‖ϕ1‖2 + ‖ϕ̃2‖2 + ‖σ̄1/2‖2L2(Σ) = 1. (25)

if ϕ̃2 is the prolongation of ϕ2 by P2(ϕ2|Σ) on M̃2, and

σ̄1/2 = lim
m→∞

1√
| log εm|

dεm

with the expression of (12).

Proof. Indeed, the family ψ1,εm + ϕ
]−1/2,1/2[
1,εm is bounded in domD1,max, one can

then extract a subfamily which converges in L2 but we know that ψ̃1,εm converges
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to 0 in any M1(η), the conclusion follows. We obtain also, with the help of
Lemma 12 that

1− (‖ϕ1‖2 + ‖ϕ2‖2) = lim(‖ψ̃1,εm‖2 + ‖ξ1U∗(
1√

| log εm|
r−1/2σ̄1/2)‖2)

We remark that, by Corollary 10, ϕ2 = 0 ⇒ limm→∞ ‖ψ̃1,εm‖ = 0. In fact one
has by (15)

lim
m→∞

‖ψ̃1,εm‖ = ‖P2(ϕ2|Σ)‖. (26)

Finally, one has

lim
m→∞

‖ξ1U∗(
1√

| log εm|
r−1/2σ̄1/2)‖L2(Mεm ) = ‖σ̄1/2‖L2(Σ). (27)

�

4.3. lower bound, the end. Let’s now ϕ1(ε), . . . , ϕN(ε) be an orthonormal fam-
ily of eigenforms of the Hodge-de Rham operator, for the eigenvalues λ1(ε), . . . ,
λN(ε). We can make the same procedure of extraction for the all family. This
gives, in the limit domain, a family (ϕj

1, ϕ
j
2, σ̄

j
1/2)1≤j≤N . We already know by

Corollary 13 that each element has norm 1, if we show that they are orthogonal
we are done, by the application of the minimax formula to the limit problem (13).

Lemma 14. The limit family is orthonormal in H∞.

Proof. If we follow the procedure for one indice, up to terms converging to zero,
we had decomposed the eigenforms ϕj(ε) on M1 on three terms

Φj
ε = ψ1,ε + ϕ

]−1/2,1/2[
1,ε

Φ̃j
ε = ψ̃1,εm

Φ̄j
ε = U∗(

1√
| log ε|

r−1/2σ̄j
1/2)

Let a 6= b be two indices. If we apply Lemma 12 to any linear combination of
ϕa(ε) and ϕb(ε) we obtain that

lim
m→∞

< Φa
εm , Φ̃

b
εm >L2(M1(εm)) + < Φb

εm , Φ̃
a
εm >L2(M1(εm))= 0.

If we apply (26) we obtain

lim
m→∞

< Φ̃a
εm , Φ̃

b
εm >L2(Mεm ) + < ϕa

2,ε, ϕ
b
2,ε >L2(M2)=< ϕ̃a

2, ϕ̃
b
2 >L2(M̃2)

Then finally, from < ϕa(ε), ϕb(ε) >= 0 we conclude

< ϕa
1, ϕ

b
1 >L2(M1)

+ < ϕa
2, ϕ

b
2 >L2(M̃2)

+ < σ̄a
1/2, σ̄

b
1/2 >L2(Σ)= 0.

�
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Proposition 15. The multiplicity of 0 in the limit spectrum is given by the sum

dimker∆1,W + dimkerD2 + i1/2

where i1/2 denote the dimension of the vector space I1/2, see (4), of extented solu-

tions ω on M̃2 introduced by Carron [C01], such that Aω = (1/2)ω on restriction
to r = 1. If the limit value λ 6= 0 then it belongs to the positive spectrum of the
Hodge-de Rham operator ∆1,W on M1, with

W =
⊕

γ∈]− 1
2
, 1
2
[

Ker(A− γ).

Proof. The last process, with in particular (26) and (16), construct in fact an
element in the limit Hilbert space

H∞ = L2(M1)⊕ ker D̃2 ⊕ ker(A− 1

2
).

and this process is clearly isometric in the sense that if we have an orthonormal
family ϕk,εm, 1 ≤ k ≤ n we obtain at the limit an orthonormal family if H∞ is
defined as an orthonormal space of the Hilbert spaces. And if we begin with
eigenforms of Dεm we obtain at the limit eigenforms of ∆1,W ⊕ 0 ⊕ 0. The last
calculus has shown that lim inf λN(εm) ≥ λN .

�

Remark 16. To understand this result it is important to remember when occures
the eigenvalue 1/2 in the spectrum of A. By the expression (3) we find that it
occures exactly

• for n even, if 3/4 is an eigenvalue of the Hodge Laplacian ∆Σ acting on
the coclosed forms of degree n/2 or n/2− 1 of the submanifold Σ.

• for n odd, if 0 is an eigenvalue of ∆Σ for the (n − 1)/2, (n + 1)/2 or
(n− 3)/2 forms but also if 1 is eigenvalue of the coclosed forms of degree
(n− 1)/2 on Σ.

5. harmonic forms and small eigenvalues

It would be interesting to know how many small (but not zero) eigenvalues
occure. For this purpose, we can use the topological meaning of harmonic forms.

The topology of Mε is independant of ε 6= 0 and can be apprehended by the
Mayer Vietoris sequence:

· · · → Hp(Mε)
res→ Hp(M1(ε))⊕Hp(M2)

dif→ Hp(Σ)
ext→ Hp+1(Mε) → . . .

As already mentionned, the space kerD2 ⊕ I1/2 can be sent in H∗(M2).

For M1 we can use the results of Cheeger. Following [Ch83], we know that the
intersection cohomology of M1 coincide with ker(D1,max ◦D1,min) if H

n/2(Σ) = 0.
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And we know also that

IHp(M1) =

{
Hp(M1(ε)) if p ≤ n/2

Hp
c (M1(ε)) if p ≥ 1 + n/2.

(28)

These results can be used for our study only if D1,max and D1,min coincide. This
appears if and only if A has no eigenvalues in the interval ] − 1/2, 1/2[. As a
consequence of the expression of the eigenvalues of A, recalled in (3), this is the
case if and only if

• for n odd, the operator ∆Σ has no eigenvalues in ]0, 1[ on coexact (n −
1)/2 forms,

• for n even, the operator ∆Σ has no eigenvalues in [0, 3/4[ on n/2 or
(n/2)− 1 coclosed forms.

Thuse, if D1,max = D1,min, and this implies that Hn/2(Σ) = 0 in the case where
n is even, then the map

Hn/2(Mε)
res→ Hn/2(M1(ε))⊕Hn/2(M2)

is onto and then any small eigenvalue in this degree must come from an element
of kerD2 ⊕ I1/2 sent to 0. In this case also the map

Hn/2+1(Mε)
res→ Hn/2+1(M1(ε))⊕Hn/2+1(M2)

in one to one so there may exist small eigenvalues in this degree.
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