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The function u is supposed to be known for all t ≤ 0. Accordingly, the boundary-value problem (1.1)-(1.2) is supplemented with the "initial condition"

(1.3) u(x, t) = û(x, t), ∀t ≤ 0, where û : Ω × (-∞, 0] → R is a given function accounting for the initial past history of u. In the sequel, we agree to omit the dependence on x ∈ Ω. Among many other diffusive phenomena, equation (1.1) models heat propagation in a homogeneous isotropic heat conductor with hereditary memory. Here, the classical Fourier law ruling the heat flux is replaced by the more physical constitutive relation devised in the seminal paper of B.D. Coleman and M.E. Gurtin [START_REF] Coleman | Equipresence and constitutive equations for rigid heat conductors[END_REF], based on the key assumption that the heat flux evolution is influenced by the past history of the temperature gradient (see also [START_REF] Conti | Singular limit of differential systems with memory[END_REF][START_REF] Gentili | Thermodynamic properties and stability for the heat flux equation with linear memory[END_REF][START_REF] Giorgi | Uniform attractors for a non-autonomous semilinear heat equation with memory[END_REF][START_REF] Grabmüller | On linear theory of heat conduction in materials with memory[END_REF][START_REF] Londen | Nonlinear Volterra integrodifferential equation occurring in heat flow[END_REF][START_REF] Miller | An integrodifferential equation for rigid heat conductors with memory[END_REF][START_REF] Nunziato | On heat conduction in materials with memory[END_REF]). In that case, u represents the temperature variation field relative to the equilibrium reference value, f is a time-independent external heat supply, and the nonlinear term ϕ(u) has to comply with some dissipativity assumptions, although it can exhibit an antidissipative behavior at low temperatures. Such a nonlinearity is apt to describe, for instance, temperature-dependent radiative phenomena (cf. [START_REF] Lysikov | On the possibility of development of vibrations during heating of the transparent dielectric by optical radiation[END_REF]).

1.2. Basic assumptions. We take f ∈ L 2 (Ω) and ϕ ∈ C 2 (R), with ϕ(0) = 0, satisfying the growth and the dissipation conditions

|ϕ (u)| ≤ c(1 + |u| p ), p ∈ [0, 3], (1.4) lim inf |u|→∞ ϕ (u) > -λ 1 , (1.5)
where λ 1 > 0 is the first eigenvalue of the Laplace-Dirichlet operator on L 2 (Ω). Concerning the memory kernel, we assume

κ(s) = κ 0 - s 0 µ(σ) dσ, κ 0 > 0,
for some (nonnegative) nonincreasing summable function µ on R + = (0, ∞) of total mass ∞ 0 µ(s) ds = κ 0 .

Consequently, κ is nonincreasing and nonnegative. Moreover, we require the inequality (cf. [START_REF] Gatti | Attractors for semilinear equations of viscoelasticity with very low dissipation[END_REF]) (1.6) κ(s) ≤ Θµ(s)

to hold for every s > 0 and some Θ > 0. Observe that (1.6) implies the exponential decay κ(s) ≤ κ 0 e -s/Θ .

As a byproduct, κ is summable on R + . To avoid the presence of unnecessary constants, we agree to put

∞ 0 κ(s) ds = ∞ 0 sµ(s) ds = 1,
where the first equality follows from an integration by parts.

1.3. Asymptotic behavior. The present paper is focused on the asymptotic properties of the solutions to (1.1)- (1.3). Setting the problem in the so-called history space framework [START_REF] Dafermos | Asymptotic stability in viscoelasticity[END_REF] (see the next Section 3), in order to have a solution semigroup, our goal is to obtain global and exponential attractors of optimal regularity and finite fractal dimension. We address the reader to the books [START_REF] Babin | Attractors of evolution equations[END_REF][START_REF] Chepyzhov | Attractors for equations of mathematical physics[END_REF][START_REF] Hale | Asymptotic behavior of dissipative systems[END_REF][START_REF] Haraux | Systèmes dynamiques dissipatifs et applications[END_REF][START_REF] Ladyzhenskaya | Attractors for semigroups and evolution equations[END_REF][START_REF] Miranville | Attractors for dissipative partial differential equations in bounded and unbounded domains[END_REF][START_REF] Temam | Infinite-dimensional dynamical systems in mechanics and physics[END_REF] for a detailed discussion on the theory of attractors. The existence of the global attractor in the weak-energy space H 0 (where u ∈ L 2 (Ω)) has been proved in [START_REF] Conti | Singular limit of differential systems with memory[END_REF], generalizing some earlier results from [START_REF] Giorgi | Uniform attractors for a non-autonomous semilinear heat equation with memory[END_REF]. However, both its finite fractal dimension and the existence of exponential attractors are established only for p < 3. It should be noted that, without growth conditions on ϕ other than (1.4) (e.g. the same polynomial control rate from above and below), the case p = 3 is critical, which explains the difficulties faced by [START_REF] Conti | Singular limit of differential systems with memory[END_REF].

In this work, we are mainly interested to solutions in the higher regularity space H 1 (where u ∈ H 1 0 (Ω)). Here, the treatment of the case p = 3 is even more delicate, since the same problems encountered in [START_REF] Conti | Singular limit of differential systems with memory[END_REF] arise from the very beginning. Besides, our assumptions on the memory kernel µ are more general (as shown in [START_REF] Chepyzhov | Some remarks on stability of semigroups arising from linear viscoelasticity[END_REF], the most general within the class of decreasing kernels). The strategy to deal with the critical case leans on an instantaneous regularization of u, obtained by means of estimates of "hyperbolic" flavor, demanding in turn a skillful treatment of the memory terms. The effect of such a regularization is to render the nonlinearity subcritical in all respects, allowing to construct regular exponentially attracting sets in H 1 . Incidentally, once the existence of global and exponential attractors in H 1 is established, it is standard matter to recover analogous results in the less regular space H 0 , extending the analysis of [START_REF] Conti | Singular limit of differential systems with memory[END_REF] to the critical case p = 3. 1.4. Plan of the paper. The functional setting is introduced in the next Section 2. In Section 3, we recall some known facts on the solution semigroup. The main result are then stated in Section 4. The rest of the paper is devoted to the proofs: in Section 5, we study an auxiliary problem, which will be used in the subsequent Section 6, in order to draw the existence of a strongly continuous semigroup in a more regular space; in Section 7, we demonstrate the existence of a regular exponentially attracting set, while the final Section 8 contains the conclusions of the proofs.

Functional Setting and Notation

Throughout this work, I(•) will stand for a generic increasing positive function. Given a Hilbert space H, we denote by •, • H and • H its inner product and norm, and we call L(H) the Banach space of bounded linear operators on H. For R > 0, we put

B H (R) = {z ∈ H : z H ≤ R}. The Hausdorff semidistance between two sets X , Y ⊂ H is defined as dist H (X , Y) = sup x∈X inf y∈Y x -y H , while the fractal dimension of a (relatively) compact set K ⊂ H is dim H (K) = lim sup ε→0 + ln N ε (K) ln(1/ε) ,
N ε (K) being the smallest number of ε-balls of H necessary to cover K. We consider the strictly positive Laplace-Dirichlet operator on L 2 (Ω)

A = -∆, dom(A) = H 2 (Ω) ∩ H 1 0
(Ω), generating, for r ∈ R, the scale of Hilbert spaces (we omit the index r when r = 0)

H r = dom(A r/2 ), u, v r = A r/2 u, A r/2 v L 2 (Ω) .
In particular,

H = L 2 (Ω), H 1 = H 1 0 (Ω), H 2 = H 2 (Ω) ∩ H 1 0 (Ω). Whenever r 1 > r 2 , the embedding H r 1 ⊂ H r 2 is compact and u r 1 ≥ λ (r 1 -r 2 )/2 1 u r 2 , ∀u ∈ H r 1 .
Next, we introduce the memory spaces

M r = L 2 µ (R + ; H r ), η, ψ M r = ∞ 0 µ(s) η(s), ψ(s) r ds,
along with the infinitesimal generator of the right-translation semigroup on M r , i.e. the linear operator

T η = -η , dom r (T ) = η ∈ M r : η ∈ M r , η(0) = 0 ,
where the prime stands for the distributional derivative, and η(0) = lim s→0 η(s) in H r . For every η ∈ dom r (T ), we have the basic inequality (see [START_REF] Grasselli | Uniform attractors of nonautonomous systems with memory, in "Evolution Equations, Semigroups and Functional Analysis[END_REF])

(2.1) T η, η M r ≤ 0.
Finally, we define the phase spaces

H r = H r × M r+1 , V = H 2 × M 2 .
A word of warning. Without explicit mention, we will perform several formal estimates, to be in a position to exploit (2.1), for instance. As usual, the estimates are justified within a proper Galerkin approximation scheme.

The Semigroup

Introducing the auxiliary variable η = η t (s) : [0, ∞) × R + → R, accounting for the integrated past history of u, and formally defined as (see [START_REF] Dafermos | Asymptotic stability in viscoelasticity[END_REF][START_REF] Grasselli | Uniform attractors of nonautonomous systems with memory, in "Evolution Equations, Semigroups and Functional Analysis[END_REF]) 

(
         ∂ t u + Au + ∞ 0 µ(s)Aη(s) ds + ϕ(u) = f, ∂ t η = T η + u, (u(0), η 0 ) = z,
where z = (u 0 , η 0 ) and f ∈ H is independent of time. We address the reader to [START_REF] Chepyzhov | Stability of abstract linear semigroups arising from heat conduction with memory[END_REF][START_REF] Grasselli | Uniform attractors of nonautonomous systems with memory, in "Evolution Equations, Semigroups and Functional Analysis[END_REF] for more details on the equivalence between the two formulations, which, within the proper functional setting, is not merely formal.

Problem (3.2) generates a (strongly continuous) semigroup of solutions S(t), on both the phase spaces H 0 and H 1 (see, e.g. [START_REF] Conti | Singular limit of differential systems with memory[END_REF]). Thus, (u(t), η t ) = S(t)z.

In particular, η t has the explicit representation formula [START_REF] Grasselli | Uniform attractors of nonautonomous systems with memory, in "Evolution Equations, Semigroups and Functional Analysis[END_REF] (3.3)

η t (s) = s 0 u(t -y)dy s ≤ t, η 0 (s -t) + t 0 u(t -y)dy s > t. Remark 3.2.
As shown in [START_REF] Chepyzhov | Stability of abstract linear semigroups arising from heat conduction with memory[END_REF], the linear homogeneous version of (3.2), namely,

(3.4)    ∂ t u + Au + ∞ 0 µ(s)Aη(s) ds = 0, ∂ t η = T η + u,
generates a strongly continuous semigroup L(t) of (linear) contractions on every space H r , satisfying, for some M ≥ 1, ε > 0 independent of r, the exponential decay

(3.5) L(t) L(H r ) ≤ M e -εt .
Let us briefly recall some known facts from [START_REF] Conti | Singular limit of differential systems with memory[END_REF].

• For ı = 0, 1, there exists R ı > 0 such that

B ı := B H ı (R ı )
is an absorbing set for S(t) in H ı . • Bounded sets B ⊂ H 0 are exponentially attracted by B 1 in the norm of H 0 :

(3.6) dist H 0 (S(t)B, B 1 ) ≤ I B H 0 e -ε 0 t , for some ε 0 > 0. • For every z ∈ B H 1 (R), (3.7) S(t)z 2 H 1 + t+1 t u(τ ) 2 2 dτ ≤ I(R).
Remark 3.3. These results have been obtained under the commonly adopted assumption

(3.8) µ (s) + δµ(s) ≤ 0, a.e. s > 0,
for some δ > 0. On the other hand, it is not hard to show that (1.6) can be equivalently written as

(3.9) µ(s + σ) ≤ Ce -δσ µ(s), a.e. s > 0, ∀σ ≥ 0,
for some δ > 0 and C ≥ 1, which is easily seen to coincide with (3.8) when C = 1. However, if C > 1, the gap between (3.8) and (3.9) is quite relevant (see [START_REF] Chepyzhov | Some remarks on stability of semigroups arising from linear viscoelasticity[END_REF] for a detailed discussion). For instance, (3.8) does not allow µ to have (even local) flat zones. Besides, any compactly supported µ fulfills (3.9), but it clearly need not satisfy (3.8). Nonetheless, the aforementioned results remain true within (1.6), although the proofs require the introduction of a suitable functional in order to reconstruct the energy, as in the case of the following Lemma 7.3.

Main Results

Defining the vector (4.1)

z f = (u f , η f ) ∈ H 2 × dom 2 (T ) ⊂ V, with u f = 1 2 A -1 f and η f (s) = u f s,
the main result of the paper reads as follows. Theorem 4.1. There exists a compact set E ⊂ V with dim V (E) < ∞, and positively invariant under the action of S(t), satisfying the exponential attraction property

dist V (S(t)B, E) ≤ I B H 1 e -ω 1 t √ t , ∀t > 0,
for some ω 1 > 0 and every bounded set B ⊂ H 1 . Moreover,

E = z f + E ,
where E is a bounded subset of H 3 , whose second component belongs to dom 2 (T ).

Remark 4.2. The theorem implicitly makes a quite interesting assertion: whenever t > 0 and

B ⊂ H 1 is bounded, S(t)B is a bounded subset of V (cf. Proposition 6.1 below).
Such a set E is called an exponential attractor. It is worth noting that, as η f ∈ dom 2 (T ), the second component of E belongs to dom 2 (T ) as well. Besides, if f ∈ H 1 , it is immediate to deduce the boundedness of E in H 3 .

Corollary 4.3. With respect to the Hausdorff semidistance in H 1 , the attraction property improves to

dist

H 1 (S(t)B, E) ≤ I B H 1 e -ω 1 t .
As a byproduct, we establish the existence of the (H 1 , V)-global attractor.

Theorem 4.4. There exists a compact set A ⊂ E with dim V (A) < ∞, and strictly invariant under the action of S(t), such that

lim t→∞ dist V (S(t)B, A) = 0, for every bounded set B ⊂ H 1 .
As observed in [START_REF] Conti | Singular limit of differential systems with memory[END_REF], the semigroup S(t) fulfills the backward uniqueness property on the attractor (in fact, on the whole space H 0 ), a typical feature of equations with memory. A straightforward consequence is Corollary 4.5. The restriction of S(t) on A is a group of operators.

The next result provides the link between the two components of the solutions on the attractor. Recall that the attractor is made by the sections (say, at time t = 0) of all complete bounded trajectories of the semigroup (see, e.g. [START_REF] Haraux | Systèmes dynamiques dissipatifs et applications[END_REF]). Proposition 4.6. Any solution (u(t), η t ) lying on A satisfies (3.1) for all t ∈ R.

Remark 4.7. In particular, we obtain the uniform estimates

sup t∈R η t (s) 2 ≤ c 0 s and sup t∈R sup s>0 (η t ) (s) 2 ≤ c 0 ,
for every (u(t), η t ) lying on the attractor, with c 0 = sup{ u 0 2 : (u 0 , η 0 ) ∈ A}.

We now focus our attention on S(t) as a semigroup on the phase space H 0 . Indeed, the set E of Theorem 4.1 turns out to be an exponential attractor on H 0 as well.

Corollary 4.8. We have dist H 0 (S(t)B, E) ≤ I B H 0 e -ω 0 t , for some ω 0 > 0 and every bounded set B ⊂ H 0 . Corollary 4.9. The set A is also the global attractor for the semigroup S(t) on H 0 ; namely,

lim t→∞ dist H 0 (S(t)B, A) = 0, whenever B is a bounded subset of H 0 .
The remaining of the paper is devoted to the proofs of the results.

An Auxiliary Problem

This section deals with the analysis of the Cauchy problem in the variable

Z(t) = (u(t), η t ) (5.1)          ∂ t u + Au + ∞ 0 µ(s)Aη(s) ds = f + g, ∂ t η = T η + u, Z(0) = z, where z = (u 0 , η 0 ) ∈ H 1 , f ∈ H is independent of time and g ∈ L 2 loc (R + ; H 1
). We need a definition and a preliminary lemma. Definition 5.1. A nonnegative function Λ on R + is said to be translation bounded if

T(Λ) := sup t≥0 t+1 t Λ(τ ) dτ < ∞.
Lemma 5.2. For ı = 0, 1, 2, let Λ ı be nonnegative functions such that T(Λ ı ) ≤ m ı . Assuming Λ 0 absolutely continuous, let the differential inequality

d dt Λ 0 ≤ Λ 0 Λ 1 + Λ 2
hold almost everywhere in R + . Then, for every t ≥ 0,

Λ 0 (t) ≤ e m 1 Λ 0 (0)e -t + e m 1 (m 0 +m 0 m 1 +m 2 )
1-e -1

.

Proof. Setting Λ1 (t) = Λ 1 (t) -1 -m 1 , Λ2 (t) = (1 + m 1 )Λ 0 (t) + Λ 2 (t),
we rewrite the differential inequality as

d dt Λ 0 ≤ Λ 0 Λ1 + Λ2 . Observe that t τ Λ1 (s) ds ≤ -(t -τ ) + m 1 , ∀t ≥ τ,
and

T( Λ2 ) ≤ m 0 + m 0 m 1 + m 2 .
Hence, an application of the Gronwall lemma entails Λ 0 (t) ≤ e m 1 Λ 0 (0)e -t + e m 1 t 0 e -(t-τ ) Λ2 (τ ) dτ, and the inequality (cf. [START_REF] Chepyzhov | Averaging of 2D Navier-Stokes equations with singularly oscillating forces[END_REF])

t 0 e -(t-τ ) Λ2 (τ ) dτ ≤ 1 1-e -1 T( Λ2 )
yields the desired result.

Given Z = (u, η) ∈ V and f ∈ H, we define the functional

Λ[Z, f ] = u 2 2 + α Z 2 H 1 + 2 η, u M 2 -2 f, Au + 8 f 2 , with α > 0 large enough such that (5.2) 1 2 Z 2 V ≤ Λ[Z, f ] ≤ 2α Z 2 V + α f 2 . Moreover, given u ∈ L 2 loc (R + ; H 2 ), we set 
F (t; u) = t 0 µ(t -s) u(s) 2 2 ds.
Remark 5.3. Exchanging the order of integration, we have

(5.3) T F (•, u) ≤ κ 0 T u 2 2 .
We now state and prove several results on the solution Z(t) to problem (5.1).

Lemma 5.4.

There is a structural constant α > 0, large enough to comply with (5.2), such that the functional

Λ(t) = Λ[Z(t), f ]
satisfies (within the approximation scheme) the differential inequality

(5.4) d dt Λ(t) ≤ µ(t)Λ(t) + ϑF (t; u) + ϑ f 2 + ϑ g(t) 2 1 ,
for some positive constant ϑ = ϑ(α).

Proof. Multiplying the first equation of (5.1) by A∂ t u, and using the second equation, we obtain the differential equality

d dt u 2 2 + 2 η, u M 2 -2 f, Au + 2 ∂ t u 2 1 = 2κ 0 u 2 2 + 2 T η, u M 2 + 2 g, ∂ t u 1 .
Arguing exactly as in [START_REF] Di Plinio | On the strongly damped wave equation with memory[END_REF]Lemma 4.3], we find α > 0, depending only on the total mass κ 0 of µ, such that

(5.5) 2 T η, u M 2 ≤ u 2 2 + µ u 2 2 + αF -2α T η, η M 2 .
Clearly, due to (2.1), the estimate is still valid for a larger α. Thus, controlling the last term as

2 g, ∂ t u 1 ≤ g 2 1 + ∂ t u 2 1 , we end up with d dt u 2 2 + 2 η, u M 2 -2 f, Au (5.6) ≤ (1 + 2κ 0 ) u 2 2 + µ u 2 2 + αF -2α T η, η M 2 + g 2 1 .
A further multiplication of (5.1) by Z in

H 1 entails d dt Z 2 H 1 + 2 u 2 2 = 2 T η, η M 2 + 2 f, Au + 2 g, u 1 .
Exploiting the straightforward relation

2 f, Au + 2 g, u 1 ≤ u 2 2 + 2 f 2 + 2λ -1 1 g 2 1 ,
we are led to the inequality

(5.7) d dt Z 2 H 1 + u 2 2 ≤ 2 T η, η M 2 + 2 f 2 + 2λ -1 1 g 2 1 .
We now choose α ≥ 1 + 2κ 0 such that (5.2) and (5.5) hold. Adding (5.6) and α-times (5.7), we finally get (5.4).

Lemma 5.5. Assume that

T Z 2 V ≤ β and g(t) 1 ≤ γ 1 + Z(t) 2 V , for some β, γ > 0. Then, there exists D = D(β, γ, f ) > 0 such that Z(t) V ≤ D 1 √ t + 1 .
If z ∈ V, the estimate improves to

Z(t) V ≤ D z V e -t + D.
Proof. From (5.2), it is readily seen that

g 1 ≤ γ + 2γΛ. Thus, defining Λ 1 (t) = µ(t) + 2ϑγ g(t) 1 , Λ 2 (t) = ϑF (u; t) + ϑ f 2 + 2ϑγ g(t) 1 , inequality (5.4) turns into d dt Λ ≤ ΛΛ 1 + Λ 2 .
Using again (5.2), and recalling (5.3), we learn that

T(Λ) + T(Λ 1 ) + T(Λ 2 ) ≤ C,
for some C > 0 depending (besides on κ 0 ) only on β, γ, f . Hence, Lemma 5.2 together with a further application of (5.2) entail the second assertion of the lemma. If z ∈ V, we apply a standard trick: we set

Λ(t) = t 1 + t Λ(t), which satisfies d dt Λ ≤ ΛΛ 1 + Λ2 ,
where Λ2 (t) = Λ(t) + Λ 2 (t). Note that

T( Λ) + T( Λ2 ) ≤ 2C.
As in the previous case, the first assertion follows from Lemma 5.2 and (5.2).

Lemma 5.6. Suppose that z ∈ V, f = 0 and

g(t) 1 ≤ k Z(t) V ,
for some k ≥ 0. Then, there are D 1 > 0 and

D 2 = D 2 (k) > 0 such that Z(t) V ≤ D 1 z V e D 2 t .
Proof. Under these assumptions, (5.2) and (5.4) become

1 2 Z 2 V ≤ Λ ≤ 2α Z 2 V and d dt Λ ≤ (µ + 2ϑαk 2 )Λ + ϑF.
Moreover, exchanging the order of integration,

t 0 F (τ ) dτ ≤ κ 0 t 0 u(τ ) 2 2 dτ ≤ 2κ 0 t 0 Λ(τ ) dτ.
Hence, integrating the differential inequality on (0, t), we arrive at

Λ(t) ≤ Λ(0) + t 0 µ(τ ) + 2ϑ(αk 2 + κ 0 )Λ(τ ) dτ.
Making use of the integral Gronwall lemma,

Z(t) 2 V ≤ 2Λ(t) ≤ 2Λ ( 
0)e κ 0 e 2ϑ(αk 2 +κ 0 )t ≤ 4αe κ 0 z 2 V e 2ϑ(αk 2 +κ 0 )t , and the result follows by choosing D 1 = 4αe κ 0 and D 2 = 2ϑ(αk 2 + κ 0 ).

The Semigroup on V

We begin with a suitable regularization property for the solutions departing from H 1 . Proposition 6.1. Let z ∈ B H 1 (R). Then, for every t > 0, S(t)z ∈ V and the estimate

S(t)z V ≤ I(R) 1 √ t + 1 holds. If in addition z ∈ V, S(t)z V ≤ I(R) z V e -t + I(R).
Proof. We know from (3.7) that the solution Z(t) = S(t)z fulfills T Z 2 V ≤ I(R), whereas (1.4), (3.7) and the Agmon inequality

(6.1) u 2 L ∞ (Ω) ≤ c Ω u 1 u 2 entail ϕ(u) 1 = ϕ (u)∇u ≤ ϕ (u) L ∞ (Ω) u 1 ≤ I(R) 1 + z(t) 2 V .
Hence, Lemma 5.5 with g = -ϕ(u) applies. Corollary 6.2. There exists R V > 0 such that the set

B V := B V (R V )
has the following property: for every R > 0 there is a time t

V = t V (R) > 0 such that S(t)B H 1 (R) ⊂ B V , ∀t ≥ t V .
Proof. Let z ∈ B 1 . According to Proposition 6.1,

S(t)z V ≤ I(R 1 ) 1 √ t + 1 .
Thus, setting R V = 2I(R 1 ), the inclusion S(t)B 1 ⊂ B V holds for every t ≥ 1. Since B 1 is absorbing in H 1 , for every R > 0 there exists

t 1 = t 1 (R) such that S(t)B H 1 (R) ⊂ B 1 whenever t ≥ t 1 . We conclude that S(t)B H 1 (R) ⊂ S(t -t 1 )B 1 ⊂ B V , ∀t ≥ t V , with t V = t 1 + 1.
In particular, Proposition 6.1 tells that S(t) is a semigroup on V, which, by Corollary 6.2, possesses the absorbing set B V . In fact, S(t) is a strongly continuous semigroup, as the next proposition shows.

Proposition 6.3. For ı = 1, 2, let z ı ∈ B V (R). Then, we have the continuous dependence estimate S(t)z 1 -S(t)z 2 V ≤ D 1 z 1 -z 2 V e I(R)t . Proof. Calling (u ı (t), η t ı ) = S(t)z ı , the difference (ū(t), ηt ) = S(t)z 1 -S(t)z 2 fulfills the problem          ∂ t ū + Aū + ∞ 0 µ(s)Aη(s) ds = ϕ(u 2 ) -ϕ(u 1 ), ∂ t η = T η + ū, z(0) = z 1 -z 2 .
Due to Proposition 6.1, u ı 2 ≤ I(R). Exploiting (1.4) and the Agmon inequality (6.1), it is then immediate to see that

ϕ(u 2 ) -ϕ(u 1 ) 1 ≤ I(R) ū 2 ,
and the claim is a consequence of Lemma 5.6 with f = 0 and g = ϕ(u 2 ) -ϕ(u 1 ).

Proposition 6.4. For every fixed z ∈ V,

t → S(t)z ∈ C([0, ∞), V).
Proof. Let τ > 0 be fixed. Given z ∈ V, choose a regular sequence

z n → z in V, such that t → S(t)z n ∈ C([0, ∞), V). For every n, m ∈ N, Proposition 6.3 provides the estimate sup t∈[0,τ ] S(t)z n -S(t)z m V ≤ C z n -z m V ,
for some C > 0 depending on τ and on the V-bound of z n . Therefore, t → S(t)z n is a Cauchy sequence in C([0, τ ], V). Accordingly, its limit t → S(t)z belongs to C([0, τ ], V). Since τ > 0 is arbitrary, we are done.

Finally, we dwell on the linear homogeneous case, that is, system (3.4). From the previous results, we know that L(t) is a strongly continuous semigroup of linear operators on V. We prove that L(t) is exponentially stable as well. Proposition 6.5. The semigroup L(t) satisfies the exponential decay property

(6.2) L(t) L(V) ≤ M 1 e -ε 1 t ,
for some M 1 ≥ 1 and ε 1 > 0.

Proof. Let z ∈ V. By virtue of (3.5) we have that

η t M 2 ≤ L(t)z H 1 ≤ M e -εt z H 1 .
Thus,

∞ 0 η τ 2 M 2 dτ < ∞.
On the other hand, multiplying (3.4) times (u, η) in H 1 , and using (2.1), we get

d dt S(t)z 2 H 1 + 2 u(t) 2 2 ≤ 0.
Integrating the inequality, we obtain

∞ 0 u(τ ) 2 2 dτ ≤ 1 2 z 2 H 1 < ∞.
We conclude that

∞ 0 L(τ )z 2 V dτ < ∞, ∀z ∈ V,
and the result follows from the celebrated theorem of R. Datko [START_REF] Datko | Extending a theorem of A.M. Liapunov to Hilbert space[END_REF] (see also [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]).

Regular Exponentially Attracting Sets

7.1. The result. We show the existence of a compact subset of V which exponentially attracts B V , with respect to the Hausdorff semidistance in V. To this end, we introduce the further space

[8] W = η ∈ M 4 ∩ dom 2 (T ) : Ξ[η] < ∞ , where Ξ[η] = T η 2 M 2 + sup x≥1 x (0,1/x)∪(x,∞) µ(s) η(s) 2 2 ds .
This is a Banach space endowed with the norm

η 2 W = η 2 M 4 + Ξ[η]
. Finally, we define the product space

Z = H 3 × W ⊂ H 3 .
Remark 7.1. By means of a slight generalization of [27, Lemma 5.5], the embedding Z ⊂ V is compact (this is the reason why Z is needed), contrary to the embedding H 3 ⊂ V, which is clearly continuous, but never compact. Moreover, closed balls of Z are compact in V (see [START_REF] Conti | Two-dimensional reaction-diffusion equations with memory[END_REF]). Theorem 7.2. Let z f be given by (4.1). There exists R > 0 such that

B := z f + B Z (R )

fulfills the following properties:

(i)

There is t = t (R ) > 0 such that S(t)B ⊂ B for every t ≥ t . (ii) The inequality dist V (S(t)B V , B) ≤ C 1 e -ε 1
t holds for some C 1 > 0, with ε 1 as in (6.2). Theorem 7.2 is a consequence of the next lemma, proved in Subsection 7.2. Lemma 7.3. Let I ı (•) denote generic increasing positive functions. For every z ∈ B V (R), the semigroup S(t)z admits the decomposition

S(t)z = z f + 1 (t; z) + 2 (t; z), where 1 (t; z) V ≤ I 1 (R)e -ε 1 t , (7.1) 2 (t; z) Z ≤ I 2 (R). (7.2)
If in addition z ∈ z f + B Z ( ), we have the further estimate

(7.3) 1 (t; z) Z ≤ I 3 ( )e -ε 2 t + I 4 (R), for some ε 2 > 0.
Proof of Theorem 7.2. For any given R, > 0 and

z ∈ B V (R) ∩ [z f + B Z ( )],
it is readily seen from (7.2)-(7.3) that (7.4)

S(t)z -z f Z ≤ I 3 ( )e -ε 2 t + I 2 (R) + I 4 (R).
We fix then B by selecting

R = 2I 2 (R V ) + 2I 4 (R V ),
with R V as in Corollary 6.2. In particular, defining

= I 3 (R ) + I 2 ( B V ) + I 4 ( B V ),
inequality (7.4) provides the inclusion

S(t)B ⊂ z f + B Z ( ), ∀t ≥ 0.
On the other hand, by Corollary 6.2, there is a time t e ≥ 0 (the entering time of B V into itself) for which

S(t e )B ⊂ S(t e )B V ⊂ B V = B V (R V ).
In conclusion,

S(t e )B ∈ B V (R V ) ∩ [z f + B Z ( )],
and a further application of (7.4) for t ≥ t e leads to

S(t)z -z f Z ≤ I 3 ( )e -ε 2 (t-t e ) + 1 2 R , ∀z ∈ B.
Accordingly, (i) holds true by taking a sufficiently large t = t (R ) ≥ t e . Finally, since

I 2 (R V ) < R , relations (7.1)-(7.2) immediately entail the estimate dist V (S(t)B V , B) ≤ I 1 (R V )e -ε 1 t , establishing (ii).
7.2. Proof of Lemma 7.3. We will make use of the following technical lemma (see [START_REF] Conti | Singular limit of differential systems with memory[END_REF] for a proof).

Lemma 7.4. Given η 0 ∈ W and u ∈ L ∞ loc (R + ; H 2 ), let η = η t (s) be the unique solution to the Cauchy problem in M 2 ∂ t η t = T η t + u(t), η 0 = η 0 .
Then, η t ∈ dom 2 (T ) for every t > 0, and

Ξ[η t ] ≤ Q 2 Ξ[η 0 ]e -2νt + Q 2 u 2 L ∞ (0,t;H 2 )
, for some Q ≥ 1 and some ν > 0, both independent of η 0 and u.

In the sequel, C > 0 will denote a generic constant, which may depend (increasingly) only on R. Given z ∈ B V (R), we put

1 (t; z) = L(t)(z -z f ), 2 (t; z) = W (t)
, where, by comparison, the function W (t) = (w(t), ξ t ) solves the problem (7.5)

         ∂ t w + Aw + ∞ 0 µ(s)Aξ(s)ds + ϕ(u) = 0, ∂ t ξ = T ξ + w, W (0) = 0.
In light of Proposition 6.5, we get at once (7.1). Indeed,

L(t)(z -z f ) V ≤ M 1 z -z f V e -ε 1 t ≤ Ce -ε 1 t .
If z ∈ z f + B Z ( ), the decay property (3.5) provides the estimate

L(t)(z -z f ) H 3 ≤ M z -z f H 3 e -εt ≤ M e -εt .
The second component of L(t)(z -z f ) = (v(t), ψ t ) fulfills the problem

∂ t ψ t = T ψ t + v, ψ 0 = η 0 -η f ,
and the V-estimate above ensures the uniform bound

v(t) 2 ≤ C.
Therefore, by Lemma 7.4,

Ξ[ψ t ] ≤ Q 2 Ξ[η 0 -η f ]e -2νt + C ≤ Q 2 2 e -2νt + C.
Putting ε 2 = min{ε, ν}, we obtain

L(t)(z -z f ) 2 Z = L(t)(z -z f ) 2 H 3 + Ξ[ψ t ] ≤ (M 2 + Q 2 ) e -2ε 2 t
. This proves (7.3). We now turn to system (7.5). Thanks to Proposition 6.1,

u(t) 2 ≤ C.
By (1.4) 

≤ -ξ 2 M 4 + 2Θ w 4 ∞ 0 µ(s) ξ(s) 4 ds ≤ -1 2 ξ 2 M 4 + κ 0 Θ 2 w 2 4 .
Defining then Ψ(t) = Θ 0 W (t) 2 H 3 + Υ(t), for Θ 0 > max{Θ, κ 0 Θ 2 } (so that, in particular, Ψ and W 2 H 3 control each other) the differential inequality d dt Ψ + Ψ ≤ C, holds for some = (Θ 0 , Θ, λ 1 ) > 0. Hence, the Gronwall lemma gives the uniform bound

W (t) H 3 ≤ C.
Finally, applying Lemma 7.4 to the second equation of (7.5), we get

Ξ[ξ t ] ≤ C.
Summarizing, W (t) Z ≤ C. This establishes (7.2) and completes the proof of the lemma.

Exponential Attractors

The next step is to demonstrate the existence of a regular set E which exponentially attracts B V . Theorem 8.1. There exists a compact set E ⊂ V with dim V (E) < ∞, and positively invariant for S(t), such that dist V (S(t)B V , E) ≤ C e -ω 1 t , for some C > 0 and some ω 1 > 0.

We preliminary observe that, thanks to the exponential decay property of Theorem 7.

2 dist V (S(t)B V , B) ≤ C 1 e -ε 1 t ,
and the continuous dependence estimate provided by Proposition 6.3, the transitivity of the exponential attraction, devised in [START_REF] Fabrie | Uniform exponential attractors for a singularly perturbed damped wave equation[END_REF], applies. Hence, it suffices to prove the existence of a set E complying with the statement of the theorem, but satisfying only the weaker exponential decay estimate

(8.1) dist V (S(t)B, E) ≤ C 0 e -ωt ,
for some C 0 > 0 and some ω > 0. Thus, in light of the abstract result from [START_REF] Efendiev | Exponential attractors for a nonlinear reaction-diffusion system in R 3[END_REF] on the existence of exponential attractors for discrete semigroups in Banach spaces, and thereafter constructing the attractor for the continuous case in a standard way, Theorem 8.1 applies provided that we show the following facts: (i) There exist positive functions γ(•) and Γ(•), with γ vanishing at infinity, such that the decomposition

S(t)z 1 -S(t)z 2 = 1 (t; z 1 , z 2 ) + 2 (t; z 1 , z 2 ),
holds for every z 1 , z 2 ∈ B, where

1 (t; z 1 , z 2 ) V ≤ γ(t) z 1 -z 2 V , 2 (t; z 1 , z 2 ) Z ≤ Γ(t) z 1 -z 2 V . (ii) There exists K ≥ 0 such that sup z∈B S(t)z -S(τ )z V ≤ K|t -τ |, ∀t, τ ∈ [t , 2t ].
Indeed, recalling that B is closed in V, by means of (i) we obtain the existence of an exponential attractor E d ⊂ B for the discrete semigroup S n := S(nt ) : B → B. Then, we define

E = t∈[t ,2t ] S(t)E d .
Due to (ii) and Proposition 6.3, the map

(t, z) → S(t)z : [t , 2t ] × B → B,
is Lipschitz continuous with respect to the (R × V, V)-topology. This guarantees that E shares the same features of E d (e.g. positive invariance and finite fractal dimension).

Proof of (i). Till the end of the section, the generic constant C > 0 depends only on B. Setting S(t)z ı = (u ı (t), η t ı ) and z = z 1 -z 2 , we write

S(t)z 1 -S(t)z 2 = L(t)z + W (t),
where W (t) = ( w(t), ξt ) solves the problem (8.2)

         ∂ t w + A w + ∞ 0 µ(s)A ξ(s)ds = ϕ(u 2 ) -ϕ(u 1 ), ∂ t ξ = T ξ + w, W (0) = 0.
By Proposition 6.5,

L(t)z V ≤ M 1 z V e -ε 1 t .
Taking advantage of (1.4) and Proposition 6.3,

ϕ(u 2 (t)) -ϕ(u 1 (t)) 2 ≤ C u 2 (t) -u 1 (t) 2 ≤ C z V e Ct .
Hence, multiplying (8.2) by W in H 3 , and using (2.1), we obtain

d dt W 2 H 3 ≤ C z 2 V e Ct ,
and an integration in time readily gives

W (t) 2 H 3 ≤ C z 2 V e Ct .
Accordingly, from Lemma 7.4 applied to the second equation of (8.2),

Ξ[ ξt ] ≤ C z 2 V e Ct .
Consequently, we learn that

W (t) Z ≤ C z V e Ct .
Therefore, (i) holds with the choice 1 (t; z 1 , z 2 ) = L(t)z and 2 (t; z 1 , z 2 ) = W (t).

Proof of (ii). We will show that Thus, applying Lemma 5.6 with f = 0 and g = -ϕ (u)ũ, and noting that z V ≤ C, the claim follows.

Proofs of the Main Results

We have now all the ingredients to carry out the proofs of the results stated in Section 4.

Proofs of Theorem 4.1 and Corollary 4.3. Let B ⊂ B H 1 (R), for some R > 0. According to Corollary 6.2, there is a positive time t V = t V (R) such that

S(t)B ⊂ B V , ∀t ≥ t V .
Therefore, by Theorem 8.1, dist V (S(t)B, E) ≤ I(R)e -ω 1 t , ∀t ≥ t V .

On the other hand, by virtue of Proposition 6. is easily seen to hold for some c > 0 and every z 1 , z 2 ∈ H 0 . Once again, we take advantage of the transitivity of the exponential attraction [START_REF] Fabrie | Uniform exponential attractors for a singularly perturbed damped wave equation[END_REF], and we obtain the required exponential attraction property.

Similarly to the case of Theorem 4.4, Corollary 4.9 is a byproduct of Corollary 4.8 and of the V-regularity of the (exponentially) attracting set.

1 . Introduction 1 . 1 .

 111 The model equation. Let Ω ⊂ R 3 be a bounded domain with a sufficiently smooth boundary ∂Ω. For t > 0, we consider the integrodifferential equation in the variable u = u(x, t): Ω × R → R (1.1) ∂ t u -∆u -∞ 0 κ(s)∆u(t -s) ds + ϕ(u) = f,subject to the Dirichlet boundary condition (1.2) u(x, t) |x∈∂Ω = 0.

Remark 3 . 1 .

 31 The original problem (1.1)-(1.3) is recovered by choosing u 0 = û(0), η 0 (s) = s 0 û(-y)dy.

  sup t∈[t ,2t ] sup z∈B ∂ t S(t)z V ≤ C, which clearly implies (ii). For z = (u 0 , η 0 ) ∈ B, the function (ũ(t), ηt ) = ∂ t S(t)z fulfills the Cauchy problem          ∂ t ũ + Aũ + ∞ 0 µ(s)Aη(s) ds + ϕ (u)ũ = 0, ∂ t η = T η + ũ, (ũ(0), η0 ) = z, where z = (-Au 0 -∞ 0 µ(s)Aη 0 (s) ds -ϕ(u 0 ) + f, T η 0 + u 0 ). Observe that ϕ (u)ũ 1 ≤ C ũ 2 .

  , it is then standard matter to verify that

						ϕ(u(t)) 2 ≤ C.
	Multiplying (7.5) by W in H 3 , and using (2.1), we arrive at
		d dt	W 2 H 3 + 2 w 2 4 ≤ ϕ(u) 2 w 4 ≤ w 2 4 + C.
	In order to reconstruct the energy, following [2], we introduce the functional
				Υ(t) =	0	∞	k(s) ξ t (s) 2 4 ds,
	which, in light of (1.6), satisfies the bound
						Υ ≤ Θ ξ 2 M 4 ,
	and the differential inequality		
	d dt	Υ = -ξ 2 M 4 + 2	0	∞	k(s) ξ(s), w 4 ds

  The remaining properties of E are ensured by Theorem 8.1. With respect to the Hausdorff semidistance in H 1 , we havedist H 1 (S(t)B, E) ≤ λ < s ≤ t + τ .From the arbitrariness of τ > 0, we conclude that (3.1) is valid for all t > 0. If t ≤ 0, the argument is similar, and left to the reader.Proof of Corollary 4.8. Let B ⊂ B H 0 (R), for some R > 0. From (3.6), dist H 0 (S(t)B, B 1 ) ≤ I(R)e -ε 0 t , whereas Corollary 4.3 implies, in particular, that dist H 0 (S(t)B 1 , E) ≤ I(R 1 )e -ω 1 t .

		1,	
	dist V (S(t)B, E) ≤	I(R) √ t	, ∀t ∈ (0, t V ).
	Collecting the two inequalities we obtain		
	dist V (S(t)B, E) ≤ I(R)	e -ω 1 t √ t	, ∀t > 0.
	-1/2		
	1		
	Observing that		
	(u τ (t + τ ), η t+τ τ ) = (u(t), η t ),
	the representation formula (3.3) for η t+τ gives		
	η t (s) = η t+τ τ (s) =		
	Besides, exploiting (1.5), the continuous dependence estimate

+ 1 dist V (S(t)B, E) ≤ I(R)e -ω 1 t , ∀t ≥ 1, and, due to (3.7), dist H 1 (S(t)B, E) ≤ I(R), ∀t < 1.

Hence, Corollary 4.3 follows.

Theorem 4.4 is a direct consequence of Theorem 4.1 (cf.

[START_REF] Babin | Attractors of evolution equations[END_REF][START_REF] Temam | Infinite-dimensional dynamical systems in mechanics and physics[END_REF]

).

Proof of Proposition 4.6. Let Z(t) = (u(t), η t ) be a solution lying on A. Assume first t > 0. Fixed an arbitrary τ > 0, denote z τ = S(-τ )Z(0) and set (u τ (t), η t τ ) = S(t)z τ . s 0 u τ (t + τ -y)dy = s 0 u(t -y)dy, whenever 0 S(t)z 1 -S(t)z 2 H 0 ≤ e ct z 1 -z 2 H 0
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