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On the stick-slip waves under unilateral contact and Coulomb
friction

H. D. Bui • A. Oueslati

Abstract In this paper, the construction of analytic solu-

tions of stick-slip waves propagating along the interface

between an elastic half-space and a moving rigid one is

investigated. The contact between the solids is governed by

unilateral constraints and Coulomb friction law and the

deformable body is loaded by remote uniform stresses

s�yy\0, s�xy [ 0. The method of solution is based on the

analytic continuation of Radok’s complex potentials within

the framework of steady elastodynamical problems. The

governing equations combined with the boundary condi-

tions are reduced to a Riemann–Hilbert problem with dis-

continuous coefficient. This approach for the stick-slip

study is novel and differs from those in literature, namely

the series method and the Weertman’s dislocation formu-

lation. We present the closed-form solution of the Rie-

mann–Hilbert problem and show that the principal

unknowns are of number two: the wave celerity and the

ratio of the slip length by the stick one. The considered

loading introduces an additional velocity V* related to the

longitudinal elongation e�xx due to the normal stress s�yy. We

show that if V* vanishes then there is no solution. When

V* = 0, it is possible to construct weakly singular solutions

satisfying all stick-slip conditions except over a narrow

zone at transition points: the shear stress is singular over a

small zone and the normal contact stress exhibits a positive

singularity over a very small zone in the slip region which

implies a separation near the singular transition.

Keywords Stick-slip waves � Unilateral contact �
Coulomb friction � Riemann–Hilbert problem �
Crack-like behaviour

1 Introduction

Contact and friction are among the oldest branches of

mechanics and continue to be a subject of intensive

researches because of their crucial theoretical relevance

and importance in engineering applications. Historically, it

seems that the frictional contact theory started with the

pioneering works of Amontons [7] and Coulomb [19] who

formulated the well-known Coulomb friction law. This law

is strongly nonlinear and nonsmooth because of its multi-

valued character and the presence of inequalities. Although

Coulomb friction law is widely used in mechanics and

engineering design many questions remains open such as

the existence and uniqueness results of the solution [10, 14,

24, 29], theoretical convergence results and accuracy of

numerical algorithms, shakedown of friction [6].

During the two last decades, an important issue emerges in

the area of elastodynamic problems involving frictional

contact, namely the friction-induced vibration resulting from

the flutter instability in the spirit of Poincaré-Hopf bifurca-

tion. The induced vibrations have the form of stick-slip or

stick-slip-separation self-sustained oscillations propagating

along the contact interface and generally accompanied with
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noise emission. Many examples are common in daily life

such as creaking door, noise of chalk against a table, brake

squeal, guitar sound, silo music (sound emission during the

flow of granular materials through silos) are generally

associated to stick-slip propagation. Study of such periodic

regimes is relevant for break squeal [31, 38], simulations of

earthquakes and seismology analysis [8, 11], study of

ultrasonic motors [52], granular discharge from silos [35,

43], interpretation of Shallamach waves in sliding of rubber

against a rigid substrate [12, 49].

In literature, first studies of stick-slip focused on discrete

systems, typically the Van-der Pol or the Klarbring oscil-

lator composed of a springs-mass assemblage in frictional

contact with a rigid substrate moving with a constant

velocity. For such mechanical systems, the formation of

stick-slip motion is attributed to a static coefficient of

friction higher than a kinematic one or to the decay of the

kinematic coefficient with the sliding velocity. The tran-

sition toward friction induced vibration is numerically

obtained in many works [40, 41]. The construction of

analytical stick-slip solutions for discrete mechanical sys-

tems does not present any particular difficulty [22, 34].

Recent investigations of the steady sliding contact

between dissimilar elastic half-spaces or between a semi-

infinite elastic solid and a rigid one showed that the steady

state is dynamically unstable for a constant friction coef-

ficient. For instance, Renardy [47] explained the steady

sliding contact between a rigid substrate and an incom-

pressible half-plane within the framework of neo-Hooken

constitutive behavior. He found that flutter instability

occurs in the limit of elasticity for a coefficient of friction

greater then 1. This same conclusion was established

independently by Martins et al. [26, 27] and Simoes and

Martins [48] after investigation of the dynamic response of

an elastic and viscoelastic semi-infinite solids in contact

with a rigid body. Further, they showed that the presence of

viscous dissipation has the effect of increasing the mini-

mum value of coefficient of friction required for existence

of self-excited vibration. In the same spirit, surface insta-

bilities in a Mooney-Rivlin half-space compressed against

a rigid flat surface are studied by Désoyer and Martins [21]

and it is found that the problem is again ill-posed for suf-

ficiently large coefficients of friction. In a series of inter-

esting papers, Adams [2–4] showed that the steady sliding

between two dissimilar half-planes is ill-posed for a wide

range of coefficient of friction, material combinations and

relative sliding velocity. Adams [2] suggested that the

dynamic instability of the steady state is related to the

destabilization of the so-called interfacial slip waves. Such

waves exist in frictionless contact and are called also the

‘‘generalized Rayleigh waves’’ because they propagate

with the Rayleigh wave celerity. Recall that slip waves are

initially observed by Weertman [51], Achenbach and

Epstein [1] and Murty et al. [36]. Later Rinjith and Rice

[46] demonstrated the connection between the ill-posed-

ness of the Coulomb friction problem and slip waves.

Precisely, it was shown that, for material combinations

where the generalized Rayleigh wave exists, the steady

sliding with Coulomb friction is dynamically unstable for

an arbitrarily small values of the friction coefficient. The

authors showed that a possible regularization of the prob-

lem could be achieved by using a memory-dependent rate-

and-state friction law proposed by Prakash [44]. Nguyen

et al. [32, 33, 39, 43] studied the sliding steady state for an

elastic tube in frictional contact with a rigid and rotating

shaft modeling a brake-like system. It is found that in

frictionless contact, two harmonic waves propagating in

opposite senses are obtained as in classical elasticity. When

the Coulomb friction is considered, the relative sliding

displacement represents two waves: an exploding wave and

a damping one propagating in the opposite direction.

From the point of view of numerical studies, the ill-

posedness of dynamic contact problems involving friction

is encountered, for example, in works of Andrews et

Benzion [8], Harris and Day [25] and Cochard and Rice

[15] who investigated the propagation of ruptures under

Coulomb friction along the interface of two dimensional

and dissimilar solids. The ill-posedness manifests by the

non convergence of numerical results with the refinement

of grid-mesh. As suspected by Cochard and Rice [15] , the

use of Parakash–Clifton’s friction law for the same

numerical investigations regularizes the problem.

Although the mechanism of flutter instability of friction

is now well understood, only few works are devoted to the

construction of analytic solution of self-excited vibrations

for continuum media. First attempts to built closed-form

solution of stick-slip or stick-slip-separation waves travel-

ing along the interface contact between two identical

elastic half-spaces, were derived by Comninou [16, 17].

Freund [23] pointed out a similarity feature between the

Comninou’s waves and the propagation of interface cracks

and showed that the encountered singularities imply energy

sources and sinks. Hence, Comninou’s solutions were

controversial and not physical. For these same reasons,

Adams [3] didn’t succeed to construct an interfacial stick-

slip waves between two dissimilar half-spaces, however, in

Adams [4] a family of slip pulse propagating with the

celerity of generalized Rayleigh waves is successfully

built. Following the construction method of solution used

by Comninou [17], Adams [3, 4] and Caroli [18] studied

analytically the sliding between a viscoelastic half-space

and nondeformable one. It is shown that the slow slippage

between the bodies is impossible via a periodic set of

alternating slip pulses and stick zones. Adda-Bedia and

Ben Amar [5] studied the existence of a steady-state slip

pulse on finite size between two dissimilar materials. In the
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presence of Coulomb friction, such solutions are found to

exist with an arbitrary slip velocity and an arbitrary slip

length. Nevertheless, these solutions are not physical and

show a crack-like behavior because of the singularity of the

normal contact stress. For bounded solids, to our knowl-

edge, the only semi-analytic stick-slip and stick-slip-sepa-

ration waves are derived in [32, 33, 43] in view of the study

of two-dimensional brake-like system. Based upon a

Galerkin expansion, elastodynamic equations involving

contact and Coulomb friction constraints are bring to the

boundary giving a set of reduced equations. Resolution of

the obtained reduced equations under contact and friction

constraints allows the possibility of construction of trav-

eling interface waves. According to the values of the

contact pressure, the rotation velocity and the friction

coefficient, several periodic dynamical responses can be

found under the form of stick-slip and stick-slip-separation

waves. These semi-analytic solutions are compared to

numerical experimentations performed by finite element

method [39, 42, 43]. Others numerical experimentations

are provided in the literature [28, 30, 50].

The present work is devoted to the construction of an

analytic solution of stick-slip waves crossing the interface

of an elastic half-space and a rigid one. This model revisits

some models on stick-slip problems [3, 4, 18, 26]. This

paper is organized as follows. In Sect. 2, we set the gov-

erning equations and the boundary conditions for the

problem of the steady sliding between the tow half-spaces.

In Sect. 3, we proceed to the construction of the solution by

using the analytical continuation method of the complex

Radok’s potentials [45]. The problem of the stick-slip is

then reduced to a Riemann–Hilbert problem with discon-

tinuous coefficient and the closed-form expressions of the

solution are derived. These formulae are used in Sect. 4 to

obtain the final equations allowing the determination of the

stick and slip regions and the wave celerity. Section 5 is

concerned with the results and the discussion of the char-

acteristics of the obtained stick-slip wave.

2 Problem statement

Consider an elastic solid, with shear modulus G and waves

velocities c1, c2 occupying the lower half space X- and

sliding against the upper rigid half-space X? which moves

to the right with velocity V, as shown in Fig. 1, in plane

strain conditions. Unilateral contact and Coulomb friction

with constant friction coefficient l are assumed. It is

emphasized that the interfacial or local coefficient of

friction l is the ratio of shear to normal contact pressure at

the interface which would cause local slipping to occur [4].

The elastic body is subjected to remote constant stresses

s�yy\0, s�xy [ 0 such that s�xy ¼ �l� s�yy, with l* \l.

Suppose that the interface is entirely a stick zone, then

the velocity of points of the interface y = 0-, is _Ux ¼ V .

Since the shear stress grows indefinitely, the interface will

no longer adhere to the upper non-deformable solid.

On the other hand, suppose that the interface y = 0- is

entirely a sliding one, with the constant static stress

ðs�xy [ 0, s�yy\0Þ. Thus the elastic body is at rest under

static stress, _Ux ¼ 0. The static stress state violates the

Coulomb friction law. Therefore both conditions on the

velocity and Coulomb’s friction law are incompatible.

Thus, we investigate here the possibility of relative motion

of the two bodies, due to the existence of periodic stick and

slip regions which propagate along the interface with some

wave speed c. In this case the quantity l* may be inter-

preted as the apparent coefficient of friction, since sliding

occurs with that ratio of applied shear to normal traction [4,

5, 18].

There are many physical phenomena in Nature in which

incompatibility exists and results in what is called ‘‘frus-

tration’’. The best example is the following one. Let us

consider a unit volume of liquid water inside a non-

deformable container at room temperature. At a tempera-

ture lower than 0�C, water freezes into solid ice under

atmospheric pressure. Since the specific volume of ice is

greater than that of liquid water about 10%, the water being

constrained by the container cannot freely transform into

solid ice. Suppose now that the container is deformable

with a bulk deformation h* = 5% at zero �C. Water will

be transformed into a mixture of 50% liquid and 50% solid,

which is a kind of ‘‘sorbet’’. To accommodate incompati-

bility or frustration between different conditions, Nature

invents ‘‘homogenization’’, Aubry [9].

We assume that the periodic stick-slip wave consists in a

stick region plus a slip one indefinitely repeated as shown

in Fig. 1. Let us denote by SL the set of the slip segments

SL¼ �� � ½a�k;b�k�
[
� � � ½a0;b0�

[
� � � ½ak;bk�

[
� � � ; k 2N

xxxxx xxxx xxxxxxxxxxxxxxxx xx
   slip

b−k −k ak bk
a

y

E , ν

stick

P

0
a

, ρ

b0

V
undeformable body

elastic solid

( )

Fig. 1 A rigid body sliding on an elastic half-space
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The remainder part of contact interface is the stick zone and

will be refereed by ST. The infinite axis y = 0 is oriented in

the direction of increasing x and the following notation

will be frequently used: SLþ ¼ limy!0þSL and SL� ¼
limy!0�SL. In the same way, one defines ST? and ST-.

If we fix the origin of coordinate frame at b-1 = 0, we

can simply denote any particular slip zone [ai, bi] by its

generic segment [a:a0, b :b0] and any stick zone [bk-1,

ak] by its generic segment [b-1 = 0, a:a0].

Together with a fixed frame coordinates (X, Y), we shall

use also moving coordinates x = X - ct, Y = y where c is

the wave velocity. Material derivative in steady state case

is denoted by a dot, dg
dt � _g ¼ �c g;x.

In the present work, it is reasonable to assume that the

periodic stick-slip regime occurs under the condition dis-

cussed above _Ux ¼ 0 which is satisfied, not locally in the

whole interface, but only in the homogenized sense. That is

the ‘‘mean’’ value of the velocity over a stick-slip period

[0, b] vanishes

_Ux

� �
¼ 0 ð1Þ

This vanishing mean value ensures that the stress field of

the lower elastic body does not blow up in time.

In the steady state case, Eq. (1) is equivalent to

�c Ux;x

� �
¼ 0 or to the periodicity condition

UðbÞ ¼ Uð0Þ ð2Þ

Condition _Ux ¼ V is only satisfied in the stick zones ST,

while the sliding condition Rxy½U� ¼ �lRyy½U� is only

satisfied in the slip zones SL. The incompatibility between

boundary conditions is relaxed through homogenization so

that the effective or homogenized ‘‘friction’’ coefficient l*

can be smaller that the true one.

Let the material velocity in the elastic body at interface

be decomposed into the sum

_U ¼ V� þ _u ¼ V� � c ux;x ð3Þ

where V* is some velocity defined hereafter. We shall show

that the presence of longitudinal elongation e�xx enables to

solve the periodic stick-slip problem. If this elongation is

ignored by setting e�xx ¼ 0 in the equation, we will show

that there is no solution. From elastic law, the elongation in

the x-direction is

e�xx ¼ u�x;x ¼ �
mð1þ mÞ

E
s�yy [ 0 ð4Þ

The velocity V* is defined hereafter by

V� ¼ �c u�x;x ¼ c
mð1þ mÞ

E
s�yy ð5Þ

Note that V* is positive because c \ 0 as it will be shown

hereafter. Equation (5) establishes a relationship between

s�yy, c and V*. Hence, the principal unknowns are the wave

celerity c and b for prescribed stresses and V*.

Let rxy, ryy and rxx be the additional stresses corre-

spondent to the perturbed stick-slip motion. The solution

satisfies the following conditions

– Active contact along the interface y = 0:

uy ¼ 0 ð6Þ

– Material velocity:

_U � �c ux;x þ V� ¼ V in the stick region ST ð7Þ

– Sliding condition:

Rxy½U� � rxy þ s�xy ¼ �lðryy þ s�yyÞ � �lRyy½U�
in the slip region SL

ð8Þ

– The following inequality:

jRxy½U�j\l jRyy½U�j in the stick zone ST ð9Þ

– rxy and ryy behaves like

rij ¼ Oð1=ðx2 þ y2ÞÞ at infinity ð10Þ

We search c, ru, rxy, ryy periodic satisfying relations

(6–10). An addition condition comes from the periodicity

of fields. Note that even if the following fields _U,

U (displacement), ru, r are periodic, the field ux, is not.

A counter-example can be seen in Fig. 2 for the periodic

field (continuous line) ux,x = 1 in [0,1], ux,x = - 1 in [1,

b = 0] and the non-periodic continuous field ux (doted

line).

From Eq. (1) we get

�c Ux;x ¼ �c ux;x þ V� ð11Þ

Assuming the periodicity condition for the total

displacement U(x)

UxðbÞ � Uxð0Þ ¼ 0 ð12Þ

we get �c UxðbÞ � Uxð0Þð Þ ¼ �cðuxðbÞ � uxð0ÞÞ þ V�b ¼
0 and thus

x ,x

xu

u−1

1

Fig. 2 The gradient field ux,x is periodic (continuous line) however

the displacement ux is non-periodic (doted line)
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uxðbÞ � uxð0Þ ¼
bV�

c
ð13Þ

Thus, ux(x, 0) is not periodic. The constant -V*/c has

been introduced as the applied elongation e�xx. Another

interpretation of (13) is the sliding displacement over a

period. Remark that Eq. (1) shows that the ‘‘mean

perturbed velocity’’ _uh i over a period of length b is

opposite to V*. Thus we recover (13)

_uh i ¼ � c

b
uxðbÞ � uxð0Þð Þ ¼ �V� ð14Þ

Another interpretation of Eq. (1) is to impose the over-

all ‘‘mean’’ strain Ux,x equal to zero, or to require the

‘‘mean’’ strain ux;x

� �
be opposite to the applied strain

u�x;x ¼ � V�

c .

Let us now recall the steady elastodynamic equations

within the framework of homogenous and isotropic elas-

ticity under the plane strain hypothesis. In the moving

frame (Oxy) attached to the propagating stick-slip wave

(x = X - ct, y = Y), one introduces the Radok complex

variables

z1 ¼ xþ ib1y ; z2 ¼ xþ ib2y

where b1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

c2
1

q
, b2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

c2
2

q
, i ¼

ffiffiffiffiffiffiffi
�1
p

is the

imaginary unit number and c1, c2 stand for the celerity of

longitudinal and shear waves defined respectively by

c1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ 2G

q

s

; c2 ¼
ffiffiffiffi
G

q

s

G is the shear modulus, k denotes the Lamé’s coefficient

and q is the mass density. The displacement and stress

fields are given in terms of tow complex potentials /1 and

/2 as follows [45]

ux ¼ �
1

G
<e /1ðz1Þ þ

1þ b2
2

2
/2ðz2Þ

� �
ð15Þ

uy ¼
1

G
=m b1/1ðz1Þ þ

1þ b2
2

2b2

/2ðz2Þ
� �

ð16Þ

rxx ¼ �2<e
2b2

1 � b2
2 þ 1

2
/01ðz1Þ þ

1þ b2
2

2
/02ðz2Þ

� �

ð17Þ

ryy ¼ ð1þ b2
2Þ <e /01ðz1Þ þ /02ðz2Þ

� �
ð18Þ

rxy ¼ 2=m b1/
0
1ðz1Þ þ

ð1þ b2
2Þ

2

4b2

/02ðz2Þ
!

ð19Þ

where <eðZÞ and =mðZÞ represent respectively the real and

the imaginary part of the complex number Z. The present

study focus on the subsonic waves i.e. c \ c2. Hence,

b1 [ 0 and b2 [ 0.

3 Construction method of the solution

3.1 Basic equations

Following Bui and Oueslati [14] and Bui [13], the con-

struction method of the solution is based on the displace-

ment continuation. From the condition uy = 0 along the

contact interface (real axis where z1 = z2 = z = x ? i0)

and Eq. (16) one obtains

b1 /1ðzÞ þ
ð1þ b2

2Þ
2b2

/2ðzÞ ¼ 0 ð20Þ

This equation suggests the following definition for the

function /2

/2ðz2Þ :¼ � 2b1b2

ð1þ b2
2Þ

/1ðz2Þ ð21Þ

Substitution of (21) in (15–19) results in the following

equations on the interface

ux ¼ �
ð1� b1b2Þ

G
<e /1ðzÞð Þ ð22Þ

ryy ¼ ð1þ b2
2 � 2b1b2Þ <e /01ðzÞ

� �
ð23Þ

rxx ¼ ð�1þ b2
2Þ þ 2b1ðb2 � b1Þ

� �
<e /01ðzÞ
� �

ð24Þ

rxy ¼ b1ð1� b2
2Þ =m /01ðzÞ

� �
ð25Þ

Hence, all mechanical fields are determined through the

knowledge of the function /1 and its derivative /1
0.

In the sequel, unless stated otherwise, the notation

U(z): = /1

0
(z) will be used.

We shall search for a complex solution under the form

of a Cauchy integral with a distribution f(t)

UðzÞ ¼ 1

2ip

Zb

a

f ðtÞ
t � z

dt ð26Þ

It is useful to underline that if f(t) is real then the

conjugate function of U is given by

UðzÞ ¼ � 1

2ip

Zb

a

f ðtÞ
t � z

dt ¼ �UðzÞ ð27Þ

Note that (27) may remains valid for some complex

functions f(t). It will be the case for the solution in the slip

zone as it will be shown hereafter.

3.2 Solution in the slip zone

The sliding state expressed by Eq. (8) may be written as

rxyþ s�xy ¼�lðryyþ s�yyÞ) rxyþlryy ¼�s�xy�ls�yy :¼ T�

ð28Þ
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The stress T* can be written as T� ¼ l� s�yy � l s�yy ¼
ðl� � lÞs�yy [ 0. It is positive because l* \l and s�yy\0.

By setting c1 ¼ b1ð1� b2
2Þ[ 0 and c2 = 1 ? b2

2 - 2b1b2

and by virtue of UðzþÞ ¼ �UðzþÞ, Eq. (28) becomes

�gUðz�Þ þ UðzþÞ ¼ 2iT�

c1 � ilc2

:¼ f2ðtÞ ð29Þ

where

f2ðtÞ ¼
2iT�

c1 � ilc2

ð30Þ

is a constant and

g ¼ � c1 þ ilc2

c1 � ilc2

ð31Þ

It is useful to notice that the coefficient g can be expressed

in a different manner

g ¼ �e2ipa ¼ e2ipðaþ1
2
Þ; gj j ¼ 1 ð32Þ

with

tanðapÞ ¼ l
c2

c1

ð33Þ

Equation (29) is called the Riemann–Hilbert problem and

has a closed form solution [37]. The appropriate P-periodic

solution of the homogenous Riemann–Hilbert problem has

the following form (Appendix 1)

XðzÞ ¼
Yþ1

k¼�1
z� ðaþ kbÞð Þ

1
2
�a z� ðk þ 1Þbð Þ�

1
2
þa ð34Þ

involving product of holomorphic functions with a cut

along the slip segments SL. Observe that X(z) is regular at

ak = a ? kb and weakly singular at bk = (k ? 1)b.1

It easily seen that

XðzÞ¼ limN!þ1
XþN

k¼�N
z�ðaþkbÞð Þ

1
2
�a z�ðkþ1Þbð Þ�

1
2
þa

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
XN ðzÞ

¼ limN!þ1XNðzÞ ð35Þ

It can be proved for a fixed z, that the sum e of the

remaining terms is of order e = O(1/N). Thus XN(z) tends

absolutely to a limit, denoted by X(z) when N??.

Following Mushkhelishvili [37], the general solution of

(29) has the form

UslipðzÞ ¼ f2

2ip
XðzÞ

Z

SLþ

1

XðtþÞ
dt

t � z
þ C2

8
<

:

9
=

; ð36Þ

where C2 is an arbitrary constant. Besides, it is easy to

prove that (36) satisfies UðzÞ ¼ �UðzÞ.

3.3 Solution in the stick zone

Equating the slip velocity of stick zone to V - V*,

ux;x ¼ oux

ox ¼ �
V�V�ð Þ

c , and knowing that
oð�Þ
ox ¼

oð�Þ
oz þ

oð�Þ
oz we

obtain

ux;x ¼ �
ð1� b1b2Þ

2G
UðzÞ þ UðzÞ

 �

¼ �ð1� b1b2Þ
2G

Uðz�Þ � UðzþÞf g ¼ � V � V�ð Þ
c

ð37Þ

The Plemelj formulas permit one to obtain the density

function f1(t)

f1ðtÞ ¼ UðtþÞ � Uðt�Þ ¼ � 2GðV � V�Þ
cð1� b1b2Þ

ð38Þ

Note that f1(t) is a real constant. One possible solution is

given by

UðzÞ ¼ f1
2ip

Z

ST

dt

t � z
ð39Þ

With this form of solution, the displacement at infinity

should be logarithmic, and not of order O(1/z) as required

and thus does not respect the continuity condition on

y = 0. Thus the expression of U given by (39) must be

modified. An adequate choice of a P-periodic, holomorphic

and multivalued function is given by

XðzÞ ¼
Yþ1

k¼�1
z� ðaþ kbÞð Þ

1
2
�a z� ðk þ 1Þbð Þ�

1
2
þa

where a is a real number introduced in the previous section

by the Eq. (33). Notice that this function is continuous

through the slip segments, satisfies X(z?) = X(z-) for

every z [ SL and is constant at infinity (equal to 1). It then

follows

UðzþÞ
XðzþÞ �

Uðz�Þ
Xðz�Þ

� 

¼ � 2GðV � V�Þ

cð1� b1b2Þ
1

XðzþÞ ð40Þ

Therefore, the expression of complex potential in the stick

zone is given by [37]

UstickðzÞ ¼ f1

2ip
XðzÞ

Z

STþ

dt

XðtþÞðt � zÞ þ C1

8
<

:

9
=

; ð41Þ

where C1 is constant.

1 Regular functions at ak and bk are not considered for the

construction of the solution because the infinite product X(z) is

divergent at infinity and thus the proposed approach does not work.
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3.4 Stick-slip solution

The stick-slip potential is obtained by sum the two complex

solutions Ustick and Uslip. We obtain the following Cauchy

integral with discontinuous density

UðzÞ ¼ 1

2ip
XðzÞ

� f1

Z

STþ

dt

XðtþÞðt� zÞ þ f2

Z

SLþ

dt

XðtþÞðt� zÞ þC0

8
<

:

9
=

;

ð42Þ

where C0 is an arbitrary constant, f1 and f2 are constant

given by (30) and (38) respectively. Moreover, since the

stress field vanishes at infinity then C0 = 0.

Explicit evaluation of U(z) requires the knowledge of

the explicit expressions of the Cauchy integrals in (42).

This is derived out in Appendix 2 and 3. We obtain

UðzÞ ¼ f1

g

g� 1
iXðzÞe�ipa 1

ZðzÞ � 1

� �
þ f2

1� g
1� XðzÞð Þ

ð43Þ

where Z(z) is defined by the same infinite product (34) but

arranged differently, with cuts along stick zones ST

(instead of cuts along slip zones for X(z))

ZðzÞ ¼ � � � ðz� b�ðk�1ÞÞ�bðz� a�kÞb

� � � ðz� bðk�1ÞÞ�bðz� akÞb|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ZkðzÞ

ðz� bkÞÞ�b � � � ð44Þ

where b ¼ 1
2
� a. It is important to emphasize that the

function Z satisfies the following relations

– On the stick zone ST-

ZðzÞ ¼ �i eipa jXðz�Þj and XðzÞ ¼ jXðz�Þj

– On the slip part SL-

ZðzÞ ¼ jXðz�Þj and XðzÞ ¼ i e�ipa jXðz�Þj

Explicit calculation gives the following analytic

expression of the stick-slip potential splitted in its real

and imaginary parts

Uðz 2 SLÞ ¼ � f1

2
1� jXðzÞjð Þ þ T�

c1

cosðpaÞ jXðzÞj
� 


þ i � f1
2

l
c2

c1

ðjXðzÞj � 1Þ þ T�

c1

1� jXðzÞjsinðpaÞð Þ
� 


ð45Þ

and

Uðz 2 STÞ ¼ � f1

2
� i � f1

2
l

c2

c1

þ f1

2 cosðpaÞ jXðzÞj
�

þ T�

c1

1� jXðzÞjð Þ



ð46Þ

4 Some aspects of the stick-slip potential and final

equations

Complex functions given by (45) and (46) are weakly sin-

gular (i.e. square integrable) which avoids the problem of

unbounded energy sources or sinks [23] at switching

boundaries between stick and slip segments. Let us remark

that the nature of the mathematical singularity was explored

in Deng [20] and Bui and Oueslati [14] where it was shown

that the singularity ð� 1
2
þ aÞ is associated to ‘‘push-in’’ test

of rigid fibre in its elastic matrix material and the singularity

ð1
2
� aÞ corresponds to ‘‘pull-out’’ kinematics.

Moreover, since U must behave as O(1/z2) at infinity

then terms of order O(1/z) must be canceled. This condition

will be imposed for the truncated product XN(z) (a suffi-

cient condition). Also, it will be shown that it is necessary

to ensure the same kind of constraint over a single and

an isolated generic stick-slip segment ½b�1 ¼ 0; a� [ ½a; b�
(a necessary condition) as follows

Za

0

f1
dt

ðtþ � aÞ
1
2
�aðtþ � bÞ�

1
2
þa

þ
Zb

a

f2

dt

ðtþ � aÞ
1
2
�aðtþ � bÞ�

1
2
þa
¼ 0 ð47Þ

In order to identify the term of order O(1/z) of Uslip(z) at

infinity, we shall rather consider the function Uslip
N ðzÞ

defined by

UslipðzÞ ¼ limN!þ1
f2

2ip
XNðzÞ

XþN

k¼�N

Z

SLþ
k

1

XNðtþÞ
dt

t � z

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Uslip

N ðzÞ

¼ limN!þ1Uslip
N ðzÞ ð48Þ

where SLþk ¼ ½ak; bk� þ i0.

It is readily checked that

Uslip
N ðzÞ ¼

f2
1� g

1� XNðzÞ
� �

ð49Þ

According to Appendix 3, for |z|?? we have

Uslip
N ðzÞ ¼ �

f2
1� g

ð2N þ 1Þ b
z
ðb� aÞ ð50Þ

where b ¼ 1
2
� a.

In the same way, after some cumbersome calculus pre-

sented in Appendix 3, the complex potential /N
stick reads

UN
stickðzÞ ¼ f1

g

g� 1
ie�ipa 1

ZNðzÞ � 1

� �
ð51Þ

where ZN(z) is the truncated product of Z(z). For |z|??,

one obtains
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Ustick
N ðzÞ ¼ f1

g

g� 1
ie�ipað2N þ 1Þ b

z
ðb�1 � aÞ ð52Þ

Considering equations (50) and (52) we obtain for large

|z|

Ustick
N ðzÞ þ Uslip

N ðzÞ

¼ � b
z

ð2N þ 1Þ
g� 1

f1gie�ipaða� b�1Þ þ f2ðb� aÞ

 �

ð53Þ

Therefore, canceling terms of order O(1/z) at infinity

results in

f1gie�ipaða� b�1Þ þ f2ðb� aÞ ¼ 0 ð54Þ

or in an equivalent manner

2GðV � V�Þ
cð1� b1b2Þ

ðc1 þ ilc2Þe�ipaða� b�1Þ þ 2T�ðb� aÞ ¼ 0

ð55Þ

It should be noted that this expression holds for any

elementary wave and constitutes the explicit expression of (47).

Dividing (55) by a and setting b-1 = 0 (i.e. the stick

segment starts at the origin O of the coordinate frame) one

obtains

f1ðc1 þ ilc2Þe�ipa � 2T�ðd� 1Þ ¼ 0 ð56Þ

where d = b/a.

Equation (56) is apparently a complex one in the form

F1ðd; cÞ þ iF2ðd; cÞ ¼ 0, where F1 and F2 are real, so that it

should be splitted into two real equations. However, exact

calculus shows that F2 � f1ð�c1 sinðapÞ þ l c2 cosðapÞ ¼
0 because tanðapÞ ¼ l c2

c1
. Equation (56) is thus reduced to

F1(d, c) = 0 which provides the first relation between the

wave velocity c and d
GðV � V�Þ
cð1� b1b2Þ

ðc1 cosðapÞ þ l c2 sinðapÞÞ þ T�ðd� 1Þ ¼ 0

ð57Þ

The second relation between c and d, which enables

complete determination of these unknowns will be set further

by examining the continuity of the tangential displacement

(the normal component uy = 0 along the contact interface).

We start by determining the gradient displacement ux,x

over the contact interface by setting

ux;x ¼ �
ð1� b1b2Þ

G
<e UðzÞf g ð58Þ

Therefore, in the slip zone, Eq. (45) yields the following

expression

ux;xðz2 SLÞ ¼�ðV �V�Þ
c

þ jXðz�Þj

� ðV �V�Þ
c

�ð1�b1b2Þ
2G

cosðpaÞT
�

c1

� 


|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
xðc;V�V�;T�Þ

ð59Þ

The displacement ux over the generic slip segment [a, b] is

then obtained by the integration of (59)

uxðx 2 SLÞ ¼ D� ðV � V�Þ
c

x

þ xðc; V � V�; T�Þ
Zx

a

jXðt�Þjdt ð60Þ

where D is an arbitrary constant.

The stick velocity is easily determined by the stick

condition (37) or by virtue of (58) and (46) as in the slip

case. One gets

ux;xðz 2 STÞ ¼ � ðV � V�Þ
c

ð61Þ

Hence, the horizontal displacement in the generic stick

segment [b-1 = 0, a] is given by

uxðx 2 STÞ ¼ � ðV � V�Þ
c

xþ F ð62Þ

where F represents an arbitrary integration constant.

A simple inspection of the continuity condition at

a shows that D = F.

Also one must write the continuity condition obtained

by periodicity of the total field namely, Ux(b) = Ux(0), so

that according to (2), uxðbÞ � uxð0Þ ¼ bV�

c . This permits one

to have the second equation allowing complete determi-

nation of c and d

�V d
c
þ ðV � V�Þ

c
� 1� b1b2

2G
cosðapÞ T

�

c1

� 


�
Zb

a

Xðt�Þj jdt ¼ 0 ð63Þ

The explicit calculation of this ‘‘closure’’ condition

requires explicit determination of the integral

K ¼
Rb

a

jXðt�Þjdt. We obtain (Appendix 3)

Zb

a

jXðt�Þjdt ¼ pð1
2
� aÞðb� aÞ 1

cosðpaÞ ð64Þ

Therefore, one deduces

� V

c
dþ ðV � V�Þ

c
� ð1� b1b2Þ cosðpaÞ T�

2Gc1

� 


� pð1
2
� aÞ ðd� 1Þ

cosðpaÞ ¼ 0 ð65Þ

In conclusion, the unknowns of this stick-slip problem

(c, d) for given loading conditions (T*, V, V*) are com-

pletely determined by the set of the two Eqs. (57) and (65).
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Physical quantities involved in the problem may be

scaled as follows

a ¼ 1; d ¼ b

a
! b [ 1;

T�

G
! T ;

V

c2

! v;

V�

c2

! v�;
c1

c2

! c1;
c

c2

! c

We obtain the following final equations

� v

c
bþ ðv� v�Þ

c
� ð1� b1b2Þ cosðpaÞ T

2c1

� 


� pð1
2
� aÞ ðb� 1Þ

cosðpaÞ ¼ 0 ð66Þ

and

ðv�v�Þ
cð1�b1b2Þ

ðc1 cosðapÞþlc2 sinðapÞÞþTðb�1Þ¼0 ð67Þ

5 Results and discussion

Following results in literature [26, 27, 48], the stick-slip

wave propagates from rear to front, i.e. from the right to

the left in our problem. Therefore, we shall search for a

wave celerity in the range -c2 \ c \ 0 (or �1\c\0 for

the non dimensional equations).

The stick-slip problem ðc; bÞ, for given loading condi-

tions (T, v, v*) is solved by the set of the two equations

(66) and (67). This problem is highly non linear in the

wave velocity c and the uniqueness of the solution cannot

be easily proved. Moreover its numerical solution by

Newton’s method for example, is unaccurate and fails

because of singularities. Let us propose a simpler method

to solve it. Instead of finding ðc; bÞ for a given loading

condition (v, v*, T) (or ðv; v�; s�xyÞ since), we search the

solution of the following inverse problem:

Find (v, T) for any given pair ðc; bÞ and givenv*.

Therefore, one obtains a linear algebric system

pð1
2
� aÞ ðb� 1Þ

cosðpaÞ � b

� �
v

c

� pð1
2
� aÞðb� 1Þ ð1� b1b2Þ

2c1

� �
T

¼ pð1
2
� aÞ ðb� 1Þ

cosðpaÞ
v�

c
ð68Þ

and

2
ðc1 cosðapÞ þ l c2 sinðapÞÞ

ð1� b1b2Þ

� �
v

c
þ ½b� 1�T

¼ 2
ðc1 cosðapÞ þ l c2 sinðapÞÞ

ð1� b1b2Þ
v�

c
ð69Þ

The system (68–69) is mathematically well-posed in the

sense that we have two equations for two unknowns (v, T).

Note that once T is known the stresses s�yy and s�xy are easily

obtained.

The solution is straightforward and depends on the

determinant of the linear system

Dðb; cÞ ¼ ðb� 1Þ
c1c

Hðb; cÞ ð70Þ

where

Hðb; cÞ ¼ �c1bþ c1pð
1

2
� aÞ ðb� 1Þ

cosðpaÞ

þ pð1
2
� aÞ c1 cosðapÞ þ l c2 sinðapÞð Þ ð71Þ

It is easy to establish that Hðb; cÞ[ 0 8b [ 1 and

8c 2� � 1; 0½. Thus the determinant Dðb; cÞ is strictly neg-

ative 8b [ 1 and 8c 2� � 1; 0½.
We shall distinguish two cases: v* = 0 and v* = 0.

5.1 Solution for v* = 0

When v* = 0, equations (68–69) are reduced to a

homogenous algebric system. The later have non trivial

solutions in the domain �1\c\0 and b [ 1 if and only if

the determinant Dðb; cÞ vanishes. However, we have

checked that Dðb; cÞ\0 in the domain �1\c\0 and

b [ 1. Therefore, only the trivial solution v = 0 (statics)

and T = 0 (the loading at the Coulomb limit) exists.

We conclude that no solution exists in the case v* = 0.

This result agrees with the conclusion of Caroli [18] for

friction of a viscoelastic medium against a rigid half-space

where no solution is found.

5.2 Solution for v* = 0

For the case v* = 0 the solution is straightforward for

v and T

v ¼ v�

1þ Aðb; cÞ ð72Þ

where

Aðb; cÞ

¼ 4bc1cosðapÞ
pð�1þ 2aÞ lc2sinð2paÞ þ c1ð�1þ 2bþ cosð2paÞÞð Þ

and

T ¼ � 4bc1ðc1 þ c1cosð2apÞ þ lc2sinð2apÞÞ
ðb� 1Þð�1þ b1b2Þ

� v�

c 4bc1cosðapÞ þ pð�1þ 2aÞ lc2sinðpaÞ þ c1 �1þ 2bþ cosðpaÞð Þð Þð
ð73Þ

Note that the solution pair (v, T) exists and is unique for

any wave velocity such that �1\c\0, any b [ 1 and for a

given v*.
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As can be noted in Eqs. (22) and (23), the gradient ux,x

and the stress ryy are of opposite signs. Since the slip

velocity has a negative singularity at x = b (Fig. 3), the

normal stress shows a positive singularity as seen in Fig. 4

where Ryy/G is plotted. Note also that, in the stick zone at

the transition point with slip segments, the shear stress is

singular and thus the stick condition (10) is violated over a

very small zone, cf. Fig. 5. A similar result has been

pointed out by Adda-Bedia and Ben Amar (2003) in ana-

lyzing the existence of a single steady-state slip pulse

between two elastic media by the use of Weertman’s dis-

location formulation.

It is worth noting that the simplicity of the inverse

problem allows an easy parametric study of sensibility of

the results under various conditions. We may calculate

R = (separation region)/b (where Ryy [ 0) and S the ratio

of the zone length for which (10) is violated by b. They are

found very small for a wide range of different combina-

tions of the problem parameters. For example, for fixed

E = 2.1 9 1011 Pa, q = 7,850 Kg/m3, m = 0.3, l -

l* = 0.2, v* = 0.001 and c ¼ �0:7, it is found that

R(b = 2) = 6 9 10-5 and R(b = 1.05) = 3.1 9 10-6 while

S(b = 2) = 3 9 10-4 and S(b = 1.05) = 6.3 9 10-5.

Besides for fixed b = 1.5, v* = 0.1, c = - 0.7 and l = 0.7

these ratios vary with respect to l* as follows:

R(l* = 0.1) = 10-3 and R(l* = 0.65) = 3.3 9 10-6 while

S(l* = 0.1) = 2 9 10-2 and S(l* = 0.65) = 6.3 9 10-5.

Finally, the ratios R and S are practically not sensitive to

variation of v* and c.

6 Conclusion

This work may be considered as a natural continuation of

the results of many authors devoted mainly in the frictional

slipping contact between two dissimilar media [26, 27, 46,

48] who showed that the steady sliding state is dynamically

unstable which may lead to the formation of interface

waves such as stick-slip or stick-slip-separation responses.

We have shown that the stick-slip problem under condi-

tions specified in the Introduction for the frictional sliding

contact between an elastic medium a rigid one, can be

solved analytically:

– The method of representation of plane strain steady

state elastodynamics by Radok’s potentials has been

used.

– The stick-slip problem is reduced to a Riemann–Hilbert

problem with discontinuous coefficient.

– The obtained equation have been solved in a closed-

form under the conditions that a uniform longitudinal

strain e�xx ¼ u�x;x is considered as the consequence of the

normal stress s�yy. If the strain e�xx vanishes or is ignored

v* = -cux,x = 0 there is no solution.

– The solution is obtained by solving an inverse proce-

dure in which the loading conditions (v, T) is

Fig. 3 The gradient ux,x over a stick-slip segment: a negative

singularity near b = 2 with E = 2.1 9 10 11 Pa, q = 7,850 Kg/m3,

m = 0.3, l = 0.5, l* = 0.4, v* = 0.001 and c ¼ �0:7

Fig. 4 The normalized stress Ryy/G (for the same numerical data as

for Fig. 3) over stick-slip segments exhibits a positive singularity at

the transition points SL?ST

Fig. 5 The normalized stress Rxy/G (for the same numerical data as

for Fig. 3) over stick-slip segments shows a negative singularity at the

transition points SL?ST
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determined as a function of the wave celerity c, b and

v*. There is no oscillatory behavior of the stress but the

solution shows a crack-like behaviour: the shear stress

exhibits a negative singularity while the normal stress

has a positive singularity at the extremity of the slip

region which also means a separation in a narrow zone.

This incomplete solution is obtained for functions

X and Z of the type ‘‘regular-weakly singular’’ at the

ends ak and bk respectively.

Contrary to some authors who change the friction law

and adopt generally the rate-and-state Prakash’s friction

law to overcome this difficulty, we will conserve the

Coulomb friction law and investigate at least many possi-

ble models in the future: (1) Model of stick-slip-separation

(2) Stick-slip-separation-reverse slip waves as already

worked out semi-analytically and numerically by Oueslati

[43] and Nguyen et al. [39] (3) Model of stick-slip with

regular functions at ak and bk, for which the method out-

lined in this paper does not work because the infinite

product X(z) and Z(z) are divergent at infinity.

Appendix 1: Periodic solution of the homogenous

Riemann–Hilbert problem

We search a P-periodic solution (P = b - a) of the

homogenous Riemann–Hilbert problem (29). First, a

solution is derived for a generic slip segment [a, b] and

then is continued by periodicity to the whole slip region SL.

Making use of Mushkhelishvili’s results [37], the solution

of the problem under consideration has the following form,

with positive or negative odd integers (n = - 1, 1, 3, ...),

(m = -3, - 1, 1, 3, ...):

YðzÞ ¼ ðz� aÞ
n
2
�aðz� bÞ

m
2
þa ð74Þ

with a cut along the slip segment [a, b]. Depending on the

choice of odd integers n, m, these functions may be weakly

singular (or square-integrable) or strongly singular (non-

square-integrable). For physical reasons, strongly singular

functions are not considered for the construction of the

solution. Therefore, the appropriate fundamental solution

of the homogenous problem is provided by:

X0ðzÞ ¼ ðz� aÞ
1
2�aðz� bÞ�

1
2þa ð75Þ

Unfortunately this function is not P-periodic as it is

required. Note that the choice of the solution of the

homogenous problem is very large because it depends on

the polynomial function or in more general of an

holomorphic function. As a matter of fact, we shall rather

consider the following P-periodic function composed of an

infinite product as a solution of the homogenous Riemann–

Hilbert problem

XðzÞ ¼
Yþ1

k¼�1
z� ðaþ kbÞð Þ

1
2
�a z� ðk þ 1Þbð Þ�

1
2
þa ð76Þ

Appendix 2: Asymptotic expansion of XN(z) and 1
XNðzÞ

when |z|??

Consider the truncated product

XNðzÞ ¼ ðz� aÞbðz� bÞ�b

�
Yk¼N

k¼�N;k 6¼0

z� ðaþ kbÞð Þb z� ðk þ 1Þbð Þ�b

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
FkðzÞ

where b ¼ 1
2
� a.

For very large |z| we have:

ðz� aÞbðz� bÞ�b ¼ ð1� a

z
Þbð1� b

z
Þ�b ’ 1þb

ðb� aÞ
z
þ �� �

and

FkðzÞ ¼ 1� ðaþ kbÞ
z

� �b

1� ðk þ 1Þb
z

� ��b

’ 1þ b
z
ðb� aÞ þ � � �

Hence, one obtains:

Yk¼N

k¼�N;k 6¼0

Fk ’ 1þ b
z
ðb� aÞ

� �2N

’ 1þ 2Nb
ðb� aÞ

z
þ � � �

ð77Þ

and consequently

XNðzÞ ’ 1þ ð2N þ 1Þb ðb� aÞ
z
þ � � � ð78Þ

Similar calculations are carried out for

1

XNðzÞ ¼ ðz� aÞ�bðz� bÞb

�
Yk¼N

k¼�N;k 6¼0

z� ðaþ kbÞð Þ�b z� ðk þ 1Þbð Þb

and it is easily established that

1

XNðzÞ ’ 1� ð2N þ 1Þb ðb� aÞ
z
þ � � � ¼ a0 þ a�1z�1 þ � � �

ð79Þ

where a0 = 1 and a-1 = -(2N ? 1) b(b - a).

Appendix 3: Evaluation of the integrals I, J and K

Integral I ¼ 1
2ip

R

SLþ

dt
XðtþÞðt�zÞ
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The integral I can be evaluated explicitly over the slip

zone SL? basing upon the asymptotic expansion of

1/X(z) for large |z|. It is obvious that one has X(z) & 1 when

|z|?? and hence [37]:

I ¼ 1

1� g

1

XðzÞ � a0

� 

ð80Þ

where a0 = 1.

Therefore

UslipðzÞ ¼ f2 XðzÞ I ¼ f2

1� g
ð1� XðzÞÞ ð81Þ

In a similar manner, we give the explicit expression of the

integrale IN defined by:

INðzÞ ¼ 1

2ip

Z

SLþ

dt

XNðtþÞðt � zÞ ð82Þ

It turns out

INðzÞ ¼ 1

1� g

1

XNðzÞ � a0

� 

ð83Þ

where g is given by expression (31) and a0 = 1.

Moreover, for |z|??, results established in Appendix 2

permit one to write:

IN ¼ 1

1� g

1

XNðzÞ � 1

� 

’ � 1

1� g
ð2N þ 1Þb b� a

z

ð84Þ

Integral J ¼ 1
2ip

R

STþ

dt
XðtþÞðt�zÞ

The explicit knowledge of the solution potential

Ustick(z) requires the explicit calculation of the integral J.

A particular care must be taken for this task since the

function X(z) is holomorphic in the hole space with a cut

along slip segments SL and therefore is continuous on stick

zone ST XðzþÞ ¼ Xðz�Þ z 2 STð Þ. In order to evaluate

explicitly the integral J one has to introduce an holomor-

phic function in the complex plane with a cut along zones

segments ST .

Let us introduce a new complex function Z(z) as an

infinite product of fundamental function Zk(z) obtained by a

appropriate rearrangement of the function XðzÞ¼���ðz�
b�ðk�1ÞÞ�bðz�a�kÞb ���ðz�bðk�1ÞÞ�b ðz�akÞÞbðz�bkÞÞ�b

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
XkðzÞ

���

as follows

ZðzÞ ¼ � � � ðz� b�ðk�1ÞÞ�bðz� a�kÞb

� � � ðz� bðk�1ÞÞ�bðz� akÞb|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ZkðzÞ

ðz� bkÞÞ�b � � �

where as usual b ¼ 1
2
� a.

Z satisfies: ZðzÞ ¼ �ieipajXðz�Þj, z [ ST- and Z(z) =

|X(z-)| for z [ SL-. The integral J may be written as

J ¼ 1

2ip

Z

STþ

dt

XðtþÞðt � zÞ ¼
1

2ip

Z

STþ

ie�ipa

ZðtþÞ
dt

t � z
ð85Þ

On the one hand, by residue theorem (Z being equal to 1 at

infinity) one has

MðzÞ ¼ 1

2ip

Z

STþ[ST�

1

ZðtÞ
dt

t � z
¼ 1

ZðzÞ � 1 ð86Þ

and on the other hand

MðzÞ ¼ 1

2ip

Z

STþ

1

ZðtþÞ
dt

t � z
þ 1

2ip

Z

ST�

1

Zðt�Þ
dt

t � z

¼ 1

2ip

Z

STþ

1

ZðtþÞ
dt

t � z
þ 1

2ip

X

k

Zak

bk

1

Zðt�Þ
dt

t � z

¼ 1

2ip

Z

STþ

1

ZðtþÞ
dt

t � z
� 1

2ip

X

k

Zbk

ak

1

Zðt�Þ
dt

t � z

¼ 1

2ip

Z

STþ

1

ZðtþÞ
dt

t � z
� 1

2ip

X

k

Zbk

ak

1

gZðtþÞ
dt

t � z

¼ 1� 1

g

� �
1

2ip

Z

STþ

1

ZðtþÞ
dt

t � z
ð87Þ

Comparing (86)–(87) we get the integral J, Eq. (85), in

explicit form

J ¼ 1

2ip

Z

STþ

1

XðtþÞ
dt

t � z
¼ ie�ipa

2ip

Z

STþ

1

ZðtþÞ
dt

t � z

¼ ie�ipag

g� 1

1

ZðzÞ � 1

� �
ð88Þ

The same method may be used for the evaluation of the

integral JN.

Integral K ¼
Rb

a

jXðt�Þjdt

Let us start by GN ¼ 1
2ip

R

SLN

dt
XN ðtþÞ.

Following Mushkhelishvili [37], it is readily checked

that

GN ¼ 1

2ip

Z

SLN

dt

XNðtþÞ ¼ �
a�1

1� g
ð89Þ

where a�1 ¼ �b ð2Nþ1Þ
b�a (see Appendix 2). Here we have

taken the truncated product XN(z) for which SLN zone is

composed by (2N ? 1) stick segments. Thanks to the

123

12



periodicity of the solution, GN over the generic slip

segment [a, b] is given by:

1

2ip

Zb

a

dt

XNðtþÞ ¼
1

2ip
1

ð2N þ 1Þ

Z

SLN

dt

XNðtþÞ ¼
GN

2N þ 1

¼ b
ðb� aÞ
1� g

Consider now the function SNðzÞ ¼ 1
XNðzÞ. It satisfies the

linear relationship SNðt�Þ ¼ gSNðtþÞ. Similar procedure

used for calculating GN can be applied for evaluating the

integral HN over (2N ? 1) slip segments:

HN ¼
Z

SLN

dt

SNðtþÞ ¼ �b
g

g� 1
ðb� aÞ ð90Þ

since one has

1

SNðtþÞ ¼ XNðtþÞ ¼ gXNðt�Þ ¼ geibp jXNðt�Þj

¼ geipð1
2
�aÞ jXNðt�Þj ¼ �ieipa jXNðt�Þj

Therefore

1

2ip

Zb

a

XNðtþÞdt ¼ 1

2ip

Zb

a

�ieipajXNðt�Þjdt

¼ b
e2ipa

e2ipa þ 1
ðb� aÞ ð91Þ

Hence, one obtains the following result:

K ¼ pð1
2
� aÞ ðb� aÞ

cosðpaÞ ð92Þ
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